both tests the differences between groups are not statist
cific. The specimen no.5 shows the excessive values in
the nanoindentation. We did not find their cause, hence
we excluded it from the calculation of the mean elastic
modulus.

Acknowledgements

The research project has been supported by the research
plan MSM 6840770012 "Transdisciplinary research in the
field of the biomedical engineering II".

References

Administration on the Bone Mechanical Properties. Proceedings of
the 22nd DAS, Parma (2005), 106-107.
Bone-Implant Interface, CRC Press LLC, Boca Raton, FL, 2000,
263.

EXPERIMENTAL ASSESSMENT
OF IONIZING RADIATION LOW
DOSES IMPACT ON TEETH
DEVELOPMENT

N.N. Cheshko, H.A. Berlov, I.O. Pohodenko-Chudakova*

BYELORUSSIAN STATE MEDICAL UNIVERSITY, MINSK, BELARUS
33-239, PUSHKIN AVE., PO BOX 190;
220092, MINSK, BELARUS
*MATLTO: ip-c@yandex.ru

[Engineering of Biomaterials, 89-91, (2009), 8-9]

Introduction

Scientific grounds of solving post-Chernobyl medical,
biological, ecological, economic, social and other problems
remain as an important task for researchers working in dif-
ferent fields of science.

Our research purpose is to study ionizing radiation low
doses (IRLD) in the laboratory experiment.

Materials and methods

The experiments were carried out on 27 not thorough-
bred white female rats. They and their litter were irradiated
at the Institute of Radiobiology NAS RB by the «Gamma-
rid-192/120 unit» (Gamma-defectoscope «Gammard»
manufactured by the «Isotop» Enterprise, Leningrad) unit
at 110mR/h exposition power from the 1st gestation day up
to material selection on the 16th, 18th, 20th gestation
day and on the 1st and 3rd postnatal day. The absorbed dose
was 0,38–0,56Gy. The controls were not irradiated.

The specimens were fixed in 10% neutral formalin then
embedded in paraffin according to the standard method.
Sagittal «serial-selective» sections [1] were stained with
hematoxylin and eosin, picrofuchsin after van Gieson sum
content of DNA and RNA, which was evaluated by 5-mark
scale, revealed by the method of Einarson, elastic fibers
- by Hart, argyrophil ones - by Bilshovsky (H.Berlov’s
modification) [2].

Proliferative activity was determined according to the
method of A.Kazantseva [3]. The number of cellular layers
also was counted. The square, thickness and length of teeth
germ (TGs) were measured with «Bioscan – AT» (Model
was constructed in Central Scientific-Research Laboratory,
Medical Institute, Minsk) automatic image analyser.
The measurements were carried in each case of control and
experiment 10 times as a minimum. In all, 8329 histologi-
cal specimens of foetuses’ and new-born rats’ heads were
prepared, 2197 of them showing tooth germs. The data were
analysed by variation statistics with the Student’s test.

Results

While studying IRLD impact on odontogenesis we have
revealed some unknown before structures in tooth germ.
Thus, we described «concentric structures» in dental lamina
and in the inner enamel epithelium, its appearance was
delayed in experimental foetuses by IRLD action; pillow-
like thickenings in the inner enamel epithelium in controls;
inverted into mesenchyme dental buds in experimental rats’
foetuses, focal mesenchyme cell invasion into oral cavity.
We also have described undermembrane (underenamel-
oblast) cellular layer for the first time. Cyst formation due
to radiation exposure was revealed in the inner enamel
epithelium.

IRLD suppressed considerably the proliferative activity
of tooth germ cells. Total mitotic index in all age animals’
groups turned out to be lower than the respective indices in
the controls. Thus, in the experimental 16-day old foetuses
these values were 7,61±1,32‰, in the controls 25,84±0,45‰
(p<0,001); in 18-day old 19,93±0,55 and 30,85±0,47‰
(p<0,001); in 20-day old 12,15±3,12 and 12,84±0,33‰
(p>0,05); in 1-day old rats 3,43±0,72 and 6,62±0,67‰
(p<0,05); in 3-day old 2,99±0,19 and 7,28±0,0‰ (p<0,001)
respectively. Indices differences are statistically significant,
except those ones in the 20-day old foetuses (FIG.1).

