PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 21, No. 4 | 406-426
Tytuł artykułu

Semiconductor detectors and focal plane arrays for far-infrared imaging

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging systems in the next decades. This paper presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.
Wydawca

Rocznik
Strony
406-426
Opis fizyczny
Bibliogr. 72 poz., il., wykr.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, rogan@wat.edu.pl
Bibliografia
  • 1. P. H. Siegel, ”Terahertz technology”, IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
  • 2. P. H. Siegel and R. J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465-480 (2006).
  • 3. P. H. Siegel and R. J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Millimeter Waves 27, 631-655 (2006).
  • 4. G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications”, in: Sensors. Advancements in Modelling, Design Issues, Fabrication and Practical Applications, pp. 387-414, edited by S. C. Mukhopadhyay and R. Y. M. Huang, Springer, New York, 2008.
  • 5. T. W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-State Circuits 40, 2104-2110 (2005).
  • 6. D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1-66. (2004).
  • 7. J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nature Nanotechnol. 3, 496-500 (2008).
  • 8. “10 emerging technologies that will change your world”, Technology Rev., 32-50, February 2004.
  • 9. A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011.
  • 10. F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10-36 (2010).
  • 11. F. Sizov and A. Rogalski, “THz detectors”, Prog. Quantum Electron. 34, 278-347 (2010).
  • 12. M. Harwit, G. Helou, L. Armus, C. M. Bradford, P. F. Goldsmith, M. Hauser, D. Leisawitz, D. F. Lester, G. Rieke, and S. A. Rinehart, “Far-Infrared/Submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html
  • 13. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011.
  • 14. T. Ueda, Z. An, and S. Komiyama, ”Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Milli. Terahz Waves (2010); DOI 10.1007/s10762-010-9659-3.
  • 15. J. A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183-192 (2006).
  • 16. M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447-453 (2004).
  • 17. G. H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003.
  • 18. R. Ham, Y. Zhang, D. Coquillat, H. Videlier, W. Knap, E. Brown, and K. K. O, “A 280-GHz diode detector in 130-nm digital CMOS”, IEEE J. Solid-State Circuits 46, 2602-2612 (2011).
  • 19. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, K. O, ”280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS”, IEEE Inter. Solid-State Circuits Confer., pp. 253-253 (2012).
  • 20. J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, in Proc. 18th Int. Symp. Space Terahertz Techn., Pasadena, 2007.
  • 21. E. R. Brown, A. C. Young, J. Zimmerman, H. Kazemi, and A. C. Gossard, “High-sensitivity, quasi-optically-coupled semimetal-semiconductor detectors at 104 GHz”, in Proc. SPIE 6212, 621205 (2006).
  • 22. Z. Zhang, R. Rajavel, P. Deelman, and P. Fay, “Sub-micro area heterojunction backward diode millimeter-wave detectors with 0.18 pW/Hz1/2 noise equivalent power”, IEEE Microw. Wireless Compon. Lett. 21, 267-269 (2011).
  • 23. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006).
  • 24. E. Öjefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-State Circuits 44, 1968-1280 (2009).
  • 25. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Carhelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS”, IEEE J. Solid-State Circuits 47, 2999-3012 (2012).
  • 26. N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging”, Comptes Rendus Physique 11, 496-509 (2010).
  • 27. D. -T. Nguyen, F. Simoens , J. -L. Ouvrier-Buffet, J. Meilhan, and J. -L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements”, IEEE T. on Terahertz Science and Technology 2, 299-305 (2012).
  • 28. M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera”, Proc. SPIE 8023, 80230C-1-10 (2011).
  • 29. OAD-7 Golay Detector Operating Manual, QMC Instruments Ltd., Cardiff, U. K., Jan. 4, 2005.
  • 30. Pyroelectric Detector, Product Sheet for Model SPH-62. Spectrum Detector Inc., Lake Oswego, OR, www.spectrumdetector.com
  • 31. J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597-1616 (2004).
  • 32. E. J. Becklake, C. D. Payne, and B. E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473-481 (1970).
  • 33. D. T. Young and J. C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique,” Proc. IEEE 53, 2130-2132 (1965).
  • 34. T. W. Crowe, D. P. Porterfield, J. L. Hesler, W. L. Bishop, D. S. Kurtz, and K. Hui, “Terahertz sources and detectors,” Proc SPIE 5790, 271-280 (2005).
  • 35. T. W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1-10 THz”, Int. J. Infrared Millim. Waves 11, 765-777 (1990).
