MIDDLE AND LATE PLEISTOCENE ELKS (CERVALCES SCOTT, 1855 AND ALCES GRAY, 1821) FROM POLAND: PALAEOENVIRONMENTAL AND PALAEOGEOGRAPHIC IMPLICATIONS

Krzysztof STEFANIAK1, Kamilla PAWŁOWSKA2, Urszula RATAJČZAK3, Martina ROBLÍČKOVÁ4, Witold GUMIŃSKI5 & Piotr WOJTAL6

1 Department of Palaeozoology, Institute of Environmental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland, e-mail: stefanik@biol.uni.wroc.pl
2 Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland, e-mail: koka@amu.edu.pl
3 Department of Palaeozoology, Institute of Environmental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland, e-mail: ratajczakurszula@gmail.com
4 Anthropos Institute, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic, e-mail: mroblickova@mzm.cz.
5 Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warszawa, Poland, e-mail:witek@pradzieje.pl
6 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland, e-mail: wojtal@isez.pan.krakow.pl

Abstract: The paper deals with remains of the elks Cervalces latifrons, Cervalces sp. and Alces alces from Middle and Late Pleistocene sites in Poland. A form of the genus Cervalces occurred in Poland from the early (Kozi Grzbiet, MIS 19–17) to the late Middle Pleistocene (Biśnik Cave, MIS 6 or MIS 5e). The genus Alces appeared in Poland in the Eemian Interglacial (Dziadowa Skala Cave). Compared to the other cervids, elk remains from Poland are very few, but they mark important faunal changes. Kozi Grzbiet and Sitkówka are virtually the only Polish localities from the lower part of the Middle Pleistocene with the remains of large mammals, and the only records of Cervalces latifrons. The specimens from Biśnik Cave are among the last records of the occurrence of Cervalces in Europe. During the Last Glacial Maximum, elk were absent. Though the elk were the least abundant cervids, they were present at sites from milder climatic regimes (interglacials and interstadials) till the Holocene. Elk remains of that period are single teeth and postcranial skeletal bones from the beginning of glaciation in the deposits of Łokietka Cave (MIS 5a–d), Interplenivistulian (MIS 3): caves Biśnik and Obłazowa) and Borsuka Cave (MIS 3–2). In the Late Vistulian (MIS 1, Allerød and Younger Dryas), the elk recolonized the area occupied by Poland.

Key words: Alceini, caves, Pleistocene, Poland

Manuscript received 6 May 2014, accepted 8 December 2014

INTRODUCTION

Despite the extensive literature, the question of the origin of the Recent elk is still open. According to Heintz and Poplin (1981), Alces alces (Linnaeus, 1758) came into existence in the Late Pleistocene and its direct ancestor was Cervalces latifrons postremus (Vangengeim and Flerov, 1965). Vislobokova (1986, 1990), Churcher and Pinsof (1987) and Kahlke (1990) maintain that the contemporary elk arose probably at the end of the Middle Pleistocene in Eurasia or even, as suggested by Azzaroli (1981, 1985), in Europe. Some authors (Vörös, 1985; Kahlke, 1990) regard Alces brevirostris (Kretzoi, 1944) as intermediate between Cervalces latifrons (Johnson, 1874) and Alces alces. Unfortunately, this taxon is only known from the isolated remains of antlers, a skull fragment and a post-cranial skeleton. Russian authors mention Alces americanus (Clinton, 1822) from eastern Eurasia (Boeskorov, 2001; Nikolskiy, 2010; Vasiliev, 2011). In their opinion, it is the form leading to the Recent Alces alces. Boeskorov (2001) regards Cervalces postremus as a distinct species. According to Nikolskiy (2010), Alces americanus is a synonym of some forms of...
Cervalces latifrons postremus and could occur in Europe at the end of the Middle Pleistocene and in the Eemian Interglacial (Taubach, Weimar-Ehringsdorf). Alekseeva (1980) and Vasiliev (2011) propose the names Alces sp. and Alces cf. alces for the early forms of the genus Alces from the end of the Middle Pleistocene and the Eemian. Alekseeva (1980) refers to late forms of the genus Cervalces as Alces cf. latifrons. It follows from these data that the origins of the extant genus Alces can be placed at the end of the Middle Pleistocene. Unfortunately, the fragmentary character of the fossil record precludes the possibility of any ultimate explanation of the occurrence and systematics of the genus Cervalces and its relationship to Alces.

On the basis of genetic data (Lister and Piljen, 1990; Hundertmark et al., 2002; Udina et al., 2002), the place of origin of the extant species Alces alces was Western Siberia and Far East, and it came into existence in the period between the end of the Middle and the beginning of the Late Pleistocene. Though the localities with fossil elk remains are numerous in Eurasia and North America, the evolution and systematics of fossil elks remain controversial. Authors differ in their opinions on the generic assignment of the specimens and, consequently, on the trends of elk evolution. Three genera have been distinguished within the Alceini: Alces Gray, 1821, Cervalces Scott, 1885 and Libralces Azzaroli, 1952. Another two genera have been described from the Ciscaucasia: Tamanalces Verestchagin, 1957 and Pseudalces Flerov, 1962 (Flerov, 1952; Flerov and Shevryeva, 1963); their status and systematic position have been questioned in numerous papers (Baigusheva, 1971; Azzaroli, 1981, 1985; Heintz and Poplin, 1981; Kahlke, 1990; Pfeiffer, 1999a). Most authors agree that four species of elk occurred in Europe during the Pliocene and the Quarternary: Cervalces (Alces) gallicus (Azzaroli, 1952), Alces (Cervalces) carnutorum (Laugel, 1862), Alces (Cervalces) latifrons and Alces alces Linnaeus, 1758, but their generic assignment is still under debate.

In his papers mentioned above, Azzaroli (1981, 1985) maintained that only two genera of elks were valid: Alces and Cervalces. He regarded the earlier described Libralces as a synonym of Cervalces. The view was shared by Heintz (1970); Vislobokova (1986, 1990); Czyżewska (1987); Sher (1987); Mäuser (1990); Pfeiffer (1999a); Boeskorov (2001, 2002), Breda (2001a, 2005, 2008), Breda and Marchetti (2005); Stefaniak (2007); Nikolskiy (2010) and Vasiliev (2011).

Other authors included all the above species in the genus Alces (Kurtén and Anderson, 1980; Heintz and Poplin, 1981; Kahlke, 1990; Lister, 1993b; Kahlke, 1999; Pfeiffer, 1999a, b; Foronova, 2001; Van der Made et al., 2014).

A new concept of elk evolution was presented by Nikolskiy (2010). On the basis of an analysis of various structural characteristics of the skull, antlers, teeth and post-cranial skeleton, as well as occurrence and stratigraphic position, he distinguished 9 species and 4 unspecified taxa.

The occurrence of fossil elks in Poland was considered by Niezabitowski-Lubicz (1932), Kowalski (1959), Szymczyk (1973a–c), Czyżewska (1989) and Wyrost (1989, 1994). Remains of Cervalces carnutorum (Laugel, 1862) from the Lower Pleistocene locality, the Żabia Cave (upper Villafranchian, lower Biharian, Q1; MIS 58–40). The cave yielded more than 30 bones of minimum two individuals. A single premolar tooth (P3) of the largest fossil elk

![Fig. 1. Pleistocene sites in Poland where remains of elk (Alces alces) were found. Source sites of materials studied are indicated as solid circles. Hollow circles – sites mentioned in the text: 1 – Rusinowo; 2 – Radochowska Cave; 3 – Obłazowa Cave, 4 – Borsuka Cave, 5 – Jasna Strzegowska Cave and Mroczna Cave, 6 – Zwoleń, 7 – Dudka.](image-url)
Cervalces latifrons (Johnson, 1874) was found in the Middle Pleistocene site Kozi Grzbiet (upper Biharian/Galerian, Q2/Q3; Podlasian Interglacial; Cromerian II–Cromerian III; MIS 19–17; Stefaniak, 2007; Stefaniak et al., 2009a). Also, Holocene remains from the environs of Chodzież (Szymczyk, 1973b, c), have been studied in detail. However, information on the remains from the Middle and Late Pleistocene is still insufficient and limited to the records mentioned in the descriptions of individual localities, or in comprehensive studies (Wojtal, 2003, 2007; Stefaniak and Marciszak, 2009; Stefaniak et al., 2009b, Nadachowski et al., 2011). According to Nikolskiy’s (2010) system, the systematic position of the Polish taxa of Alceini was the following. The elk from the Żabia Cave represented the taxonomic position of the Polish taxa of Alceini was the following. The purpose of this study is to describe new remains and reconsider the earlier-described remains of the genera Cervalces and Alces from the Polish Middle and Upper Pleistocene cave deposits.

GEOLOGICAL SETTING

The osteological material described in this paper was collected in the caves Bieńek, Dziadowa Skala and Łokietka in the Kraków-Częstochowa Upland, the Oblazowa Cave in the Orawa-Nowy Targ Basin, the cave Kozi Grzbiet, and a karst doline in the Sitkówka Quarry, near Chęciny, in the Holy Cross Mts (Fig. 1). For the stratigraphy of the localities studied, see Tables 1 and 2.

Kozí Grzbiet

Kozí Grzbiet (50°51′N, 20°11′E; Early-Middle Pleistocene, Late Biharian/Galerian, Q2/Q3; Podlasian Interglacial; Cromerian II–Cromerian III; MIS 19–17). Kozi Grzbiet is a deposit-filled karst crevice in Devonian limestones in the Kraków-Częstochowa Upland, the Oblazowa Cave in the Orawa-Nowy Targ Basin, the cave Kozi Grzbiet, and a karst doline in the Sitkówka Quarry, near Chęciny, in the Holy Cross Mts (Fig. 1). For the stratigraphy of the localities studied, see Tables 1 and 2.

<table>
<thead>
<tr>
<th>MIS 1</th>
<th>Holocene</th>
<th>Poland</th>
<th>Western Europe</th>
<th>Bišnik Cave</th>
<th>Bišnik Cave</th>
<th>Bišnik Cave</th>
<th>Bišnik Cave</th>
<th>Bišnik Cave</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 2</td>
<td>Holocene</td>
<td>Late Weichselian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>2–1</td>
<td>2–1</td>
<td>7–1</td>
<td>1</td>
</tr>
<tr>
<td>MIS 3/2</td>
<td>Weichselian</td>
<td>Interpleniaglacial</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>4–3</td>
<td>7–5</td>
<td>11–8</td>
<td>11–2</td>
</tr>
<tr>
<td>MIS 3</td>
<td>Weichselian</td>
<td>Older Pleniaglacial</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>8–5</td>
<td>8–7</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>MIS 5a</td>
<td>Early Weichselian</td>
<td>Early Weichselian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10a–10</td>
</tr>
<tr>
<td>MIS 5b</td>
<td>Eemian</td>
<td>Eemian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>12</td>
<td>12</td>
<td>13–12</td>
<td>13</td>
</tr>
<tr>
<td>MIS 5c</td>
<td>Eemian</td>
<td>Eemian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>13</td>
<td>13</td>
<td>15–13</td>
<td>14</td>
</tr>
<tr>
<td>MIS 5d</td>
<td>Eemian</td>
<td>Eemian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>MIS 6</td>
<td>Drenthe (+ Warthe)</td>
<td>Odranian (+ Wartanian)</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MIS 7</td>
<td>Röpersdorf – Schöningen</td>
<td>Lublinian</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>17</td>
<td>17</td>
<td>19a–19</td>
<td>18</td>
</tr>
<tr>
<td>MIS 8</td>
<td>?Saalian</td>
<td>Kzniat</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>19–19</td>
<td>19d, c, b</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>MIS 9</td>
<td>Dönnitz – Reinsdorf</td>
<td>Zbójnia</td>
<td>Alceini</td>
<td>Cervalces</td>
<td>19a–d</td>
<td>19a–d</td>
<td>19a–d</td>
<td>19a–d</td>
</tr>
</tbody>
</table>

Table 1

MIS 1 Holocene | Poland | Western Europe | Cervalces latifrons (Johnson, 1874) was found in the Middle Pleistocene site Kozi Grzbiet (upper Biharian/Galerian, Q2/Q3; Podlasian Interglacial; Cromerian II–Cromerian III; MIS 19–17; Stefaniak, 2007; Stefaniak et al., 2009a).