In the irradiated experimental animals the cellular layers
number in basic tooth germ components was reduced. In
the experimental 16-day old foetuses and in the controls
these values were 10,35±0,65 and 20,37±1,59 (p<0,05); in
18-day old 16,97±1,10 and 24,95±1,35 (p<0,05); in 20-day
old 27,53±5,00 and 32,60±2,40 (p<0,05); in 1-day old rats
6,70±0,61 and 16,20±0,30 (p<0,001); in 3-day old animals
7,93±0,64 and 15,65±0,05 (p<0,001) respectively. We have
revealed statistically significant indices differences in all
experimental animals, except those ones in 20-day old
foetuses (FIG.2).

Using «Bioscan – AT» automatic image analyser we
determined enamel organ surface to be the most consid-
erably reduced in the rats exposed to IRLD during ante-
and prenatal development periods. In experimental 16-day old
foetuses and in the controls the indices were 1.44±0.10 and 4.02±0.66μm² (p<0.001); in 18-day old foetuses 3.85±0.46 and 5.06±0.51μm² (p<0.05); in 20-day old 13.20±0.62 and 16.05±0.70μm² (p<0.01). The differences are statistically significant, except those ones in the 18-day old foetuses (FIG.3).

In the postnatal period, the odontoblast layer thickness showed maximal changes compared to those ones in other basic tooth germ structures. In 1-day old experimental rats and in the controls the indices were 21.50±1.27 and 34.61±2.94μm (p<0.001); in 3-day old 43.68±2.31 and 52.54±2.60μm (p<0.05) respectively. Indices differences are statistically significant (FIG.4).

Conclusion

IRLD reduced proliferative activity, cellular layers number and, in the majority of cases, tooth germ structure thickness; caused oedema, vacuolization, discomplexation, cell differentiation delay.

* All parameters of squares text must be multiplied by 10⁴

References

FINITE ELEMENT ANALYSIS OF ONCOLOGY KNEE ENDOPROSTHESIS

LUKAS ZACH*, SVATAVÁ KONVIČKOVÁ, PAVEL RŮŽICKA

LABORATORY OF BIOMECHANICS
FACULTY OF MECHANICAL ENGINEERING, CTU IN PRAGUE
TECHNICKÁ 4, 166 07 PRAHA 6, CZECH REPUBLIC
*MAILTO: LUKAS.ZACH@FS.CVUT.CZ

Abstract

This paper presents a finite element simulation of an oncology knee-joint endoprosthesis in a various degrees of flexion. The simulation has been made in accordance with an ISO 14243 [1-3]. A model of the knee implant (produces by ProSpon, s.r.o. [4]) consists of following parts: femoral stem, femoral replacement, femoral component, PE bushings, and tibial plateau. Results for four positions of flexion (1.53deg, 8.13deg, 15.31deg and 26.33deg) gave better understanding of strain and stress distribution along the endoprosthesis and pointed out also the most crucial areas requiring the attention. These foundlings are useful for individual design of the knee-joint prosthesis and for further development.

[Engineering of Biomaterials, 89-91, (2009), 9-11]

Introduction

Finite element method (FEM) has become a useful tool while study of several reasons of implant's fractures and defects. It is also a valuable and effective tool for biomechanical devices development. Quite fast and easily modifiable models allow studying wide range of problems (static, dynamic) while using different boundary conditions (type of loading).

Fractures and malfunctions of joint and bone implants has different causes. Generally, they can be sorted by two causes – biological and mechanical. Among the biological sources of implant demages, especially implant loosening and infection are well described in literature. In contrary, a stem fracture or a UHMWPE parts defect are typical causes of mechanical defects (see FIG.1).

To understand better the mechanical reasons for oncology knee implants destruction, the presented study has been made. All boundary conditions are in accordance with ISO 14243-3: 2004 [3], where a manner of mechanical testing is defined.