Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, no. 1 | 87--99
Tytuł artykułu

Gray-level co-occurrence matrix of Fourier synchrosqueezed transform for epileptic seizure detection

Warianty tytułu
Języki publikacji
Epilepsy is a brain disorder that many persons of different ages in the world suffer from it. According to the world health organization, epilepsy is characterized by repetitive seizures and more electrical discharge in a group of brain neurons results in sudden physical actions. The aim of this paper is to introduce a new method to classify epileptic phases based on Fourier synchro-squeezed transform (FSST) of electroencephalogram (EEG) signals. FSST is a time-frequency (TF) analysis and provides sharper TF estimates than the conventional short-time Fourier transform (STFT). Absolute of FSST of EEG signal is computed and segmented into five non-overlapping frequency sub-bands as delta (d), theta (u), alpha (a), beta (b), and gamma (g). Each sub-band is considered as a gray-scale image and then we propose to obtain the gray-level co-occurrence matrix (GLCM) of each sub-band as features. We concatenate the features of different sub-bands to obtain the final feature vector. After selecting informative features by infinite latent feature selection (ILFS) method, the support vector machine (SVM) and K-nearest neighbor (KNN) classifiers are used separately to classify EEG signals. We use the EEG signals from Bonn University database and different combinations of its sets are considered. Simulation results show that the proposed method efficiently classifies the EEG signals and can be used to determine the phase of epilepsy.

Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
  • Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran,
  • [1] Yuan Q, et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure-Eur J Epilep 2017;50:99–108.
  • [2] Raghu S, Sriraam N. Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures. Expert Syst Appl 2017;89:205–21.
  • [3] Gandhi T, Panigrahi BK, Bhatia M, Anand S. Expert model for detection of epileptic activity in EEG signature. Expert Syst Appl 2010;37(4):3513–20.
  • [4] Mohammadpoory Z, Nasrolahzadeh M, Haddadnia J. Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy. Seizure-Eur J Epilep 2017;50:202–8.
  • [5] Jia J, Goparaju B, Song J, Zhang R, Westover MB. Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain. Biomed Signal Process Control 2017;38:148–57.
  • [6] Samiee K, Kovács P, Gabbouj M. Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl-Based Syst 2017;118:228–40.
  • [7] Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK. Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J Biomed Health Inform 2017;21(4):888–96.
  • [8] Shen C-P, et al. Epileptic seizure detection for multichannel EEG signals with support vector machines. 2011 IEEE 11th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE; 2011. p. 39–43.
  • [9] Jouny CC, Bergey GK. Characterization of early partial seizure onset: frequency, complexity and entropy. Clin Neurophysiol 2012;123(4):658–69.
  • [10] Joshi V, Pachori RB, Vijesh A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 2014;9:1–5.
  • [11] Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Process Control 2018;39:94–102.
  • [12] Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal with GModPCA and support vector machine. Bio-med Mater Eng 2017;28(2):141–57.
  • [13] Hassan AR, Subasi A. Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Computer Methods Prog Biomed 2016;136:65–77.
  • [14] Bhardwaj A, Tiwari A, Krishna R, Varma V. A novel genetic programming approach for epileptic seizure detection. Computer Methods Prog Biomed 2016;124:2–18.
  • [15] Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 2015;42(3):1106–17.
  • [16] Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods Prog Biomed 2014;113(2):494–502.
  • [17] Pachori RB, Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods Prog Biomed 2011;104(3):373–81.
  • [18] Bajaj V, Pachori RB. Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed Eng Lett 2013;1(3):17–21.
  • [19] Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans Inform Technol Biomed 2012;16(6):1135–42.
  • [20] Pachori RB. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process 2008;2008:14.
  • [21] Yavuz E, Kasapbaşı MC, Eyüpoğlu C. An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybern Biomed Eng 2018;38(2):201–16.
  • [22] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Prog Biomed 2016;137:247–59.
  • [23] Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR. Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl Sci 2017;7(4):385.
  • [24] Sharmila A, Geethanjali P. DWT based epileptic seizure detection from EEG signals using Naïve Bayes/k-NN classifiers. IEEE Access 2016;4:7716–27.
  • [25] Sharma M, Pachori RB. A novel approach to detect epileptic seizures using a combination of tunable-Q wavelet transform and fractal dimension. J Mech Med Biol 2017; 17(07):1740003.
  • [26] Sharma M, