PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | [Z] 70, 5-6 | 289--297
Tytuł artykułu

Reakcje utleniania wybranych grup funkcyjnych z wykorzystaniem oxone® jako źródła tlenu cząsteczkowego

Treść / Zawartość
Warianty tytułu
EN
The oxidation reactions of selected functional groups using oxone® as a source of molecular oxygen
Języki publikacji
PL
Abstrakty
EN
Oxidation reactions belong to the group of the most commonly used processes in both organic and inorganic chemistry. The main issues in such transformation are usually safe handling of the oxidants as well as waste generation. Peroxymonosulfuric acid is one of the strongest oxidants. It was described for the first time in 1898 by Heinrich Caro. Nowadays, the commercial sources of KHSO5 are low-cost industrial bulk chemicals, e.g., the triple salt Oxone® (2KHSO5· KHSO4·K2SO4). These products are stable oxidizing agents commonly used in fine chemicals synthesis, and are easy to handle, non-toxic as well as generate non-polluting by-products. Over the past several years the scope of its use has extended. One of the most important transformation that have been made possible with the use of Oxone® are epoxidation and ketone formation. Epoxides and ketones are important synthetic building blocks widely used in the chemical industry for the production of pharmaceutical products, flavours, fragrances, resins, adhesives and paints. The use of Oxone® was demonstrated in several combinations both in classical methods that involved metal catalysis as well as in novel approaches with the use of microwaves and ionic liquids. Over the past 20 years, ionic liquids, together with supercritical fluids and water, have become powerful alternatives to conventional organic solvents. Ionic liquids are salts having in the structure an organic cation and an inorganic or organic anion, with a melting point below 100°C. The advantage of using ionic liquids is a big variety of available structures. Combinations of both ionic liquids and Oxone® offer an interesting alternative to classical oxidation methods used in industry.
Wydawca

