Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 6, No. 4 | 43--54
Tytuł artykułu

Laser nanosoldering of golden and magnetite particles and its possible application in 3D printing devices and four-valued non-volatile memories

Treść / Zawartość
Warianty tytułu
Języki publikacji
In recent years the 3D printing methods have been developing rapidly. This article presents researches about a new composite consisted of golden and magnetite nanoparticles which could be used for this technique. Preparation of golden nanoparticles by laser ablation and their soldering by laser green light irradiation proceeded in water environment. Magnetite was obtained on chemical way. During experiments it was tested a change of a size of nanoparticles during laser irradiation, surface plasmon resonance, zeta potential. The obtained golden - magnetite composite material was magnetic after laser irradiation. On the end there was considered the application it for 3D printing devices, water filters and fourvalued non-volatile memories.

Opis fizyczny
Bibliogr. 46 poz., rys., wykr., zdj.
  • Cracow University of Technology, Production Engineering Institute, Poland
  • [1] Chua C.K., Leong K.F., Lim C.S., Rapid prototyping: principles and applications, World Scientific Publishing Co. Pte. Ltd., Singapore, 2nd edition, 135, 2003.
  • [2] Vorndran E., Moseke C., Gbureck U., 3D printing of ceramic implants, MRS Bulletin, 40, 127-136, 2015.
  • [3] Hull C.W., Apparatus for production of threedimensional objects by stereolithography, Patent US4575330 A, published 11 March 1986.
  • [4] Deckard C., Method and apparatus for producing parts by selective sintering, U.S. Patent 4,863,538, published 5 September 1989.
  • [5] Justin D.F., Stucker B.E., Gabbita D.J.R., Britt D.W., Laser based metal deposition (LBMD) of antimicrobials to implant surfaces, Patent US20110208304 A1, published 25 August 2011.
  • [6] Davison R.L., Natusch D.F.S, Wallace J.R., Evans C. Jr, Trace Elements in Fly Ash. Dependence of Concentration on Particle Size, Environmental Science & Technology, 8, 13, 1107-1113, 1974.
  • [7] Smith R.D., Campbell J.A., Nielson K.K., Characterization and Formation of Submicron Particles in Coal-Fired Plants, Atmos. Environ., 13, 607-617, 1979.
  • [8] Huang S.-L.., Hsu M.-K.., Chan C.-C.., Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells, Environmental Health Perspectives, 111, 4, 478-482, 2003.
  • [9] Smith R.D., Campbell J.A., Nielson K.K., Characterization and Formation of Submicron Particles in Coal-Fired Plants, Atmos. Environ., 13, 607-617, 1979.
  • [10] Hornyak G.L., Tibbals H.F., Dutta J., Moore J.J., Introduction to Nanoscince and Nanotechnology, CRC Press, Taylor & Francis Group, Broken Sound Parkaway NW, 14-19, 2009
  • [11] Sharma V., Park K., Srinivasarao M., Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly, Mater. Sci. Eng. R Rep., 65, 1-38, 2009.
  • [12] Mafuné F., Kohno J., Takeda Y., Kondow T., Sawabe H., Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant, J. Phys. Chem. B 105, 5114-5120, 2001.
  • [13] He S., Yao J., Jiang P., Shi D., Zhang H., Xie S., Pang S., Gao H., Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice, Langmuir, 17, 5, 1571-1575, 2001.
  • [14] Takami A., Yamada H., Nakano K., Koda S., Size Reduction of Silver Particles in Aqueous Solution by Laser Irradiation, Jpn. J. Appl. Phys., 35, 6B, L781-L783, 1995.
  • [15] Zhang Y., Zhang J., Controllable microstructure of Au nanoparticle-DNA oligonucleotide conjugates, Journal of Chemical and Pharmaceutical Research, 6, 4, 255-259, 2014.
  • [16] Storhoff J.J., Lazaorides A.A., Mucic R.C., Mirkin C. A., Letsinger R.L., Schatz G.C., What Contrals the Optical Properties of DNA-Linked Gold Nanoparticles Assembles?, J. Am Chem. Soc., 122, 4640- 4650, 2000.
  • [17] Ren L., Chow G.M., Synthesis of NIR-sensitive AuAu2S nanocolloids for drug delivery”, Mater. Sci. Eng. C, 23, 113, 2003.
  • [18] Nuzzo R.G., Allara D.L., Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc, 105, 4481-4483, 1983.
  • [19] Brust M., Walker M., Bethel D., Schiffrin D.J., Whyman R., Synthesis of thiol - derivatised gold nanoparticles in a two-phase liquid - liquid system, J. Chem. Soc., Chem. Commun., 7, 801-802, 1994.
  • [20] Kiang C.H., Phase transition of DNA - linked gold nanoparticles, Physica A, 321, 164-169, 2003.
  • [21] Wei H., Li B., Du Y., Dong S., Wang E., Nucleobase - metal hybrid materials: preparation of submicrometer-scale, spherical colloidal particles of adenine-gold(III) via a supramolecular hierarchical self-assembly approach, Chem. Mater., 19, 12, 2987- 2993, 2007.