Also, Holocene remains from the environs of Chodzież (Szymczyk, 1973b, c), have been studied in detail. However, information on the remains from the Middle and Late Pleistocene is still insufficient and limited to the records mentioned in the descriptions of individual localities, or in comprehensive studies (Wojtal, 2003, 2007; Stefaniak and Marciszak, 2009; Stefaniak et al., 2009b, Nadachowski et al., 2011). According to Nikolskiy’s (2010) system, the systematic position of the Polish taxa of Alceini was the following. The elk from the Żabia Cave represented Cervalces (Libralces) sp. (1.5–1.1 myr), which was intermediate between Cervalces (Libralces) gallicus (2.1–1.5 myr) and Cervalces (Libralces) carnatorium (1.1–0.9 myr). The form from Kozi Grzbiet would probably represent Cervalces amplidontus or Cervalces alaskensis. His concept, though interesting, would require a detailed presentation of the characteristics which he adopted as criteria for distinguishing new taxa.

Van der Made et al. (2014) described the occurrence of Cervalces (Alces) gallicus in Poland, but placed it in the genus Alces. In their opinion, the fossil elk which survived for the longest time was Cervalces (Alces) latifrons; in Europe, it occurred till about 200 thousand years ago. The form represented in the Eemian Interglacial was Alces sp., conspecific with Alces brevirostris, and the Recent elk appeared at the beginning of the last glaciation. These authors mentioned a metacarpal bone from the Bišnik Cave, layer 7 (MIS 4/3), which had been earlier assigned to Megaloceros giganteus Blumenbach, 1797, and then identified by them as representing a large elk, possibly Cervalces. On the basis of data from Pleistocene and Holocene localities, they compared the size of M3 and phalanges of fossil elk through time and documented the trend of decreasing size in elk from the Middle Pleistocene to the Holocene.

The purpose of this study is to describe new remains and reconsider the earlier-described remains of the genera Cervalces and Alces from the Polish Middle and Upper Pleistocene cave deposits.
Sitkówka, near Chęciny (50°48′ N, 20°33′ E; Early Middle Pleistocene – Late Pleistocene). The site, located within a quarry on Mt. Jaźwica, near Chęciny, in the Świętokrzyskie Mts., was described by Czarnocki (1935; see also Woroncowa-Marcinowska et al., 2013). Vertebrate remains (i.e. cave bear) were found in a karst doline at the depth of 8–10 m, in sands and clayey sands. In the opinion of Woroncowa-Marcinowska et al. (2013), the fauna originated from the South-Polish Glaciation and was deposited in the doline during the interglacial period. The fauna has been only partially analysed; for the rest was also done assessment (Pawłowska, unpublished data). Among the identified ungulates, *Cervalces latifrons* and *Rangifer tarandus* (Linnaeus, 1758) were found (Woroncowa-Marcinowska et al., 2013). The remains are a part of the J. Czarnocki collection, Geological Museum of the Polish Geological Institute, National Research Institute (PIG-PIB), Warsaw.

Biśnik Cave (50°23′ N, 19°40′ E; Middle Pleistocene – Holocene, end of Q3 – Holocene, Röpersdorf-Schönin gen (Lublinian) Interglacial and Saalian Glacial (Krznan Glacial; MIS 7/8 – Holocene, MIS 1). The stratigraphy of Biśnik Cave, located in the Biśnik Crag in the Wodąca Valley, near the village of Smoleń in the Częstochowa Upland, is still debatable (Table 1). For detailed description of the site see Cyrek (2002), Cyrek et al. (2009, 2010), Stefaniak et al. (2009a). Here the present authors adopt the view of Gąsiorowski et al. (2014), Krajcarz et al., (2014) and Marciszak and Socha (2014) and postulate a Middle Pleistocene age for layer 15. The remains of more than 160 animal taxa, included cervids which were present in all the levels: *Cervus elaphus, Megaloceros giganteus, Capreolus priscus Soergel, 1914, Capreolus capreolus* (Linnaeus, 1758), *Rangifer tarandus*, *Cervalces latifrons* and *Alces alces* (Wiszniowska et al., 2002; Socha, 2009, 2014; Stefaniak and Marciszak, 2009; Cyrek et al., 2010; Socha et al., 2010; Van Asperen and Stefaniak, 2011; Tomek et al., 2012; Croitor et al., 2014; Marciszak, 2014; Piskorska and Stefaniak, 2014; Van der Made et al., 2014). The elk remains in the Biśnik Cave occurred in
layers 19 (MIS 7), 16 (MIS 6) and 15 (MIS 6 or 5e), dated as the end of the Middle Pleistocene, and in layer 1 a–b of the Holocene deposits.

Dziadowa Skała Cave (50°32′N, 19°31′E; Late Pleistocene–Holocene, Eemian–Holocene, Q2 – Holocene, MIS 5 – MIS 1). Cave in Dziadowa Skała is located in the Podlesice Rocks, near the village of Skarżyce. It is a horizontal cave with nine layers of deposits (Chmielewski, 1958, 1975; Kowalski, 1958; Madeyska, 1981; Lorenc, 2006a, b, 2007, 2008; Wojtal, 2007; Cyrek, 2009; Stefaniak et al., 2009b). Numerous bird and mammal remains were found in the cave (Chmielewski, 1958; Kowalski, 1958; Madeyska, 1981; Bocheński, 1990; Wojtal, 2007). Remains of the *Capreolus capreolus* and *Alces alces* were found in the interglacial (Eemian) layer. The reindeer, present in almost all the layers, was the most abundantly represented species.

