PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 5, nr 3 | 116--125
Tytuł artykułu

System-level modeling of a Lab-On-Chip for micropollutants detection

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The issue addressed by this paper is system-level modeling of Lab-On-Chip (LOC) level. These microsystems integrate within a single chip many functions from several domains such as electronics, thermic, biochemistry or microfluidics. The modeling of these systems in a single environment and the interface between different domains is very challenging. In this paper, we propose some methods to model the entire system in VHDL-AMS. The models are developed and assembled from elementary building blocks, with a validation through experiments or numerical simulation on a reference tool, toward the complete LOC. For each domain, the modeling methodology is described. The principle is applied to a specific use case: a LOC designed for the detection of micro-pollutants in drinking water. It is based on the ELISA test leading to a pH-shift which is in turn detected by an Ion-Sensitive Field Effect Transistor (ISFET). In the last part of the paper, the first results obtained with the complete zero-order model of the LOC are described. Of course, this model has to be improved in order to be faithful to the actual LOC but it will undoubtedly be a major asset for the optimization and reliability improvement of the LOC.
Wydawca

Rocznik
Strony
116--125
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Engineering Science, Computer Science and Imaging Laboratory, ICube Lab, Strasbourg University, Illkirch, France and Burkert Fluid Control Systems Rue du Giessen, Triembach au Val, France
autor
  • Engineering Science, Computer Science and Imaging Laboratory, ICube Lab, Strasbourg University, Illkirch, France
autor
  • Engineering Science, Computer Science and Imaging Laboratory, ICube Lab, Strasbourg University, Illkirch, France
  • Engineering Science, Computer Science and Imaging Laboratory, ICube Lab, Strasbourg University, Illkirch, France
autor
  • Burkert Fluid Control Systems Rue du Giessen, Triembach au Val, France
autor
  • Therapeutic Innovations Laboratory (LIT), Strasbourg University, Illkirch, France
Bibliografia
  • [1] E. Oosterbroek, A. van den Berg, “Lab-on-a-chip: Miniaturized Systems for (Bio)Chemical Analysis and Synthesis”, ed. Elsevier, 2003.
  • [2] K. E. Herold, “Lab-on-chip technology: fabrication and microfluidics”, ed. Horizon Scientific Press, 2009.
  • [3] P. Temple Boyer, A. Benyaliia, W. Sant, M.L. Pourciel-Gouzy, J. Launay, A. Martinez, “Modeling of urea-EnFETs for haemodialysis applications”, Sensors and Actuators 131 (2008), pp 525-532.
  • [4] X. Chang at all, “A microfluidic device for practical label-free CD4+ T cell counting of HIV infected subjects”, Lab Chip 7 (2007), pp 170-178.
  • [5] A. Habib, F. Pecheux, “Modeling and simulation of a many core PCR-CE lab-on-chip for DNA sequencing using SystemC/SystemC-AMS”, IEEE International Behavioral Modeling and Simulation Conference (BMAS), 2010, pp 63-68.
  • [6] A. K. Yetisen, L. Jiang, J.R. Cooper, Y Qin, R. Palaniveluand Y. Zohar, “A microsystem-based assay for studying pollen tube guidance in plant reproduction”, Journal of Micromechanics and Microengineering 21 (2011), 054018.
  • [7] l. Humenyuk at all, “Development of pNH4-ISFETS microsensors for water analysis”, Microelectronics Journal 37 (2006), pp 475-479.
  • [8] United States Environmental Protection Agency website, http://water.epa.gov/
  • [9] Water Framework Directive (European Commission) website, http://ec.europa.eu/environment/water/water-framework/index_en.html
  • [10] Standard Methods for the Examination of Water and Wastewater website, http://www. standardmethods.org/
  • [11] A. Jang, Z. Zou, K. Kug Lee, C. H. Ahn and P. L. Bishop, “State-of-the-art lab chip sensors for environmental water monitoring”, Measurement Science and Technology 22 (2011), pp 1-18.
  • [12] R. Bashir, “BioMEMS state-of-the-art in detection opportunities and prospects”, Advanced Drug Delivery Reviews 56 (2004), pp 1565-1586.
  • [13] D.A. Hall et al., “GMR biosensor array: a system perspective”, in Biosensors and Bioelectronics, vol. 25(9), pp. 2051-2057, 2010.