  • 36. M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465-2468 (1993).
  • 37. W. Knap and M. I. Dyakonov, “Field effect transistors for terahertz applications”, in Handbook of Terahertz Technology, edited by D. Saeedkia, pp 121-155, Woodhead Publishing, Cambridge, 2013.
  • 38. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675 (2004).
  • 39. A. W. M. Lee, B. S.Williams, S. Kumar, Q. Hu, and J. L. Reno, ”Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photonics Technology Letters 18, 1415-1417 (2006).
  • 40. D. Corcos, I. Brouk, M. Malits, A. Svetlitza, S. Stolyarova, A. Abramovich, E. Farber, N. Bachar, D. Elad, and Y. Nemirovsky, ”The TeraMOS sensor for monolithic passive THz imagers”, in: 2011 IEEE Int. Confer. Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, 2011.
  • 41. D. J. Burdette, J. Alverbro, Z. Zhang, P. Fay, Y. Ni, P. Potet, K. Sertel, G. Trichopoulos, K. Topalli, J. Volakis, and H. L. Mosbacker, “Development of an 80×64 pixel, broadband, real-time THz imager”, Proc. SPIE 8023, 80230F-1-12 (2011).
  • 42. V. Dobrovolsky and F. F. Sizov, “THz/sub-THz bolometer based on the electron heating in a semiconductor waveguide”, Opto-Electron. Rev. 18, 250-258 (2010).
  • 43. B. V. Rollin and E. L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995-996 (1952).
  • 44. E. Burstein, J. J. Oberly and J. W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89(1), 331-332 (1953).
  • 45. J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81-100 (1986).
  • 46. E. E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techol. 35, 127-146 (1994).
  • 47. J. -Q. Wang, P. I. Richards, J. W. Beeman, J. W. Haegel, and E. E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127-4134 (1986).
  • 48. A. G. Kazanskii, P. L. Richards, and E. E, Haller, “Far-infra-red photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496-497 (1977).
  • 49. E. E. Haller, M. R. Hueschen and P. L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495-497 (1979).
  • 50. E. E. Haller and J. W. Breeman, ”Far infrared photoconductors: recent advances and future prospects”, Far-IR, Sub-mm & MM Detector Technology Workshop, Monterey, 2002.
  • 51. A. Poglitsch, C. Waelkens, O. H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008).
  • 52. http://fifi-ls.mpg-garching.mpg.dr/detector.html
  • 53. http://pacs.mpe.mpg.de/p15n.html
  • 54. J. Farhoomand, D. L. Sisson, and J. W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.&Techn. 51, 152-159 (2008).
  • 55. M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18.
  • 56. J. Farhoomand, D. L. Sisson, and J. W. Beeman, ”Latest progress in developing large format Ge arrays for far-IR astronomy”, Proc. SPIE 7741, 77410A-1-8 (2010).
  • 57. M. D. Petroff and M. G. Stapelbroek, “Blocked-impurity-band detectors,” U. S. Patent No. 4,566,960. Filled Oct. 23, 1980, granted Feb. 4, 1986.
  • 58. P. R. Norton, “Infrared image sensors”, Opt. Eng. 30, 1649-1663 (1991).
  • 59. H. Hogue, E. Atkins, D. Reynolds, M. Salcido, L. Dawson, D. Molyneux, and M. Muzilla, “Update on blocked impurity band detector technology from DRS”, Proc. SPIE 7780, 778004-1-10 (2010).
  • 60. R. Mills, E. Beuville, E. Corrales, A. Hoffman, G. Finger, and D. Ives, “Evolution of large format impurity band conductor focal plane arrays for astronomy applications”, Proc. SPIE 8154, 81540R-1-10 (2011).
  • 61. J. Bandaru, J. W. Beeman, and E. E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193-199 (2002).
  • 62. L. A. Reichertz, J. W. Beeman, B. L. Cardozo, G. Jakob, R. Katterloher, N. M. Haegel, and E. E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006).
  • 63. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1-24 (1994).
  • 64. A. L. Woodcraft, R. V. Sudiwal, E. Wakui, and C. Paine, “Hopping conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925-944 (2004).
  • 65. Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml
  • 66. P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J. L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284-290 (1999).
  • 67. N. Billot, P. Agnese, J. L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J. L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006).
  • 68. G. H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77-115 (2007).
  • 69. T. G. Phillips and K. B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009-1014 (1973).
  • 70. E. H. Putley, “InSb submilimeter photoconductive detectors,” in Semiconductors and Semimetals, Vol. 12, pp. 143-167, edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1977.
  • 71. http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html
  • 72. T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astrophys. 20, 285-321 (1982).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1cb86d30-d19a-4ffe-b8d9-36e7b25c0510
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.