Łokietka Cave (50°13′N, 19°48′E); Late Pleistocene – Holocene, Early Vistulian–Holocene, MIS 5d – MIS 1). The Łokietka Cave is situated on Mt. Chelmowa in the Pątnik Valley, in the Ojców National Park. The first studies in the cave were conducted by J. Zawisza in 1872 and S. Czarnocki in 1896 and 1899 (Zawisza, 1873; Kowalski, 1951). The excavations were resumed in 1998. From eight to five layers of cave loams, loesses and humus were uncovered in two profiles. On the basis of the archaeological finds and bone remains, the stratigraphy was estimated as the Eemian, various phases of the Vistulian and the Holocene (Lipecki et al., 2001; Sobczyk and Sitlivy, 2001a, b; Wojtal, 2007). The few cervid remains were identified as *Rangifer tarandus*, *Cervus elaphus* and *Alces alces*. The elk remains were found in the early Vistulian layer 5.

Obłazowa Cave (49°25′N, 20°09′E; Late Pleistocene – Holocene, middle Vistulian – Holocene, MIS 5 – MIS 1). The Obłazowa Cave is located in the rock Obłazowa, in its south-western part, on the Białka River in the Pieniny Mts. The excavations started in 1985 and continued till present. The excavations yielded numerous mollusc and vertebrate remains. The studies resulted in an array of publications, the most important being Nadachowski et al. (1993), Madeyska and Cyrek (2002), Valde-Nowak et al. (2003), Wojtal (2003), Wojtal et al. (2004) and Valde-Nowak and Nadachowski (2014). The dominant cervid was *Rangifer tarandus*; its remains were found in all the layers. A few remains of the *Cervus elaphus* and a two *Alces alces* tooth were also found.

MATERIAL AND METHODS

The material studied is stored in the collections of the Department of Palaeozoology, Wrocław University (ZPALU-Wr, Biśnik Cave), the Institute of Systematics and Evolution of Animals, PAS, Kraków (MF, Kozi Grzbiet, Dziadowa Skała Cave, Łokietka, Obłazowa Cave) and the Geological Museum of the Polish Geological Institute, National Research Institute (PIG-PIB), Warsaw (Sitkówka, near Chęciny). The material comprises 8 isolated upper- and lower-cheek teeth, as well as a fragment of a mandible and a metatarsal bone. The fragments are well-preserved, except for the specimen from the Obłazowa Cave, which is only partly preserved.

The nomenclature of tooth structure (Fig. 2) follows the cervid nomenclature proposed by Obergfell (1957) and Heintz (1970). Individual age of the animals, to which the teeth belonged, was estimated on the basis of the tooth wear (Lochman et al., 1987).

Taxa identification: The skull structure characteristics, especially those of the jaw and mandible region, and the antlers are crucial in identification of fossil elk remains.

Fig. 2. Schematic structure of cervid teeth after Heintz (1970) and Obergfell (1957). A. Lower premolar. B. M₃. C. Upper milk tooth. D. Upper molar.
Fig. 3. *Cervalces latifrons* (Johnson, 1874). Sitkówka quarry near Chęciny. Right mandible with P₃–M₃ (MUZ PIG 157.II.35, 36, 41–43). Scale bar 10 cm. **A.** View from the labial side. **B.** View from the lingual side. **C.** View from the occlusal side.

Fig. 4. *Cervalces* sp. Scale bars in A–D 2 cm. **A.** Biśnik Cave. Right P₃ (ZPALUWr/JB/03/W-2414); A.1 – view from the posterior side; A.2 – view from the lingual side; A.3 – view from the anterior side; A.4 – view from the labial side; A.5. – view from the occlusal side. **B.** Biśnik Cave. Left P₃ (ZPALUWr/JB/99/118/10); B.1 – view from the posterior side; B.2 – view from the lingual side; B.3 – view from the anterior side; B.4 – view from the labial side; B.5 – view from the occlusal side. **C.** Biśnik Cave. Left M₃ (ZPALUWr/JB/06/W-5099); C.1. – view from the posterior side; C.2 – view from the lingual side; C.3 – view from the anterior side; C.4 – view from the labial side; C.5 – view from the occlusal side. **D.** Biśnik Cave. Left P₄ (ZPALUWr/JB/04/W-2950); D.1 – view from the posterior side; D.2 – view from the lingual side; D.3 – view from the anterior side; D.4 – view from the labial side; D.5 – view from the occlusal side.
Unfortunately, the material from Poland includes only isolated teeth, mandibles and single fragments of post-cranial, skeletal bones. Consequently, the authors used osteometric differences and structural characters of teeth in order to compare and identify the taxa. The size of teeth, degree of development of stylids, tubercle cusps and additional ridges, cingulum and tubercles were adopted as identification criteria. The most characteristic differences involve the measurements of teeth, which are larger in Cervalces latifrons than in Alces alces.

Measurements: The measurement methods followed Dürst (1926), Kahlke, 1958, 1960), Heintz (1970) and von den Driesch (1976). The length (GL) of upper teeth was measured on the labial edge near the occlusal surface, of lower teeth – on the lingual side. Width measurements of molars were taken at the base of the first and second lobe of the tooth, the corresponding abbreviations being \(W_1 \) (DTa), \(W_2 \); the greatest width was measured for premolars – W. Metacarpal bone: GL – greatest length; Bp – breadth of proximal end; Dp – depth of proximal end; SD – smallest breadth of diaphysis; DD – smallest depth of diaphysis; Bd – breadth of distal end; Dd – depth of distal end.

The teeth, mandibles and metacarpal bone measured to the nearest 0.01 mm with electronic caliper. All the measurements are given in mm.

