PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 66, nr 4 | 83--106, 193--215
Tytuł artykułu

Monte Carlo method in analysis of road accidents versus interpretation of calculation results

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Metoda Monte Carlo w analizie zdarzeń drogowych, a interpretacja wyników obliczeń
Języki publikacji
EN PL
Abstrakty
EN
In the article, the Monte Carlo method (MCM) has been characterized from the point of view of road accident reconstruction. This method lies in making repeated calculations with the use of the same deterministic mathematical model, but with picking out the values of specific parameters on a pseudo-random basis from within predefined ranges of uncertainty. The calculation results have been presented in the form of a probability density function similar, in terms of its graphical representation, to a bell-shaped curve; such a form facilitates the statistical interpretation of data and the uncertainty analysis. In particular, it is possible to narrow the range of results by rejecting the extreme areas of low probability. Examples have been presented, focused on the issues concerning the calculation of pre-impact velocities, location of the collision point on the road, and kinematic analysis (referred to as “time-distance analysis”) of the pre-impact phase of a pedestrian accident. In the collision analysis, both the reconstruction methods (based on the momentum conservation principle and on Marquard models of calculating the post-impact velocities) and simulation techniques (simulation of the impact and the dynamics of motion in the PC-Crash program) were employed. It has been shown that the area of the largest concentration of the Monte Carlo simulation results is actually the area of most common responses of the deterministic model used for the data ranges adopted, but not necessarily a reflection of the truth. The crucial point is to develop an adequate mathematical model of the physical phenomenon.
PL
W artykule scharakteryzowano metodę Monte Carlo, skupiając się na jej zastosowaniach w rekonstrukcji wypadków drogowych. Polega ona na wielokrotnym powtarzaniu obliczeń za pomocą tego samego deterministycznego modelu matematycznego, ale w taki sposób, że za każdym razem wartości poszczególnych danych wybierane są pseudolosowo z zadanych zakresów niepewności. Wyniki reprezentowane są przez rozkład gęstości prawdopodobieństwa o kształcie zbliżonym do krzywej dzwonowej, ułatwiając interpretację statystyczną i analizę niepewności. W szczególności możliwe jest zawężenie zakresu wyników poprzez odrzucenie mało prawdopodobnych rejonów skrajnych. Przedstawiono przykłady, w których rozważano problemy dotyczące obliczeń prędkości przedzderzeniowych, położenia punktu kolizji na jezdni oraz analizy kinematycznej fazy przedzderzeniowej potrącenia pieszego (tzw. analizy czasowo-przestrzennej). W analizie zderzenia wykorzystano zarówno metody rekonstrukcyjne (zasada zachowania pędu i Marquardowskie modele obliczenia prędkości pozderzeniowych), jak i symulacyjne (symulacja zderzenia i dynamiki ruchu w programie PC-Crash). Wykazano, że obszar największej koncentracji wyników symulacji Monte Carlo to tylko rejon najczęściej uzyskiwanych odpowiedzi modelu deterministycznego dla przyjętych zakresów danych, a niekoniecznie odzwierciedlenie prawdy. Kwestią fundamentalną jest opracowanie adekwatnego modelu matematycznego zjawiska fizycznego.
Wydawca

