PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 56 nr 3 | 701--712
Tytuł artykułu

Mechanical buckling of functionally graded polyethylene/clay nanocomposites columns based on the Engesser-Timoshenko beam theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with mechanical buckling of polyethylene/clay nanocomposite beams of functionally graded and uniformly distributed of nanoclay subjected to axial compressive load with simply supported conditions at both ends. The Young moduli of functionally graded and uniformly distributed nanocomposites are calculated using a genetic algorithm procedure and then compared with experimental results. The formulation is modified to include the effect of nanoparticles weight fractions in the calculation of the Young modulus for uniform distribution. Also, it is modified to take into account the Young modulus as a function of the thickness coordinate. The displacement field of the beam is assumed based on the Engesser-Timoshenko beam theory. Applying the Hamilton principle, governing equations are derived. The influence of nanoparticles on the buckling load of the beam is presented. To investigate the accuracy of the present analysis, a compression study with the experimental results is carried out.
Wydawca

Rocznik
Strony
701--712
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Razi University, Kermanshah, Iran , yas@razi.ac.ir
Bibliografia
  • 1. Arani A., Maghamikia S., Mohammadimehr M., Arefmanesh A., 2011, Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods, Journal of Mechanical Science and Technology, 25, 809-820
  • 2. Barati F., Farahani H., Nezamabadi A., Veiskarami M., 2014, Buckling analysis of functionally graded beams with imperfectly integrated surface piezoelectric layers under low velocity, International Journal of Advances in Applied Mathematics and Mechanics, 2, 64-73
  • 3. Brown D., Mele P., Marceau S., Alberola N.D., 2003, A molecular dynamics study of a model nanoparticle embedded in a polymer matrix, Macromolecules, 36, 1395-1406
  • 4. Eltaher M.A., Emam S.A., Mahmoud F.F., 2013, Static and stability analysis of nonlocal functionally graded nanobeams, Composite Structures, 96, 82-88
  • 5. Fornes T.D., Paul D.R., 2003, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, 44, 4993-5013
  • 6. Ghiasian S.E., Kiani Y., Eslami M.R., 2015, Nonlinear thermal dynamic buckling of FGM beams, European Journal of Mechanics – A/Solids, 54, 232-242
  • 7. Grigoriadi K., Giannakas A., Ladavos A., Barkoula N.M., 2012, Thermomechanical behavior of polymer/layered silicate clay nanocomposites based on unmodified low density polyethylene, Polymer Engineering Science, 53, 301-308
  • 8. Heydari A., 2011, Buckling of functionally graded beams with rectangular and annular sections subjected to axial compression, International Journal Advanced Design and Manufacturing Technology, 5, 25-31
  • 9. Holland J.H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan, U.S.A.
  • 10. Houari M.S.A., Bousalha A.A., Bessaim A., Adda Bedia E.A., Tounsi A., 2013, Buckling of functionally graded nanobeams based on the nonlocal new first-order shear deformation beam theory, International Congress on Materials and Structural Stability, 427-428
  • 11. Jia W.L., Zhao L., Hou L., Ji W.L., Shi W., Qu G. H., 2014, Theoretical analysis of carbon nanotube photomixer-generated terahertz power, Acta Physica Sinica, 63, 72-77
  • 12. Ke L.L., Yang J., Kitipornchai S., 2013, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mechanics of Advanced Materials and Structures, 20, 28-37
  • 13. Kiani Y., Eslami M.R., 2010, Thermal buckling analysis of functionally graded material beams, International Journal of Mechanics and Materials in Design, 6, 229-238
  • 14. Kiani Y., Eslami M.R., 2013, Thermomechanical buckling of temperature-dependent FGM beams, Latin American Journal of Solids and Structures, 10, 223-245
  • 15. Kozlov G., Dzhangurazov B., Ziakov G., Mikitaev A., 2012, The nanocomposites polyethylene/organoclay permeability to gas description within the frameworks of percolation and multifractal models, Chemistry and Chemical Technology, 6, 163-166
  • 16. Lei Z.X., Liew K.M., Yu J.L., 2013a, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element – kp-Ritz method, Composite Structures, 98, 160-168
  • 17. Lei Z.X., Liew K.M., Yu J.L., 2013b, Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-kp-Ritz method in thermal environment, Composite Structures, 106, 128-138
  • 18. Lei D., Menggen Q. Q. G., Zhang H. L., Zhi Y. B., 2013c, Field emission properties from a carbon nanotube array with parallel grid, Acta Physica Sinica, 62, 48-50
  • 19. Li S., Wang X., Wan Z., 2015, Classical and homogenized expressions for buckling solutions of functionally graded material Levinson beams, Acta Mechanica Solida Sinica, 28, 592-604
  • 20. Majumdar A., Das D., 2016, A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1, 23-32
  • 21. Mosallaie Barzoki A.A., Ghorbanpour Arani A., Kolahchi A., Mozdianfard M.R., 2012, Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core, Applied Mathematical Modelling, 36, 2983-2995
  • 22. Nam P.H., Maiti P., Okamoto M., 2001, Hierarchical structure and properties of intercalated polypropylene/clay nanocomposite, Polymer, 42, 9633-9640
  • 23. Pakdaman A.S., Morshedian J., Jahani Y., 2013, Effect of organoclay and silane grafting of polyethylene on morphology, barrierity, and rheological properties of HDPE/PA6 blends, Journal of Applied Polymer Science, 127, 1211-1220
  • 24. Rafiee M.A., Rafiee J., Yu Z.Z., Koratkar N., 2009, Buckling resistant graphene nanocomposites, Applied Physics Letters, 95, 223103
  • 25. Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells Theory and Analysis, CRC, New York, U.S.A.
  • 26. Rychlewska J., 2014, Buckling analysis of axially functionally graded beams, Journal of Applied Mathematics and Computional Mechanics, 13, 103-108
  • 27. Shen H.S., 2011a, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: Axially-loaded shells, Composite Structures, 93, 2096-2108
  • 28. Shen H.S., 2011b, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: Pressure-loaded shells, Composite Structures, 93, 2496-2503
  • 29. Sheng N., Boyce M.C., Parks D.M., 2004, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 487-506
  • 30. Simsek M., Yurtsu H.H., 2013, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Composite Structures, 97, 378-386
  • 31. Smith G.D., Bedrov D., Li L., Byutner O.A., 2002, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, Journal of Chemical Physics, 20, 9478-9489
  • 32. Sun Y., Li S.R., Batra R.C., 2016, Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation, Journal of Thermal Stresses, 39, 11-26
  • 33. Thomas B., Inamdar P., Roy, T., Nada B.K., 2013, Finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotubes, International Journal on Theoretical and Applied Research in Mechanical Engineering, 2, 97-102
  • 34. Vodenitcharova T., Zhang L.C., 2006, Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube, International Journal of Solids and Structures, 43, 3006-3024
  • 35. Wang C.M., Reddy J.N., 2000, Shear Deformable Beams and Plates, Elsevier, Oxford, England
  • 36. Yin G.H., Deng Q.T., Yang Z.C., 2015, Bending and buckling of functionally graded Poisson’s ratio nanoscale beam based on nonlocal theory, Iranian Journal of Science and Technology, 39, 559-565
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-33c92a2a-d947-426f-8887-f798c51d9f7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.