Some authors measure the tooth length at the base of the crown, but in the case of elks, the measurement mode does not affect the identification.

The measurements were compared with literature data on fossil and extant elk and shown in Appendix Tables 1–6.
RESULTS

The measurements of fossil and extant elks are shown in Appendix Tables 1–6.

Systematic palaeontology

Family CERVIDAE Goldfuss, 1820
Subfamily CAPREOLINAE Brookes, 1828
Tribe ALCEINI Brookes, 1828
Genus Cervalces Scott, 1885
Cervalces latifrons (Johnson, 1874)
Figs 3, 7; Appendix Tables 1–4

Locality: Kozi Grzbiet; layer 2c; (Podlasian Interglacial; Cromerian II–Cromerian III; MIS 19–17): fragment of P3 (MF/KG/19); Sitkówka quarry near Chećiny (Middle Pleistocene): right mandible with P3–M1 (MUZ PIG 157. II.35, 36, 41–43).

Description and discussion: The description, measurements and detailed analysis of the specimens from Kozi Grzbiet were presented by Stefaniak (2007; see also Appendix Table 4; Fig. 1G). As mentioned above, the tooth was previously identified as P3, but its re-examination, as well as the comparison of morphology and measurements, indicate that it is P4. The characteristic features of P4 are: the greater length of the labial wall between the paracone and the metastyle, compared to P3, and the more convex shape of the lingual part, which is more compressed in P3. The crown of P3 was not worn; it belonged to an individual during teeth replacement and its age, based on comparison with the extant elk, can be estimated as being about 17–20 months (Lochman et al., 1987).

The specimen from Sitkówka is a much damaged fragment of a right mandible with isolated P3–M1 (Fig. 3). Only M3 is still in the mandible fragment. The crowns are much worn and low, indicating individual age of more than 10 years. Valley 2 in P2 is open. In P3, the protocone has fused with the entoconid, the entostylid of molars is much worn. M1 is much damaged, while in the crowns of M2 and M3, the posterior wing of protoconid has fused with the anterior wing of entoconid. The third lobe of M3 is still in the mandible fragment. The crowns are much worn, as is the entostylid. The apex of entostylid is worn to about half crown height. A cusp is located between the protoconid and the entoconid, there is no cusp. The left P3 is worn on all its occlusal surface, the hypcone fold is nearly completely fused with the hypcone. The degree of wear indicates an individual age of about 5–6 years. The parastyle cusp is well-developed on the labial side of the tooth. The cingulum connecting the paracone cusp with the metastyle bears a small cusp, reaching nearly 1/3 crown height (Fig. 4D).

Genus Alces Gray, 1821
Alces alces (Linnaeus, 1758)
Figs 5, 7, 11; Appendix Tables 2–3, 5–6

Locality: Dziadowa Skala Cave; layer 14 (Eemian Interglacial; MIS 5e): right M1.
Description: The whole occlusal surface is worn. The first lobe is not connected with the second lobe. The posterior wing of hypcone is connected with the entostylid and the third lobe. The apex of entostylid is worn to about half its original height (Fig. 5A). The measurements are shown in Appendix Table 2. The individual’s age, based on the tooth, is estimated as about 10.5–11.5 years.

Locality: Łokietka Cave; layer 5 (early Vistulian, MIS 5a–d): right M4 (MF/6578)
Description: The tooth has its anterior and posterior metaconid wing damaged, its crown is much worn, as is the ectostylid (Fig. 5B); the probable age is about 10.5–12.5 years. The measurements are shown in Appendix Table 2.

Locality: Biśnik Cave: layer 7 (Middle Pienivistulian, Świecie Stadial/Grudziądz Interstadial, MIS 4/3): left adult
metacarpus (ZPALUWr/1690). The measurements are shown in Appendix Table 6.

Locality: Obłazowa Cave: layer XIX (Grudziądz Interstadial, Interpleniivistulian, MIS 3); right M3; individual age ca. 12–14 years.

Description: The fragment of the M3 from layer XIX includes the complete posterior lobe and a fragment of lingual wall of the anterior lobe; the crown is much worn. The characteristic structure of the labial wall of the posterior lobe, which is strongly concave, and the asymmetry in the size of the anterior and posterior lobes unequivocally point to M3. The measurements are shown in Appendix Table 5.

DISCUSSION

Cervalces vs Alces

This paper contributes new information about Middle and Late Pleistocene elks remains from Poland. Unfortunately, the osteological material includes no antlers and anterior parts of skull, which are mainly diagnostic for the genera *Cervalces* and *Alces*. However, it should be noted that the structure of all the studied teeth is characteristic for elks.

