Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 17, no. 4 | 313--318
Tytuł artykułu

Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
An experiment was carried out using glass fiber (GF) as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board.

Opis fizyczny
Bibliogr. 22 poz.
  • Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
  • Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
  • Abdur Rab Serniabat Textile Engineering College, University of Dhaka, Dhaka-1000, Bangladesh
  • Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
  • Division of Mechanical and Automotive Engineering, Kongju National University, Cheonan 330-717, Korea,
  • Institute of Radiation and Polymer Technology Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh
  • [1] Zaman, H. U., Khan, M. A., and Khan, R. A., (2011). Physico-Mechanical and Degradation Properties of Banana Fiber/LDPE Composites: Effect of Acrylic Monomer and Starch. Composite Interfaces, 18, 685-700.
  • [2] Sathishkumar, T. P., Satheeshkumar, S., and Naveen, J., (2014). Glass fiber-reinforced polymer composites - a review. Journal of Reinforced Plastics and Composites, 33(13), 1258-1275.
  • [3] Etcheverry, M., and Barbosa, S. E.,(2012). Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 5, 1084-1113.
  • [4] Weicai, L. U. O., Xiao, W., Ronghua, H., and Pengfei, F., (2014). Interface Enhancement of Glass Fiber/Unsaturated Polyester Resin Composites with Nano-Silica Treated Using Silane Coupling Agent. Wuhan University Journal of Natural Sciences, 19(1), 34-40.
  • [5] Engindeniz, M., and Zureick, A., (2008). Deflection Response of Glass Fiber-Reinforced Pultruded Components in Hot Weather Climates. Journal of Composites for Construction, 12(3) 355-363.
  • [6] Wang, Y., Meng, J., Zhao, Q., and Qi, S., (2010). Accelerated Ageing Tests for Evaluations of a Durability Performance of Glass-fiber Reinforcement Polyester Composites. Journal of Materials Science & Technology, 26(6), 572-576.
  • [7] Zafar, A., Bertocco, F., Schjødt-Thomsen, J., and Rauhe, J. C., (2012). Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Journal of Composites Science and Technology, 72(6), 656-666.
  • [8] Aniskevich, K., Aniskevich, A., Arnautov, A., and Jansons, J., (2012). Mechanical properties of pultruded glass fiberreinforced plastic after moistening. Journal of Composite Structures, 94 (9), 2914-2919.
  • [9] Jiang, X., Kolstein, H., and Bijlaard, F. S. K., (2013). Moisture diffusion in glass-fiber-reinforced polymer composite bridge under hot/wet environment. Composites Part B: Engineering, 45 (1), 407-416.
  • [10] Agarwal, G., Patnaik, A., and Sharma, R. K., (2013). Thermo-mechanical properties of silicon carbide-filled chopped glass fiber-reinforced epoxy composites. International Journal of Advanced Structural Engineering, 5(21), 1-8.
  • [11] Belaid, S., Chabira, S. F., Balland, P., Sebaa, M., and Belhouideg, S., (2015). Thermal aging effect on the mechanical properties of polyester fiberglass composites, Journal of Materials and Environmental Science. 6 (10), 2795-2803.
  • [12] Bisht, D., and Chauhan, H., (2014). Estimating Effects of Temperature on Tensile Strength of Eglass Composite with Unsaturated Orthophthalic Polyester. International Journal of Emerging Technology and Advanced Engineering, 4, (1), 175-176.
  • [13] Lopez, F. S., Ferrer, C., Salvador, M. D., and Amigo, V., (2002). Flexural characteristics of sunlight-aged polyester composites: influence of processing variables. Journal of Testing and Evaluation, 30(1), 20-26.
  • [14] Griffiths, R., and Ball, A., (200). An assessment of the properties and degradation behavior of glass-fiber reinforced polyester polymer concrete. Composite Science and Technology, 60, 2747-2753.
  • [15] Etches, J., Potter, K., Weaver, P., and Bond, I., (2009). Environmental effects on thermally induced multistability in unsymmetric composite laminates. Composites part A: Applied science and manufacturing 40 (8), 1240-1247.
  • [16] Laoubia, K., Hamadia, Z., Benyahiab, A. A., Seriera, A., and Azari, Z., (2014). Thermal behavior of E-glass fiberreinforced unsaturated polyester composites. Composites Part B: Engineering, 56, 520-526.
  • [17] Cesar, P. F., Miranda Jr, W. G., and Braga, R. R., (2001). Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. Journal of Prosthetic Dentistry, 86:289-296.
  • [18] Peutzfeldt, A., and Asmussen, E., (2000). The effect of postcuring on quantity of remaining double bonds, mechanical properties, and in vitro wear of two resin composites. Journal of Dentistry, 28:447-452.
  • [19] Putić, S., Stamenović, M., Bajčeta, B., Stajčić, P., and Bošnjak, S., (2007). The influence of high and low temperatures on the impact properties of glass-epoxy composites. Journal of Serbian Chemical Society, 72(7), 713-722.
  • [20] Ravikanth, K., Basavarajappa, S., and Arun, K. V., (2013). Influence of service temperature and secondary fillers on the impact toughness of glass-epoxy composites. International Journal of Plastic Technology, 17(2), 171-181.
  • [21] Kootsooks, A., and Mouritz, A. P., (2004). Seawater durability of glass- and carbon polymer composites. Composite Science and Technology, 64, 1503-1511.
  • [22] Mouritz, A. P., Mathys, Z., and Gibson, A. G., (2006). Heat release of polymer composites in fire. Composite Part A: Applied science and manufacturing, 37, 1040-105.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.