PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 66, nr 4 | 269--286
Tytuł artykułu

Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study the effect of hydrogen injection into natural gas transient flows on the mechanical strength of natural gas pipelines. The governing equations of hydrogen-natural gas mixtures are two nonlinear partial differential equations. The fluid pressure and velocity are considered as two principal dependent variables. The fluid is a homogeneous hydrogen-natural gas mixture for which the density is defined by an expression averaging the two gas densities where an adiabatic process is admitted for the two components. The problem has been solved by the nonlinear method of characteristics. By the use of Laplace’s law, the pipe’s circumferential stress has been analyzed for different hydrogen mass fraction in the mixture. It was then compared to the allowable stress of different grade pipeline steels used to transport natural gas. The obtained results have shown that the allowable stress for the natural gas pipelines is exceeded for some fractions of hydrogen in the hydrogen-natural gas mixtures.
Wydawca

Rocznik
Strony
269--286
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
  • Laboratory of Applied Fluids Mechanics Process and Environment Engineering, ENIS P.O. Box, W, Sfax, 3038, Tunisia, elaoudsa@yahoo.fr
autor
  • Lebanese International University School of Engineering Energy and Thermo-Fluids Research Group P.O. Box 146404, Mazraa, Beirut, Lebanon
  • Laboratory of Applied Fluids Mechanics Process and Environment Engineering, ENIS P.O. Box, W, Sfax, 3038, Tunisia
Bibliografia
  • 1. C. San Marchi, B.P. Somerday, S.L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steel at high pressures, International Journal of Hydrogen Energy, 2, 100–116, 2006.
  • 2. J. Capelle, I. Dmytrakh, G. Pluvinage, Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength, Corrosion Science, 2, 1554–1559, 2010.
  • 3. S. Elaoud, E. Hadj Taïeb, Transient flow in pipelines of high-pressure of hydrogennatural gas mixtures, International Journal of Hydrogen Energy, 33, 4824–4832, 2008.
  • 4. AIGA Document, Hydrogen transportation pipelines, Asia Industrial Gases Association, 2006, Available from: http://www.asiaiga.org.
  • 5. J. B. Saffers, V.V. Molkov, Towards hydrogen safety engineering for reacting and non-reacting hydrogen releases, Journal of Loss Prevention in the Process Industries, 7–11, 2011 (to appear).
  • 6. P. Xu, J. Zheng, P. Liu, R. Chen, F. Kai, L. Li, Risk identification and control of stationary high-pressure hydrogen storage vessels, Journal of Loss Prevention in the Process Industries, 22, 950–953, 2009.
  • 7. B.P. Xu, J.X. When, S. Dembele, V.H.Y. Tamb, S.J. Hawksworth, The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release, Journal of Loss Prevention in the Process Industries, 22, 279–287, 2009.
  • 8. E.B. Wylie, V.L. Streeter, L.Suo, Fluid Transients in Systems, Prentice Hall, Englewood Cliffs, NJ, 1993.
  • 9. E. Hadj-Taïeb, T. Lili, The numerical solution of the transient two-phase flow in rigid pipelines, International Journal For Numerical Methods in Fluids, 29, 501–514, 1999.
  • 10. S. Stuckenbruck, D.C. Wiggert, R.S. Otwell, The influence of pipe motion on pressure wave propagation, ASME Journal of Fluids Engineering, 7, 518–522, 1985.
  • 11. M.B. Abbott, An Introduction to the Method of Characteristics, American Elsevier, New York, 1966.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2f01a10e-3d97-4404-9b6c-0ffa49373fd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.