It has been pointed out in the literature (Mäuser, 1990; Breda, 2008; Nikolskiy, 2010) that cheek teeth in the genera *Cervalces* and *Alces* differ in the development of ecto-styloid and medianstyloid (lower teeth) and entostyloid (upper teeth). In the genus *Cervalces*, they are massive and often as high as the crown on the side, on which they are situated. They wear along with the crown. In *Alces*, the styliods are less massive, often poorly developed, and their height often does not reach the occlusal surface (Mäuser, 1990; Breda, 2008; Nikolskiy, 2010). Also the remaining styliods and tubercle cusps on the labial side in species of *Cervalces* are significantly thicker, and also the additional enamel ridges, cingulum and cusps at the base of upper molars are larger in *Cervalces*. The characteristic is present already in the
primitive Cervalces carnutorum from the Żabia Cave (Stefaniak, 2007). Nikolskiy (1996, 2010) and Nikolskiy and Boeskorov (2011) indicated the importance of the degree of molarisation of P3 in the evolution of elks (see also Mäuser, 1990). According to all the above-mentioned authors, the degree of molarisation of the tooth increases in the elk evolution. In Recent forms, the tooth is molarised, and valley 2 is usually closed. Nikolskiy (2010) and Nikolskiy and Boeskorov (2011) noted also that in the fossil and extant Asian Alces teeth with archaic features were found more frequently than in the European Alces alces. Besides the difference in the number of chromosomes, this characteristic, according to these authors, indicates that the two populations evolved independently. Pfeiffer (1999a) and Breda (2001a, 2005) are of the opinion that the characteristic varies in elks and that valley 2 is closed in the holotype of C. gallicus. The tooth from Kozi Grzbiet was identified as C. latifrons, on the basis of its structure and measurements, which were within the range of variation of P2 of C. latifrons from other European localities (Kahlke, 1956, 1960, 1965, 1966, 1971a, b, 1995a, b, 1997), and were larger than P2 and lower teeth of C. gallicus, C. carnutorum and the extant A. alces. The size of the upper teeth from the Middle Pleistocene layers (19–15) of the Biśnik Cave (Figs 8–10), which are larger than in the extant Alces alces from Siberia (Figs 8–10; Appendix Tables 3–4), are comparable to those of C. postremus from the Saalian locality Weimar-Ehringsdorf (MIS 7) (Kahlke, 1968, 1975). The above characters made us assign the teeth from Biśnik Cave to Cervalces sp. Elk evolution involved size increase from the oldest species (C. gallicus, C. carnutorum) to C. latifrons, which is expressed as an increase in length of molar rows. In the specimen from Sitkówka, the length of the mandibular molar row is typical of large representatives of the species. Late forms of Cervalces are smaller (dated as the period Holstein Interglacial); also the evolution of the genus Alces involved a gradual decrease in size from the Middle Pleistocene forms to the extant representatives (Appendix Table 3). The presence of C. latifrons indicates a Middle Pleistocene age of at least some of the layers. The upper teeth (P3, P4, M3; Figs 8–10; Appendix Tables 3–4) from the Biśnik Cave have also a much more developed cingulum on the labial side, with a characteristic cusp, which is larger than in the extant Alces alces; in their structure they resemble teeth of primitive elks of the genus Cervalces (see Kahlke, 1960, 1965, 1969). Also, M3 (Fig. 4.C) has an ancestral, structural characteristics: large endo-style and pronounced metacone cusp (Kahlke, 1960, 1965, 1966; Mäuser, 1990; Nikolskiy, 1996, 2010; Vasiliev, 2005; Nikolskiy and Boeskorov, 2011). The size of the upper teeth from the Middle Pleistocene layers (19–15) of the Biśnik Cave (Figs 8–10), which are larger than in the extant Alces alces from the Pleistocene and Holocene localities of Europe, indicate appurtenance to older forms of the species. At the same time, their measurements are smaller than in the typical Cervalces latifrons from Süssenborn, Voigstedt, Stranska Skala, Kozi Grzbiet, and Alces alces from Siberia (Figs 8–10; Appendix Tables 3–4). The measurements of P3 and P4 from the Biśnik Cave are comparable to those of C. postremus from the Saalian locality Weimar-Ehringsdorf (MIS 7) (Kahlke, 1968, 1975). The above characters made us assign the teeth from Biśnik Cave to Cervalces sp.
The measurements of M3 from the Dziadowa Skała Cave and the Łokietka Cave are smaller than those of C. postremus from Weimar-Ehringsdorf (MIS 7) and of Cervalces latifrons from the Middle Pleistocene localities. The dimensions of the tooth from the Dziadowa Skała Cave are also close to those of specimens of Alces cf. alces from the Eemian deposits in Krasnyi Yar and the Middle Pleistocene Alces sp. from Western Siberia (Fig. 7; Table 2) and the recent elk, hence the authors propose to classify the Eemian remains from the Dziadowa Skała Cave and those from the Upper Pleistocene deposits of the Łokietka Cave as Alces alces (Kahlke, 1960, 1965, 1966, 1975; Alekseeva, 1980; Mäuser, 1990; Foronova, 2001; Vasiliev, 2005, 2011).

The measurements of the preserved fragment of M3 from the Obłazowa Cave are within the range of variation for fossil elks of the genera Cervalces and Alces (Appendix Table 5). Its morphology is typical of the genus Alces.

The measurements of the metacarpus from the Biśnik Cave are large, compared to the other fossil and extant elks, and the bone is massive, as indicated by its considerable width (after Van der Made et al., 2014; see also Fig. 4).

Its measurements are comparable to those of such bones of large representatives of Cervalces latifrons from the Middle Pleistocene (Moldova) and the Eemian Interglacial (Eich). They are larger than in Alces alces (Fig. 11; Appendix Table 6). Archaeological and stratigraphic data (Cyrek et al., 2014;
Gąsiorowski et al., 2014; Krajcarz et al., 2014; Marciszak and Socha, 2014; Socha, 2014) indicate its probable age as the end of the Świecie Stadial (Middle Plenivistulian, MIS 4) and the Grudziądz Interstadial (Interplenivistulian, MIS 3). Barring redeposition or stratigraphic error, it may, as suggested by Van der Made et al. (2014), represent a large, relic form of *Cervalces latifrons*, which survived till the Vistulian Glaciation, with the simultaneous occurrence of smaller forms of the extant *Alces*. As mentioned above, the layers of the Biśnik Cave, dated as the Middle Pleistocene, contained the remains of representatives of *Cervalces*, but their size was smaller and typical of later forms of *Cervalces latifrons*.