  • [22] Bardhan R., Wang H., Tam F., Halas N.J., Facile Chemical Approach to ZnO Submicrometer Particles with Controllable Morphologies, ACS J. Surf. Coll., Langmuir, 23, 5843-5847, 2007.
  • [23] Hernández N., Gonz´alez-González V.A., DzulBautista I.B., Cienfuegos-Pelaes R.F, Characterization and magneticproperties of NdXBi1- XFe0.95Co0.05O3 nanopowders synthesized by combustion-derived method at low temperature, Journal of Magnetism and Magnetic Materials, 377, 466-471, 2015.
  • [24] Zhuang Y., Biswas P., Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor, Energy & Fuels, 15, 3, 510-516, 2001.
  • [25] Delaportas D., Svarnas P., Alexandrou I., Siokou A., Black K., Bradley J.W., γ-Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation, J. Phys. D: Applied Physics, 42, 24, 245204, 2009.
  • [26] Ashkarran A.A., Irajizad A., Mahdavi S.M., Ahadian M.M., Nezhad M.R.H., Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method, Applied Physics, A96, 2, 423-428, 2009.
  • [27] Jaworski J.A., Fleury E., Sub-Micrometer Particles Produced by a Low-Powered AC Electric Arc in Liquid’s, JNN, 12, 1, 604-609, 2012.
  • [28] Świątkowska-Warkocka Ż, Koga K., Kawaguchi K., Wang H., Pyatenko A., Koshizaki N., Pulsed laser irradiation of colloidal nanoparticles: a newsynthesis route for the production of non-equilibrium bimetallic alloy submicrometer spheres, RSC Advances, 3, 79-83, 2013.
  • [29] Kawaguchi K., Jaworski J., Ishikawa Y., Sasaki T., Koshizaki N., Preparation of Gold/Iron Oxide Composite Nanoparticles by a Laser-Soldering Method, IEEE Transactions on magnetics, 42, 10, 3620-3622, 2006.
  • [30] Keck C.M., Cyclosporine Nanosuspensions: Optimised Size Characterisation & Oral Formulations, Inaugural-Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universit¨at Berlin, 221-232, 2006.
  • [31] Mafun´e F., Kohno J., Takeda Y., Kondow T., Formation of Gold Nanonetworks and Small Gold Nanoparticles by Irradiation of Intense Pulsed Laser onto Gold Nanoparticles, J. Phys. Chem. B, 107, 46, 12589-12596, 2003.
  • [32] Kawaguchi K., Jaworski J., Ishikawa Y., Sasaki T., Koshizaki N., Preparation of gold/iron-oxide composite nanoparticles by a unique laser process in water, Journal of Magnetism and Magnetic Materials, 310, 2369-2371, 2007.
  • [33] Phuoc T.X., Chyu M.K., Synthesis and Characterization of Nanocomposites Using the Nanoscale Laser Soldering in Liquid Technique, Journal of Materials Science & Nanotechnology, 1, 1, 1-5, 2013.
  • [34] Jaworski J., Gawłowski G., Production and properties of composite material comprising Gd multiscale particles, Management and Production Engineering Review, 6, 1, 16-20, 2015.
  • [35] Link S., El-Sayed M.A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Reviews in Physical Chemistry, 19, 3, 409-453, 2000.
  • [36] Link S, El-Sayed M.A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426, 1999.
  • [37] Kreibig U., Genzel L., Optical absorption of small metallic particles, Surface Science, 156, 2, 678-700, 1985.
  • [38] Kurita H., Takami A., Koda S., Size reduction of gold particles in aqueous solution by pulsed laser irradiation, Applied Physics Letters, 72, 7, 789-791, 1998.
  • [39] Świątkowska-Warkocka Ż., Jaworski J.A., Synthesis, Characterization and Applications of Nanocomposite Particles, book Nanotechnology, Vol.2: Synthesis and Characterization, Studium Press LLC, 2013.
  • [40] Korolev V.V., Ramazanova A.G., Yashkova V.I., Balmasova O.V., Blinov A.V., Adsorption of fatty acids from solutions in organic solvents on the surface of finely dispersed magnetite: 1. Isotherms of adsorption of oleic, linoleic, and linolenic acid from carbon tetrachloride and hexane, Colloid Journal, 66, 6, 700-704, 2004.
  • [41] Zhou H., Lee J., Park T.J., Lee S.J., Park J.Y., Lee J., Ultrasensitive DNA monitoring by Au-Fe3O4 nanocomplex, Sensors and Actuators B, 163, 224- 232, 2012.
  • [42] Takahara J., Yamagishi S., Taki H., Morimoto A., Kobayashi T., Guiding of a one-dimensional optical beam with nanometer diameter, Opt. Lett., 22, 7, 475-477, 1997.
  • [43] Nikolov I. D., Kurihara K., Goto K., Nanofocusing probe optimization with anti-reflection coatings for a high-density optical memory, Nanotechnology, 14, 9, 946-954, 2003.
  • [44] Choi H., Pile D.F.P., Nam S., Bartal G., Zhang X., Compressing surface plasmons for nano-scale optical focusing, Opt. Ex., 17, 9, 7519-7524, 2009.
  • [45] Oulton R.F., Sorger V.J., Zentgraf T., Ma R.-M., Gladden C., Dai L., Bartal G., Zhang X., Plasmon lasers at deep subwavelength scale, Nature, 461, 629- 632, 2009.
  • [46] Watson J.D., Crick F.H.C., Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, 171, 4356, 737-738, 1953.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.