  • [14] P. Bergveld, “Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology”, IEEE trans. On Biomedical Engineering, vol. 19(5), pp. 342-351. 1972.
  • [15] A. Subramanium et al, “Glucose biosensing using an enzyme-coated microcantilever”, in Applied Physics Letter, vol. 81, p. 385, 2002.
  • [16] D. Erickson, ”Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices”, Microfluid Nanofluid 1 (2005).
  • [17] J.B. Kammerer, M. Madec, L. Hébrard, “Compact modeling of a magnetic tunnel junction-Part I: dynamic magnetization model”, in IEEE Trans. Electron Devices, vol. 57(6), pp. 1408-1415, 2010.
  • [18] Y. Wang, Q. Lin, T. Mukherjee,“Composable behavioral models and schematic-based simulation of electrokinetic Lab-on-a-chip Systems”, IEE transactions on computer-aided design of integrated circuits and systems, 25 (2006), pages 258-273.
  • [19] Y. Gendrault, M. Madec, C. Lallement, J. Haiech, “Modeling biology with HDL languages: a first step toward a Genetic Design Automation tool inspired from microelectronics” Biomedical Engineering, IEEE Transactions on 99 61 (2014) pages 1231-1246.
  • [20] P.J. Ashenden, G.D. Peterson, D.A. Teegarden, “The system designer's guide to VHDL-AMS: analog, mixed-signal, and mixed-technology modeling”, ed. Morgan Kaufmann, 2002.
  • [21] P.Voigt, G. Schrag, G. Wachutka, “Microfluidic system modeling using VHDL-AMS and circuit simulation”, Microelectronics Journal 29 (1998), pages 791-797.
  • [22] F. Pecheux, C. Lallement, A. Vachoux, “VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems”, in IEEE Trans. On Computer-Aided Design of Integrated circuits and Systems, vol. 24(2), pp. 204-225, 2005.
  • [23] P. Tabeling, “Introduction to microfluidics”, ed. Oxford University Press, 2010.
  • [24] H.A. Stone, A.D. Stroock, A. Ajdari, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip”, in Annu. Rev. Fluid Mech.,vol. 36, pp. 381-411, 2004.
  • [25] G.B. Kistiakowsky, A.J. Rosenberg, “The Kinetics of Urea Hydrolysis by Urease”, in J. Am. Chem. Soc., vol. 74(20), pp. 5020-5025 1952.
  • [26] L. Michaelis, M.L. Menten, “The kinetics of invertin action”, in FEBS Letter, vol. 587(17), pp. 2712-2720, 2013. Translation of “Die kinetik der invertinwirkung”, in Biochem. Zeitung, 1913.
  • [27] L.M. Loew, J.C. Schaff, “The Virtual Cell: a software environment for computational cell biology”, in Trends in Biotechnology, vol. 19, 2001.
  • [28] W. Sant, M.L. Pourciel, "Development of chemical field effect transistors for the detection of urea", in 16th European Conference on Solid-State Transducers, Prague, September 2002, pp.1059-1062
  • [29] P. G. Fernandes et al., “SPICE macromodel of silicon-on insulator-field-effect-transistor-based biological sensors”, Sensors and Actuators B 161 (2012), pages 163-170.
  • [30] Y. Liu, P. Georgiou, T. Prodromakis, T. G. Constandinou, C. Toumazou, “An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation”, IEEE Transactions on Electron Devices 58 (2011), pages 4414-4422.
  • [31] S. E. Naimi, B. Hajji, I. Humenyuk, J. Launay, P. Temple-Boyer, “Temperature influence on pH-ISFET sensor operating in weak and moderate inversion regime: Model and circuitry”, Sensors and Actuators B202 (2014) 1019-1027
  • [32] S. Martinoia , G. Massobrio, “A behavioral macromodel of the ISFET in SPICE”, Sensors and Actuators B 62 (2000). 182-189
  • [33] M. Janicki, M. Daniel, M. Szermer, A. Napieralski, “Ion sensitive field effect transistor modelling for multidomain simulation purposes”, Microelectronics Journal 35 (2004) 831-840
  • [34] J. Chermiti, S. Azzouzi, M. Ben Ali, M. Trabelsi, A. Errachid , “Modeling and Analysis of Low Frequency Noise in Ion-Field-Effect Transistors Sensors”, Model. and Num. Simu. of Material Science, 2014.
  • [35] S. Martinoia, G. Massobrio, L. Lorenzelli, “Modeling ISFET microsensor and ISFET-based microsystems: a review”, Sensors and Actuators B 105 (2005) 14-27
  • [36] P. Bergveld, "ISFET, theory and practice", IEEE Sensor Conference Toronto (2003), pages 1-26.
  • [37] M. Bucher, C. Lallement, C. Enz, F. Théodoloz, F. Krummenacher, The EPFL-EKV MOSFET model equations for simulation, EPFL, Lausanne, Switzerland, Technical Report, July 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1552f948-a17e-48f4-ad52-e8c5df9032bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.