Rocznik
Strony
83--106, 193--215
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
autor
  • Institute of Forensic Research, ul. Westerplatte 9, 31-033 Cracow, Poland, wwach@ies.krakow.pl
Bibliografia
  • [1] BARTLETT, W.: Conducting Monte Carlo analysis with spreadsheet programs. SAE Technical Paper No. 2003-01-0487, Warrendale PA 2003.
  • [2] BARTLETT, W., WRIGHT, W., MASORY, O., BRACH, R., BAXTER, A., SCHMIDT, B., NAVIN, F., STANARD, T.: Evaluating the uncertainty in various measurement tasks common to accident reconstruction. SAE Technical Paper No. 2002-01-0546, Warrendale PA 2002.
  • [3] BRACH, R., M., BRACH, R., M: Vehicle Accident Analysis and Reconstruction Methods. SAE Publisher. Warrendale PA 2005.
  • [4] BURG, H., LINDENMANN, M.: Unfallversuche. Verlag INFORMATION Ambs. Kippenheim 1982.
  • [5] CIĘPKA, P., REZA A., ZĘBALA J.: Przyspieszenia w ruchu pieszych. Nowe wyniki badań. Paragraf na drodze, Wydawnictwo Instytutu Ekspertyz Sądowych, Numer Specjalny, 2011, ss. 91–99.
  • [6] CRASH3 Technical manual. Accident Investigation Division, NCSA, NHTSA, 1986.
  • [7] FLECK, G., DAILY, J.: Sensitivity of Monte Carlo modeling in crash reconstruction. SAE Journal of Passenger Cars. Mechanical Systems, SAE, Vol. 3, No. 1, 2010, ss. 100–112.
  • [8] GUZEK, M.: Czas reakcji prostej i złożonej dla grupy mężczyzn w różnym wieku – wyniki badań z wykorzystaniem refleksometru. Archiwum Motoryzacji, Vol. 65, No 3. 2014, ss. 97–106.
  • [9] GUZEK, M., LOZIA, Z., JURECKI, R., STAŃCZYK, T., L.: Badania zachowania się kierowców w sytuacjach przedwypadkowych realizowane w symulatorze jazdy samochodem, X Międzynarodowa Konferencja Problemy rekonstrukcji wypadków drogowych, Kraków, 2006. Wydawnictwo Instytutu Ekspertyz Sądowych, Kraków 2006, ss. 139–156.
  • [10] GUZEK, M., LOZIA, Z.: Uncertainty study of road accident reconstruction – computational methods. SAE Transaction 2005, Journal of passenger cars: mechanical systems 2005. SAE, Vol. 114, Section 6, 2005, ss. 1342–1356 (także: SAE Technical Paper No. 2005-01-1195).
  • [11] KIMBROUGH, S.: Determining the relative likelihoods of competing scenarios of events leading to an accident. SAE Technical Paper No. 2004-01-1222, Warrendale PA 2004.
  • [12] KOST, G., WERNER, S. M.: Use of Monte Carlo simulation techniques in accident reconstruction. SAE Technica Paper No. 940719, Warrendale PA 1994.
  • [13] MARQUARD, E.: Fortschritte in der Berechnung von Fahrzeug – Zusammenstössen. ATZ Automobiltechnische Zeitschrift, Springer Verlag, Heft 3, 1968.
  • [14] METROPOLIS, N.: The beginnings of the Monte Carlo method. Los Alamos Science, Special Issue, 1987, 125–130.
  • [15] MOSER, A., STEFFAN, H.: Automatic optimization of pre-impact parameters using post-impact trajectories and rest positions. SAE Technical Paper No. 980373, Warrendale PA 1998.
  • [16] Nárazové skúšky motocykel – osobné motorové vozidlo (78 km/h – 122 km/h). Ing.-Büro Priester – Weyde, Saarbrücken 2001.
  • [17] PC-Crash. A simulation program for vehicle accidents. Manual. Version 10.1. Dr. Steffan Datentechnik, Linz 2014.
  • [18] PRIESTER. J., KASANICKÝ. G.: Unfälle mit Zweirädern [w:] BURG H., MOSER A. [red.]: Handbuch Verkehrsunfallrekonstruktion. 2. Auflage. Vieweg+Teubner Verlag. Wiesbaden 2009.
  • [19] PROCHOWSKI, L., UNARSKI, J., WACH, W., WICHER, J.: Podstawy rekonstrukcji wypadków drogowych, Seria: Pojazdy samochodowe. Wydawnictwa Komunikacji i Łączności. Warszawa 2008.
  • [20] SPEK, A.: Implementation of Monte Carlo technique in a time-forward vehicle accident reconstruction program. VII Międzynarodowa Konferencja Problemy rekonstrukcji wypadków drogowych, Kraków, 2004. Wydawnictwo Instytutu Ekspertyz Sądowych, Kraków 2004, ss. 233–238.
  • [21] STAWICKI, R., WICHER, J.: Modelowanie zderzenia samochodów oparte na wykorzystaniu zasady pędu i krętu oraz przykłady zastosowań. Konferencja „Rozwój techniki samochodowej a ubezpieczenia komunikacyjne”, Radom, 2006. Wyższa Szkoła Biznesu im. bp. Jana Chrapka w Radomiu, Radom, 2006, ss. 349–395.
  • [22] WACH, W.: Wiarygodność strukturalna rekonstrukcji wypadków drogowych. Wydawnictwo Instytutu Ekspertyz Sądowych. Kraków 2014.
  • [23] WACH, W.: Analiza zarzucenia pojazdu po zderzeniu. Paragraf na drodze, Wydawnictwo Instytutu Ekspertyz Sądowych, nr 9, 2000, ss. 33–36.
  • [24] WACH, W., UNARSKI J.: Determination of collision location – uncertainty analysis by means of Monte Carlo simulation. The 16th Annual Congress of the European Association for Accident Research and Analysis (EVU), Kraków, 2007. Institute of Forensic Research Publishers, Kraków 2007, ss. 73–93.
  • [25] WACH, W., UNARSKI, J.: Uncertainty analysis of the preimpact phase of a pedestrian collision. SAE Technical Paper No. 2007-01-0715, Warrendale PA 2007.
  • [26] WIERCIŃSKI. J., REZA. A. [red.]: Wypadki drogowe. Vademecum biegłego sądowego. Wydanie 2. Wydawnictwo Instytutu Ekspertyz Sądowych. Kraków 2006.
  • [27] WOOD, D. P., O'RIORDAIN, S.: Monte Carlo simulation methods applied to accident reconstruction and avoidance a nalysis. SAE Technical Paper No. 940720, Warrendale PA 1994.d
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2e2551bf-281f-4a04-8823-0d2573652d9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.