Palaeoenvironmental implications

C. latifrons is the largest fossil elk species. It was larger than *A. alces*, living today. Compared to *C. gallicus* and *C. carnutorum*, it was characterised by a greater shoulder height, larger and more massive teeth, combined with a reduction of some crown components, as well as changes in the skull proportions and structure. These features may indicate adaptation to the colder and more changeable climate of the Middle Pleistocene, the environment of the steppe and cold steppe, taiga and mixed forests (Bubenik, 1986; Czyżewska, 1987; Kahlke, 1990; Lister, 1993b; Boeskorov, 2001; Breda and Marchetti, 2005; Breda et al., 2005; Breda, 2008). The occurrence of their remains in the cave deposits of the Kraków-Częstochowa Upland indicates the presence in the environs of the sites, at least for some period, of large water bodies, wetlands and boreal forests during the Odra Glaciation, Lublin Interglacial, Eemian, and the beginnings of the Vistulian. The studies in the Biśnik Cave confirm this view. In the Middle Pleistocene, a lake and river surrounded by forests and open areas occurred in the Wodàca Valley, where the caves are located. In the Holocene, the lake dried periodically and now the valley is dry (Cyrek, 2002; Mirosław-Grabowska, 2002; Stefaniak et al., 2009b; Cyrek et al., 2010). As shown by Socha (2014) in his palaeoclimatic reconstruction of the Bišnik Cave, the climate during the deposition of layers 19 and 16 (MIS 6–7) was boreal, while a distinct warming took place during the deposition of layer 15 (end of MIS 6 and/or Eemian Interglacial MIS 5e).

In the Eemian and at the beginning of Vistulian Glaciation, similar conditions must have prevailed in the region of Podlesice and Ojców, where the caves Dziadowa Skála and Łokietka are situated (WOJTAL, 2007; STEFANIAK et al., 2009b).

Owing to the climate amelioration during the Interplenivistulian, it was possible for the elk to occur for a brief period in Poland (Krkóów-Wieluń Upland: Bišnik Cave, Borsuka Cave, and Nowy Targ Basin: Oblazowa Cave; Wilczyński et al., 2012; Valde-Nowak and Nadachowski, 2014).
Fig. 9. Length-to-width ratio of P^4 of fossil elks from Polish and Eurasian Quaternary localities. Based on data from Appendix Table 4.

Fig. 10. Length-to-width ratio of M^3 of fossil elks from Polish and Eurasian Quaternary localities. Based on data from Appendix Table 5.
In Eurasia, *C. latifrons* was abundant from the Middle Pleistocene (Galerian) till the Upper Pleistocene (Aurelian). It occurred also in North America from the Middle Pleistocene until the Pleistocene/Holocene boundary (Azzaroli, 1952, 1953, 1979, 1981, 1996; Sher, 1971, 1986; Alekseeva, 1977; Bubenik, 1986; Lister, 1986, 1993a, 1996; Vlislobovka, 1986, 1990; Churcher and Pinsof, 1987; Azzaroli et al., 1988; Czyżewska, 1989; Kahlke, 1990; Musil, 1995; Franzen et al., 2000; Breda and Marchetti, 2005; Breda et al., 2005; Stefaniak, 2007; Nikolskiy, 2010). Previously, remains of *C. latifrons* were only known in Poland from Kozi Grzbiet. The studies by the authors show that the species was also present at another site – Sitkówka near Chęciny, with an age similar to that of Kozi Grzbiet.

The appearance of the Recent *Alces alces* in Europe, dated as Eemian Interglacial, is confirmed by its occurrence in the deposits of the Dziadowa Skała Cave, dated as MIS 5e. The elk occurred in Poland also at the beginning of the Vistulian Glaciation, as indicated by the presence of its remains in the deposits of the Łokietka Cave, and retreated during the Plenivistulian (MIS 4). It returned for a brief period in the Interplenivistulian, as demonstrated by the few localities in southern Poland, and recolonized the area of Poland at the end of the Pleistocene.

Among sites from the Vistulian Glaciation, a few elk remains were found at the lower cultural levels (the beginning of the glaciation) of the Neanderthal hunters site in Zwoleń (Gautier, 2005) and in stratigraphically unassigned deposits at the Raj Cave (Kowalski, 1972; Patou-Mathis, 2004).

At the beginning of the Vistulian Glaciation, the distribution range of *Alces alces* extended to Italy and the Balkan Peninsula. During the coldest periods of the Vistulian, the...
range in Europe became limited to southern and south-western Europe (Musil, 1986, 2010; Czyżewska, 1987). It can be assumed that the species was absent from the territory of Poland during a larger part of the Vistulian. The presence of elk remains in layer XIX of Oblazowa cave, dated as the Grudzianz Interstadiol (MIS 3; Valde-Nowak and Nadachowski, 2014) confirms the occurrence of elk in Poland during periods of climate amelioration. Isolated elk remains were found in the late Pleistocene sediments of Borsuka Cave (Wiczyński et al., 2012): a few dozen pendants, made of incisors of this species, and a fragment of a phalanx. One of the pendants was radiocarbon-dated at about 27000 years BP. Remains of a few other taxa clearly indicate warmer conditions and forest environment, e.g. snails, badger, lynx, and beaver, showing that during some periods of the Late Vistulian the environment in southern Poland was suitable also for the elk. Elk records from that period come also from localities in Moravia: Švédův stůl, the Kǔlna Cave, Šipka and Prědmosti (Musil, 1961, 1965, 1986, 2008, 2010). At that time, the range of the Recent elk in Europe reached its maximum, extending in the west to central and southern France, northern Italy, Switzerland, the former Yugoslavia, southern Germany, Moldova, Ukraine and the Caucasus. Its distribution similar to that of the genus Cervalces (David, 1980; Musil, 1986; Döppes and Rabeder, 1997; Kahlke, 2000; Breda, 2001b; Breda and Gallini, 2001; Breda and Marchetti, 2005).

At the end of the last glaciation, the elk expanded its range again, as a result of the climate warming in Eurasia (Guthrie, 1995; Schmölcke and Zachos, 2005). At the end of the Pleistocene, with the expansion of boreal forests, it was among the first representatives of forest fauna to recolonize Central Europe, probably from the east and north (Schmölcke and Zachos, 2005). The oldest remains of the species in Central Europe are dated as Allerød and Younger Dryas (locality Dudka; Hundertmark et al., 2002; Gumiński, 2003; Schmölcke and Zachos, 2005; Plonka et al., 2011). In Poland, the oldest elk remains, from the Pleistocene/Holocene boundary, come from south-eastern part of the country and are dated at about 12,000 years BP (Nadachowski, pers. com.). The presence of elk remains in northern Poland should also be mentioned; they are represented by a unique ritual object from Rusinowo in Pomerania, made of antler, dated as 10,700 ± 60 BP (Plonka et al., 2011).

