Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 35, no. 3 | 176--184
Tytuł artykułu

Accuracy of the electrodes location method for simultaneous SPECT and EEG examinations

Warianty tytułu
Języki publikacji
A simultaneous SPECT and EEG examination allows for a combined analysis of brain structural and functional changes. The examinations can be visualized as 3D maps of overlapping SPECT (radiopharmaceutical concentration) and EEG (bioelectric potential) data. Synchronization of both maps is difficult, as SPECT shows neither the skull outline nor the EEG electrodes. Thus a technique to reflect electrodes placement in SPECT data was needed. Earlier we devised a method to make a small number of electrodes visible in SPECT without compromising SPECT accuracy. We also proposed a procedure approximating coordinates of the 10–20 system EEG electrodes in a 3D space using only 5 electrodes coordinates, while assuming that all electrodes are placed on 9 intersecting ellipses. Here we used 20 phantoms of real heads from the BrainWeb project and the Oostenveld calculation of electrodes canonical placement in an averaged head model. We divided the electrodes placement error into an easy-to-assess ‘‘distance error’’ (distance from the head surface) and a difficult-to-assess ‘‘angular error’’ (a wrong direction in relation to the symbolic head center). Applying our procedure to the Oostenveld data set, we assessed the ratio between the distance and the angular error and showed that a majority part of the entire approximation error results from the distance error. Our approximation procedure was applied to the BrainWeb phantoms and the distance error was computed allowing estimation of the entire error of electrodes placement. The estimated average error of the electrodes coordinates' approximation procedure was 4.2 mm and the maximum error was 15.4 mm.

Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS, ul. Ks. Trojdena 4, 02-109 Warszawa, Poland,
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS, ul. Ks. Trojdena 4, 02-109 Warszawa, Poland,
  • [1] Goszczyńska H, Królicki L, Bajera A, Zalewska E, Kowalczyk L, Walerjan P, et al. The Procedure for SPECT and BEAM images adjustment. Pol J Med Phys Biomed Eng 2007;13(3):115–25.
  • [2] Kowalczyk L, Bajera A, Goszczynska H, Zalewska E, Królicki L. Integration of EEG and SPECT data acquired from simultaneous examinations. Biocybern Biomed Eng 2013;33:196–203.
  • [3] Kowalczyk L, Goszczynska H, Zalewska E, Bajera A, Krolicki L. Invisible base electrodes coordinates approximation for simultaneous SPECT and EEG data visualization. Meas Sci Rev 2014;14(2):109–16.
  • [4] Bioimage suite application: [accessed 6.02.2014].
  • [5] Jasper HH. The ten twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 1958;10:371–5.
  • [6] Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 2001;112:713–9.
  • [7] Aubert-Broche B, Evans AC, Collins DL. A new improved version of the realistic digital brain phantom. Neuroimage 2006;32(1):138–45.
  • [8] Aubert-Broche B, Griffin M, Pike GB, Evans AC, Collins DL. 20 new digital brain phantoms for creation of validation image data bases. IEEE Trans Med Imag [Special Issue on Validation in Medial Image Processing] 2006;25(11):1410–6.
  • [9] Cocosco CA, Kollokian V, Kwan RK-S, Evans AC. BrainWeb. Online Interface to a 3D MRI Simulated Brain Database. Proc 3rd Intern Conf on Functional Mapping of the Human Brain; NeuroImage 1997;594(2/4):S425.
  • [10] Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, et al. Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 1998;17(3):463–8.
  • [11] Kwan RK-S, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 1999;18(11):1085–97.
  • [12] Kwan RK-S, Evans AC, Pike GB. An extensible MRI simulator for post-processing evaluation. Visualization in biomedical computing (VBC'96). Lecture Notes Comp Sci 1996; 1131:135–40.
  • [13] BrainWeb. [accessed 6.02.2014].
  • [14] Freesurfer application. [accessed 6.02.2014].
  • [15] Mnc2nii application (part: minc toolkit). [accessed 6.02.2014].
  • [16] Mango application. [accessed 6.02.2014].
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.