PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 46, nr 1 | 229--244
Tytuł artykułu

Rcl-supercontinuous functions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of functions called ‘Rcl-supercontinuous functions’ is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of Rcl-supercontinuous functions properly contains the class of cl-supercontinuous (≡ clopen continuous) functions (Applied Gen. Topology 8(2) (2007), 293–300; Indian J. Pure Appl. Math. 14(6) (1983), 767–772) and is strictly contained in the class of Rδ-supercontinuous functions which in its turn, is properly contained in the class of R-supercontinuous functions (Demonstratio Math. 43(3) (2010), 703–723).
Wydawca

Rocznik
Strony
229--244
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
  • Department of Mathematics, Hindu College, University of Delhi, Delhi 110007, India, jk_kohli@yahoo.co.in
autor
Bibliografia
  • [1] A. Appert, Ky-Fan, Espaces topologiques intermédiares, Problème de la distanciation (French), Actualités Sci. Ind. No. 1121. Herman and Cie, Paris (1951), 160.
  • [2] C. E. Aull, Notes on separation by continuous functions, Indag. Math. 31 (1969), 458–461.
  • [3] E. Ekici, Generalizations of perfectly continuous, regular set connected and clopen functions, Acta Math. Hungar. 107(3) (2005), 193–205.
  • [4] E. Hewitt, On two problems of Urysohn, Ann. of Math. 47(3) (1946), 503–509.
  • [5] J. K. Kohli, A unified view of (complete) regularity and certain variants of (complete) regularity, Canad. J. Math. 36 (1984), 783–794.
  • [6] J. K. Kohli, A framework including the theories of continuous functions and certain non-continuous functions, Note Mat. 10(1) (1990), 37–45.
  • [7] J. K. Kohli, A unified approach to continuous and certain non-continuous functions, J. Austral. Math. Soc. Ser. A 48 (1990), 347–358.
  • [8] J. K. Kohli, A unified approach to continuous and certain non-continuous functions II, Bull. Austral. Math. Soc. 41 (1990), 57–74.
  • [9] J. K. Kohli, Change of topology, characterizations and product theorems for semilocally P-spaces, Houston J. Math. 17 (1991), 335–350.
  • [10] J. K. Kohli, R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33(7) (2002), 1097–1108.
  • [11] J. K. Kohli, D. Singh, Dδ-supercontinuous functions, Indian J. Pure Appl. Math. 34(7) (2003), 1089–1100.
  • [12] J. K. Kohli, D. Singh, Almost cl-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 1–12.
  • [13] J. K. Kohli, D. Singh, J. Aggarwal, F-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 69–83.
  • [14] J. K. Kohli, D. Singh, J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 43(3) (2010), 703–723.
  • [15] J. K. Kohli, D. Singh, C. P. Arya, Perfectly continuous functions, Stud. Cercet. Ştiint. Ser. Mat. 18 (2008), 99–110.
  • [16] J. K. Kohli, D. Singh, B. K. Tyagi, Rδ-supercontinuous functions, (preprint).
  • [17] J. K. Kohli, D. Singh, B. K. Tyagi, Rz-supercontinuous functions, (preprint).
  • [18] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
  • [19] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–272.
  • [20] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, pp. 13–18.
  • [21] B. M. Munshi, D. S. Bassan, Supercontinuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
  • [22] T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 16 (1980), 161–166.
  • [23] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15(3) (1984), 241–250.
  • [24] V. Popa, T. Noiri, On M-continuous functions, An. Univ. “Dunarea de Jos”, Galati, Mat. Fiz, Mec. Teor. 18(23) (2000), 31–41.
  • [25] V. Popa, T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9–18.
  • [26] V. Popa, T. Noiri, On weakly (τ,m)-continuous functions, Rend. Circ. Mat. Palermo 2, 51 (2002), 295–316.
  • [27] I. L. Reilly, M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14(6) (1983), 767–772.
  • [28] D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8(2) (2007), 293–300.
  • [29] L. A. Steen, J. A. Seebach, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
  • [30] N. K. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. Ser. 2 78 (1968), 103–118.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-140788c4-6817-45db-9c96-a674c7caf123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.