Elk remains were found in the Holocene sediments of different caves of southern and western Poland (Fig. 1): in the Kraków-Częstochowa Upland (Biśnik and Jasna Strzegowska caves, Wschodnie Rock Shelter), Sudety Mts (Radochowska Cave) and Nowy Targ Basin (Oblazowa Cave), as well as in open sites across Poland (Nieza-Mts (Radochowska Cave) and Nowy Targ Basin (Obłazowa Strzegowska caves, Wschodnie Rock Shelter), Sudety). The paper describes elk remains from several cave localities, dated as Middle Pleistocene, Eemian interglacial and Vistulian. The extant Alces alces came into existence at that time (Eemian Interglacial). The few described remains include teeth, fragments of mandibles and metacarpal bones of Cervalces sp. and Alces alces. In the Middle Pleistocene and the Eemian Interglacial, the elk occurred in Poland during periods of boreal climate. The presence of the remains of Cervalces sp. confirms the Middle Pleistocene age of strata 19–15 in the Biśnik Cave. The only elk locality from the beginning of the Vistulian (MIS 5a–d) in Poland is the Łokietka Cave. Elks were absent from the territory of Poland during a larger part of the Vistulian.

Stratigraphic implications

The occurrence of Cervalces latifrons in Kozı Grzbiet and Sitkowka confirms their Middle Pleistocene age. The accompanying fauna, including the large form of Cervus elaphus (Van der Made et al., 2014), as well as stratigraphic data, place Kozı Grzbiet in the Podlasian Interglacial (Cromerian II – Cromerian III; MIS 19–17). The presence of a large form of Cervalces latifrons at Sitkowka indicates an age similar to that of Kozı Grzbiet for some of the layers, or younger than Glacial C (San 1 Glacial) – Elsterian (San 2 Glacial); MIS 16–12. As mentioned above, the period from the Holsteinian Interglacial to the Mazovian Interglacial (MIS 11) witnessed a significant decrease in the size of Cervalces latifrons.

The presence of Cervus sp. indicates a Middle Pleistocene age of levels 19, 16 and 15 from the Biśnik Cave. Stratigraphic information, isotopic and archaeological dating (Cyrek et al., 2010; Gąsiorowski et al., 2014; Krajczar et al., 2014; Socha, 2014), as well as the occurrence of the elk all point to MIS 7 as the period of deposition of layer 19. Layers 16 and 15 are similar in age to layer 19 (MIS 7, Röpersdorf-Schöningen Interglacial) or perhaps can be dated as the Odra Glaciation (MIS 6, Drenthe Glacial).

CONCLUSIONS

Elks, the largest extant cervids, came into existence at the end of the Pliocene. In the Lower Pleistocene, their representatives (Cervalces gallicus) reached Europe with other cold-adapted mammals. The elks live in a cool, boreal climate and are associated with wetlands, river valleys and various types of forests. The habitat of the extinct Pleistocene elks was similar. Their remains are never numerous in palaeontological material. Representatives of all their evolutionary lineages, including the largest species Cervalces latifrons, occurred in the Middle Pleistocene of Poland. The paper describes elk remains from several cave localities, dated as Middle Pleistocene, Eemian interglacial and Vistulian. The extant Alces alces came into existence at that time (Eemian Interglacial). The few described remains include teeth, fragments of mandibles and metacarpal bones of Cervalces sp. and Alces alces. In the Middle Pleistocene and the Eemian Interglacial, the elks occurred in Poland during periods of boreal climate. The presence of the remains of Cervalces sp. confirms the Middle Pleistocene age of strata 19–15 in the Biśnik Cave. The only elk locality from the beginning of the Vistulian (MIS 5a–d) in Poland is the Łokietka Cave. Elks were absent from the territory of Poland during a larger part of the Vistulian. Their
isolated remains were found in the late Pleistocene deposits of the Biśniak Cave, the Obłazowa Cave (MIS 3) and the Borsu Cave (beginning of MIS 2). The elks recolonised the area at the end of the Vistulian Glaciation, during the Allerod and Younger Dryas. In the early Holocene they were rather abundant. As a result of climatic changes and increasing anthropopressure, starting with the Subatlantic period, the elks’ distribution range shrunk. At present, the western limit of the distribution of the elk crosses Poland. The presence of elk remains at the localities studied indicates the presence of elk-friendly habitats in the environs of the sites. At the sites studied, the elk remains were found in cultural layers associated with human occupancy from the end of the Middle Pleistocene and the beginning of the Vistulian, but probably because of the scarcity of the material, no direct evidence of hunting was found.

Acknowledgements

These studies were partly supported by grants from the Polish Ministry of Science and Higher Education 1069/3/S/KBEE/2013, NN109318237 and N N307050139 (grant manager Kamilla Pawłowska). We gratefully acknowledge the help of Tatiana Woroncowa-Marcinowska (Geological Museum of the Polish Geological Institute, National Research Institute (PIG-PIB) in Warszawa) and Jerzy Nawrocki (Polish Geological Institute, National Research Institute (PIG-PIB) in Warszawa) who provided the material from Sitkówka. We thank Beata M. Pokryszko from the Museum of Natural History, Wrocław University, for translating this paper into English. We are grateful to the referees for their valuable comments and suggestions, which improved the quality of the paper.

REFERENCES

Azzaroli, A., 1953. The deer of Weybourn Crag and Forest Bed of Norfolk. Palaeontographia Italica, 48–54. [In Italian, with English summary.]

Madeyska, T., 1981. Środowisko człowieka w środkowym i gór- nym paleolicie na ziemiach Polskich w świetle badań geolog- icznych. Studia Geologiczno Palæontologiczne, 69: 7–125. [In Polish.]

