Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 23, nr 3 | 481--489
Tytuł artykułu

System of Optoelectronic Sensors for Breath Analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper describes an integrated laser absorption system as a potential tool for breath analysis for clinical diagnostics, online therapy monitoring and metabolic disorder control. The sensors operate basing on cavity enhanced spectroscopy and multi-pass spectroscopy supported by wavelength modulation spectroscopy. The aspects concerning selection of operational spectral range and minimization of interference are also discussed. Tests results of the constructed devices collected with reference samples of biomarkers are also presented. The obtained data provide an opportunity to analyse applicability of optoelectronic sensors in medical screening.

Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland,
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland,
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland,
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland,
  • Military University of Technology, Institute of Optoelectronics, Kaliskiego 2, 00-908 Warsaw, Poland,
  • [1] Wang, Ch., Sahay, P. (2009). Breath analysis using laser spectroscopic techniques: breath biomarkers, spectra fingerprints, detection limit. Sensors, 9, 8230-8262.
  • [2] Buszewski, B., Grzywinski, T., Ligor, T., Stacewicz, T., Bielecki, Z., Wojtas, J. (2013). Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques. Bioanalysis, 5(18), 2287-306.
  • [3] Amann, A., Ligor, M., Ligor, T., Bajtarevic, A., Ager, C., Pienz, M., Denz, H., Fiegl, M., Hilbe, W., Weiss, W., Lukas, P., Jamnig, H., Haidenberger, A., Sponring, A., Filipiak, W., Miekisch, W., Schubert, J., Troppmair, J., Buszewski, B. (2010). Analysis of exhaled breath for screening of lung cancer patients. Magazine of European Medical Oncology, 3, 106-112.
  • [4] Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of Gas Mixture Components Using Fluctuation Enhanced Sensing And The LS-SVM Regression Algorithm. Metrol. Meas. Syst., 22(3), 341-350.
  • [5] Kalinowski, P., Woźniak, Ł., Strzelczyk, A., Jasinski, P., Jasinski, G. (2013). Efficiency of linear and nonlinear classifiers for gas identification from electrocatalytic gas sensor. Metrol. Meas. Syst., 20(3), 501-512.
  • [6] Heszler, P., Ionescu, R., Llobet, E., Reyes, L.F., Smulko, J.M., Kish, L.B., Granqvist, C.G. (2007). On the selectivity of nanostructured semiconductor gas sensors. Physica status solidi (b), 244(11), 4331-4335.
  • [7] McCurdy, M.R., Bakhirkin, Y., Wysocki, G., Lewicki, R., Tittel, F.K. (2007). Recent advances of laserspectroscopy based techniques for applications in breath analysis. J. Breath Res., 1, R1-R12.
  • [8] Shorter, J.H., Nelson, D.D., McManus, J.B., Zahniser, M.S., Sama, S.R., Milton, D.K. (2011). Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy. J. Breath Res., 5, DOI: 10.1088/1752-7155/5/3/037108, 1-12.
  • [9] Shorter , J.H., Nelson, D.D., McManus, J.B., Zahniser, M.S., Milton, D.K. (2010). Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers. IEEE Sensors Journal, 10, 76-82.
  • [10] Wysocki, G., McCurdy, M.R., So, S., Rolller, C., Tittel, F.K. (2005). Conference: Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. DOI: 10.1142/9789812701954_006.
  • [11] Nwaboh, J.A., Persijn, S., Heinrich, K., Sowa, M., Hering, P., Werhahn, O. (2012). QCLAS and CRDSbased CO uanification as aimed at in breath measurements. Int. Journal of Spectroscopy, DOI: 10.1155/2012/894841, 1-10.
  • [12] Vreman, H.J., Mahoney, J.J., Stevenson, D.K. (1995). Carbon monoxide and carboxyhemoglobin. Adv. Pediatr., 42, 330-334.
  • [13] Stevenson, D.K., Vreman, H.J. (1997). Carbon monoxide and bilirubin production in neonates. Pediatr. Rev., 100, 252-259.
  • [14] Applegate, L.A., Luscher, P., Tyrrell, R.M. (1991). Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res., 51, 974-978.
  • [15] Yamaya, M., Sekizawa, K., Ishizuka, S., Monma, M., Mizuta, K., Sasaki, H. (1998). Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am. J. Respir. Crit. Care Med., 158, 311-314.
  • [16] Zayasu, K., Sekizawa, K., Okinaga, S., Yamaya, M., Ohrui, T., Sasaki, H. (1997) Increased carbon monoxide in exhaled air of asthmatic patients. Am. J. Respir. Crit. Care Med., 156, 1140-1143.
  • [17] Thorpe, M.J., Moll, K.D., Jones, J.R., Safdi, B., Ye, J. (2006). Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599.
  • [18] Moeskops, B.W., Cristescu, S.M., Harren, F.J. (2006). Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt. Lett., 31, 823-825.
  • [19] Moskalenko, K.L., Nadezhdinskii, A.I., Adamovskaya, I.A. (1996). Human breath trace gas content study by tunable diode laser spectroscopy technique. Infrared Phys. Tech., 37, 181-192.
  • [20] Rothman, L.S., Gordon, I.E., et al. (2013). The HITRAN 2012 Molecular Spectroscopic Database. J. Quant Spectrosc Radiation transfer, 130, 4-50.
  • [21] Scotoni, M., Rossi, A., Bassi, D., Buffa, R., Iannotta, S., Boschetti, A. (2006). Simultaneous detection of ammonia, methane and ethylene at 1.63 μm with diode laser photoacoustic spectroscopy. Appl. Phys. B: Lasers Opt., 82, 495-500.
  • [22] Le Marchand, L., Wilkens, L.R., Harwood, P., Cooney, R.V. (1992). Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion. Environ. Health Perspect., 98, 199-202.
  • [23] Birrell, M.A., McCluskie, K., Hardaker, E., Knowles, R., Belvisi, M.G. (2006). Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model. Eur. Respir. J., 28, 1236-1244.
  • [24] Wojtas, J. (2015). Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane-Breath Biomarkers of Serious Diseases. Sensors, 15, 14356-14369.
  • [25] Bomse, D.S., Stanton, A.C., Silver, J.A. (1992). Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead salt diode laser. Applied Optics, 31, 718−731, DOI: 10.1364/AO.31.000718.
  • [26] Oh, D.B., Paige, M.E., Bromse, D.S. (1998). Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers. Appl. Optics, 37, 2499-2501.
  • [27] Rieker, G.B. (2009). Wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environmnents. A dissertation submitted to the Department of Mechanical Engineering and The Committee on Graduate Studies of Stanford University.
  • [28] Patent application P.416703 entitled “The set-up and the method for the detection of gases based on multiplexing and demultiplexing of optical signals in laser spectroscopy” invented by T. Stacewicz, P. Magryta, Z. Bielecki and J. Wojtas has been submitted to the Polish Patent Office on 31.03.2016.
  • [29] (Mar. 2015).
  • [30] (March 2015).
The research presented in this paper has been supported by the National Centre for Research and Development in the scope of Project No.: 179900 (PBS1/A3/7/2012).
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.