Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | nr 4 | 81--87
Tytuł artykułu

Closed-form Distribution and Analysis of a Combined Nakagami-lognormal Shadowing and Unshadowing Fading Channel

Treść / Zawartość
Warianty tytułu
Języki publikacji
The realistic wireless channels face combined (time shared) Nakagami-lognormal shadowing and unshadowing fading because of time varying nature of radio channel and mobile user. These channels can be modeled as time-shared sum of multipath-shadowing and unshadowing Rician distributions. These fading create severe problems in long distance wireless systems where multipath fading is superim-posed on shadowing fading (called multipath-shadowing fading). The multipath effect can be modeled using Rayleigh, Rician, Nakagami-m or Weibull distribution and shadowing effect is modeled using lognormal distribution. In this paper, authors present a new closed-form probability distribution function of a Nakagami-lognormal fading channel. Using this result, the closed-form expression of combined Nakagami-lognormal shadowing and unshadowing fading is presented. The obtained closed-form result facilitates to derive the important performance metrics of a communication system such as amount of fading, outage probability, and average channel capacity in closed-form expressions.

Opis fizyczny
Bibliogr. 22 poz., rys., tab.
  • [1] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. New York: Wiley, 2000.
  • [2] A. Laourine, M.-S. Alouini, S. Affes, and A. Stephenne, “On the performance analysis of composite multipath/shadowing channels using the G-distribution”, IEEE Trans. on Commun., vol. 57, no. 4, pp. 1162–1170, 2009.
  • [3] F. Hansen and F. I. Mano, “Mobile fading-rayleigh and lognormal superimposed”, IEEE Trans. Vehic. Technol., vol. VT-26, no. 4, pp. 332–335, 1977.
  • [4] N. C. Sagias, G. K. Karagiannidis, P. S. Bithas, and P. T. Mathiopoulos, “On the correlated weibull fading model and its applications”, in Proc. 62nd IEEE Veh. Techol. Conf. VTC-2005-Fall, Dallas, USA, 2005, vol. 4, pp. 2149–2153 (doi: 10.1109/VETECF.2005.1558500).
  • [5] W. C. Jakes, Microwave Mobile Communication, 2nd ed. Piscataway, NJ: IEEE Press, 1994.
  • [6] V. Khandelwal and Karmeshu, “A new approximation for average symbol error probability over log-normal channels”, IEEE Wireless Commun. Lett., vol. 3 no. 1, pp. 58–61, 2014.
  • [7] H. Hashemi, “Impulse response modeling of indoor radio propagation channels”, IEEE J. Select. Areas Commun., vol. SAC-11, pp. 967–978, 1993.
  • [8] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the generalized-k distribution by a gamma distribution for modeling composite fading channels”, IEEE Trans. on Wireless Comm., vol. 9, no. 2, pp. 706–713, 2010.
  • [9] A. Abdi and M. Kaveh, “On the utility of Gamma PDF in modeling shadow fading (slow fading)”, in Proc. 49th IEEE Veh. Technol. Conf., Houston, TX, USA, 1999, vol. 3, pp. 2308–2312 (doi: 10.1109/VETEC.1999.778479).
  • [10] P. M. Shankar, “A Nakagami-N-gamma Model for shadowed fading channels”, Wireless Personal Commun., vol. 64, p. 665–680, 2012 (doi: 10.1007/s11277-010-0211-5).
  • [11] S. Atapattu, Ch. Tellambura, and H. Jiang, “Representation of composite fading and shadowing distributions by using mixtures of gamma distributions”, in Proc. of IEEE Wireless Commun. & Network. Conf. WCNC 2010, Sydney, Australia, 2010 (doi: 10.1109/WCNC.2010.5506173).
  • [12] W. Cheng, “On the Performance of Multi-node Cooperative Networks over Composite Nakagami-lognormal Fading Channels using Mixture Gamma Distribution”, Journals of Computers, vol. 8, no. 10, pp. 2607–2614, 2013.
  • [13] X. Wang, W. Wang, and Z. Bu, “Fade statistics for selection diversity in Nakagami-lognormal fading channels”, IEEE Electron. Lett., vol. 42, no. 18, pp. 1046–1048, 2006 (doi: 10.1049/el:20061744).
  • [14] M.-S. Alouini and A. J. Goldsmith “A unified approach for calculating error rates of linearly modulated signals over generalized fading channels”, IEEE Trans. on Commun., vol. 47, no. 9, pp. 1324–1334, 1999.
  • [15] E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, “The land mobile satellite communication channel: recording, statistics, and channel model”, IEEE Trans. Veh. Technol., vol. VT-40, pp. 375–386, 1991.
  • [16] R. M. Barts and W. L. Stutzman, “Modeling and simulation of mobile satellite propagation”, IEEE Trans. Antennas Propagat., vol. AP-40, pp. 375–382, 1992.
  • [17] J. M. Holtzman, “A simple, accurate method to calculate spread multiple access error probabilities”, IEEE Trans. Commun., vol. 40, no. 3, pp. 461–464, 1992.
  • [18] Karmeshu and V. Khandelwal, “On the applicability of average channel capacity in log-normal fading environment”, Wireless Personal Commun., vol. 68, no. 4, pp. 1393–1402, 2012 (doi: 10.1007/s11277-012-0529-2).
  • [19] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. Academic Press, 2007.
  • [20] “Wolfram. The Wolfram functions site” [Online]. Available: (last visited on 20th Oct, 2015).
  • [21] F. El Bouanani, H. Ben-Azza, and M. Belkasmi, “New results for Shannon capacity over generalized multipath fading channels with MRC diversity”, EURASIP J. on Wireless Commun. & Network., 2012:336, Nov. 2012 (doi: 10.1186/1687-1499-2012-336).
  • [22] J. Goldhirsh and W. J. Vogel, Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems, Johns Hopkins University Applied Physics Laboratory and the University of Texas at Austin, Dec. 1998.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.