Rocznik
Strony
289--297
Opis fizyczny
Bibliogr. 54 poz., schem., tab.
Twórcy
autor
autor
  • Silesian University of Technology, Faculty of Chemistry, Department of Chemical Organic Technology and Petrochemistry, ul. Krzywoustego 4, Gliwice 44-100, anna.chrobok@polsl.pl
Bibliografia
  • [1] H. Hidayat, I.R. Green, A. Ishtiaq, Chem. Rev., 2013, 113, 3329.
  • [2] B.R. Travis, M. Sivakumar, G.O. Hollist, B. Borhan, Org. Lett., 2003, 5, 1031.
  • [3] J.O. Edwards, R.H. Pater, R. Curci, F. DiFuria, Photochem. Photobiol., 1979, 30, 63.
  • [4] R. Curci, L. Daccolti, C. Fusco, Acc. Chem. Res., 2006, 39, 1.
  • [5] R. Curci, A. Dinoi, M.F. Rubino, Pure Appl. Chem., 1995, 67, 811.
  • [6] A.K. Yudin, Aziridines and Epoxides In Organic Synthesis, WILEY-WCH, Weinheim 2006.
  • [7] G.L. Adams, P.J. Carroll, A.B. Smith, J. Am. Chem. Soc., 2012, 134, 4037.
  • [8] T. Hübscher, G. Helmchen, Synlett, 2006, 9, 1323.
  • [9] M. Seki, T. Furutani, R. Imashiro, T. Kuroda, T. Yamanaka, N. Harada, H. Arakawa, M. Kusamab, T. Hashiyama, Tetrahedron Lett., 2001, 42, 8201.
  • [10] W. Adam, R. Curci, J.O. Edwards, Acc. Chem. Res., 1989, 22, 205.
  • [11] T. Katsuki, K.B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
  • [12] S. Woodard, M.G. Finn, K.B. Sharpless, J. Am. Chem. Soc., 1991, 113, 106.
  • [13] W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, J. Am. Chem. Soc., 1990, 112, 2801.
  • [14] N.H. Lee, A.R Muci, E.N. Jacobsen, Tetrahedron Lett., 1991, 32, 5055.
  • [15] R. Irie, K.Noda, Y. Ito, N.Matsumoto, T. Katsuki, Tetrahedron: Asymm., 1991, 2, 481.
  • [16] K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Eur. J., 2004, 10, 4728.
  • [17] K. Kamata, T. Hirano, S. Kuzuya, N. Mizuno, J. Am. Chem. Soc., 2009, 131, 6997.
  • [18] C. Wang, H. Yamamoto, J. Am. Chem. Soc., 2014, 136, 1222.
  • [19] K.B. Sharpless, R.C. Michaelson, J. Am. Chem. Soc., 1973, 95, 6136.
  • [20] N. Hashimoto, A. Kanda, Org. Res. Proc. Dev., 2002, 6, 405.
  • [21] R. Curci, M. Fiorentino, M.R. Serio, J. Chem. Soc., Chem. Commun., 1984, 155.
  • [22] R. Curci, L. D’Accolti, M. Fiorentino, A. Rosa, Tetrahedron Lett., 1995, 36, 5831.
  • [23] D. Yang, M.-H. Wong, Y.-C. Yip, X.-C. Wang, M.-W. Tang, J.-H. Zheng, H.-K. Cheung, J. Am. Chem. Soc., 1998, 120, 5943.
  • [24] M. Frohn, Y. Shi, Synthesis, 2000, 14, 1979.
  • [25] W. Adam, C.-G. Zhao, Tetrahedron: Asymm., 1997, 8, 3995.
  • [26] Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806.
  • [27] X.-Y. Wu, X. She, Y. Shi, J. Am. Chem. Soc., 2002, 124, 8792.
  • [29] A.P. Thottumkara, M.S. Bowsher, T.K. Vinod, Org. Lett., 2005, 7, 293.
  • [29] M. Uyanik, K. Ishihara, Chem. Commun., 2009, 2086.
  • [30] A. Schulze, A. Giannis, Synthesis, 2006, 257.
  • [31] P.C.B. Page, D. Barros, B.R. Buckley, A. Ardakani, B.A. Marples, J. Org. Chem., 2004, 69, 3595.
  • [32] P.C.B. Page, L.F. Appleby, B.R. Buckley, S.M. Allin, M.J. McKenzie, Synlett, 2007, 1565.
  • [33] A.Y. Koposov, D.N. Litvinov, V.V. Zhdankin, M.J. Ferguson, R. McDonald, R.R. Tykwinski, Eur. J. Org. Chem., 2006, 4791.
  • [34] S.V. Ley, Comprehensive Organic Synthesis, Wyd. 3, Vol. 7, Chapter 2 Pergamon: Oxford, 1999, str. 251.
  • [35] M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc., 2009, 131, 251.
  • [36] C. Bolm, A.S. Magnus, J.P. Hildebrand, Org. Lett., 2000, 2, 1173.
  • [37] A.E.J. de Nooy, A.C. Besemer, H.V. Bekkum, Synthesis, 1996, 1153.
  • [38] M. Zhao, J. Li, E. Mano, Z.Song, D.M. Tschaen, E.J.J. Grabowski, P.J. Reider, J. Org. Chem., 1999, 64, 2564.
  • [39] R. Sheldon, Chem. Commun., 2001, 2399.
  • [40] L. Gharnati, M. Doering, U. Arnold, Curr. Org. Synth., 2009, 6, 342.
  • [41] D. Betz, P. Altmann, M. Cokoja, W.A. Herrmann, F.E. Kuehn, Coord. Chem. Rev., 2011, 255, 1518.
  • [42] J. Muzart, Adv. Synth. Catal., 2006, 348, 275.
  • [43] S.S. Wang, Z. Popovic, H.H. Wu, Y. Liu, ChemCatChem, 2011, 3, 1208.
  • [44] N. Jiang, A.J. Ragauskas, Tetrahedron Lett., 2005, 46, 3323.
  • [45] A. Fall, M. Sene, M. Gaye, G. Gomez, Y. Fall, Tetrahedron Lett., 2010, 51, 4501.
  • [46] K. Matuszek, P. Zawadzki, W. Czardybon, A. Chrobok, New J. Chem., 2014, 38, 237.
  • [47] C.E. Song, E.J. Roh, Chem. Commun., 2000, 837.
  • [48] K. Smith, S. Liu, G.A. El-Hiti, Catal. Lett., 2004, 98, 95.
  • [49] D. Betz, P. Altmann, M. Cokoja, W.A. Herrmann, F.E. Kuhn, Coordination Chem. Rev., 2011, 255, 1518.
  • [50] D. Betz, W.A. Herrmann, F.E. Kuehn, J. Organomet. Chem., 2009, 694, 3320.
  • [51] J.M. Crosthwaite, V.A. Farmer, J.P. Hallett, T. Welton, J. Mol. Catal. A: Chem., 2008, 279, 148.
  • [52] A. Günyar, D. Betz, M. Drees, E. Herdtweck, F.E. Kühn, J. Mol. Catal. A: Chem., 2010, 331, 117.
  • [53] M. Abrantes, F.A. Almeida Paz, A.A. Valente, C.L. Pereira, S. Gago, A.E. Rodrigues, J. Klinowski, M. Pillinger, I.S. Gonçalves, J. Organomet. Chem., 2009, 694, 1826.
  • [54] P. Zawadzki, K. Matuszek, W. Czardybon, A. Chrobok, New J. Chem., 2015, 39, 5282.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10915780-a09e-4b41-91aa-3d710caaab81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.