Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, no. 3 | 887--901
Tytuł artykułu

Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting

Warianty tytułu
Języki publikacji
In this work, an electromagnetic-mechanical-thermal coupling numerical model was proposed and electromagnetic riveting (EMR) experiments were performed using Φ6 mm TA1 titanium alloy rivets. Experimental verification showed that the proposed model could be suitable for predicting the EMR process, and the corresponding relationships among magnetic pressures, deformations of rivet tails and discharge voltages were revealed. In addition, simulation results presented that most deformations occurred in the locally upsetting stage of rivet tail. The maximum temperature rise reached up to 426 °C within the shear deformation zone of rivet tail. The rivet tails with high speed deformations could bear 9.9 kN shear loads and 12.5 kN pull-out loads, respectively. The EMR joining structures with multi-layered sheets had very high interference-fit qualities, and the average relative interferences were 2.5–3.0% for as-received multi-layered structures. Consequently, the EMR process can be used for difficult-to-deformation material rivets under the high efficiency, high quality and ambient temperature.

Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China,
  • Capital Aerospace Engineering Machinery Company, Beijing 100076, China
  • Capital Aerospace Engineering Machinery Company, Beijing 100076, China
  • School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • [1] J. Mucha, W. Witkowski, Mechanical behavior and failure of riveting joints in tensile and shear tests, Strength Mater. 47 (5) (2015) 755–769.
  • [2] J. Mucha, The effect of material properties and joining process parameters on behavior of self-pierce riveting joints made with the solid rivet, Mater. Des. 52 (24) (2013) 932–946.
  • [3] Z. Cao, M. Cardew-Hall, Interference-fit riveting technique in fiber composite laminates, Aerosp. Sci. Technol. 10 (2006) 327–330.
  • [4] G.Y. Li, H. Jiang, X. Zhang, J.J. Cui, Mechanical properties and fatigue behavior of electromagnetic riveted lap joints influenced by shear loading, J. Manuf. Process. 26 (2017) 226–239.
  • [5] P.G. Reinhall, S. Ghassaei, V. Choo, An analysis of rivet die design in electromagnetic riveting, J. Vib. Acoust. Stress Reliab. 110 (1988) 65–69.
  • [6] E.A. Repetto, R. Radovitzky, M. Ortiz, et al., A finite element study of electromagnetic riveting, J. Manuf. Sci. Eng. 121 (1999) 61–68.
  • [7] J.H. Deng, H.P. Yu, C.F. Li, Numerical and experimental investigation of electromagnetic riveting, Mater. Sci. Eng. A 499 (2009) 242–247.
  • [8] Y.G. Miao, Y.L. Li, H.Y. Liu, et al., Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar, Int. J. Mech. Sci. 108 (2016) 188–196.
  • [9] M. Altenaiji, Z.W. Guan, W.J. Cantwell, et al., Characterisation of aluminium matrix syntactic foams under drop weight impact, Mater. Des. 59 (2014) 296–302.
  • [10] Z.Q. Cao, Theory and Application Study on Electromagnetic Riveting, Dissertation of Northwestern Polytechnical University, 1999, pp. 25–40.
  • [11] J.H. Deng, C. Tang, M.W. Fu, et al., Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting, Mater. Sci. Eng. A 591 (2014) 26–32.
  • [12] V.K.S. Choo, P.G. Reinhall, S. Ghassaei, Effect of high rate deformation induced precipitation hardening on the failure of aluminium rivets, J. Mater. Sci. 24 (1989) 599–608.
  • [13] R.G. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, 1983, 541–547.
  • [14] X. Zhang, Research on Dynamic Plastic Deformation Behavior and Microstructure and Mechanical Properties of Rivets in Electromagnetic Riveting, Dissertation of Harbin Institute of Technology, 2016, pp. 18–22.
  • [15] G.R. Cowper, P.S. Symonds, Strain Hardening and Strain Rate Effect in the Impact in the Impact Loading of Cantilever Beams, Brown University Providence Ri, 1957.
  • [16] X. Zhang, H.P. Yu, C.F. Li, Multi-filed coupling numerical simulation and experimental investigation in electromagnetic riveting, Int. J. Adv. Manuf. Technol. 73 (2014) 1751–1763.
  • [17] V. Psyk, D. Risch, B.L. Kinsey, et al., Electromagnetic forming – a review, J. Mater. Process. Technol. 211 (2011) 787–829.
  • [18] V. Blanchot, A. Daidie, Riveted assembly modelling: study and numerical characterisation of a riveting process, J. Mater. Process. Technol. 180 (1) (2006) 201–209.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.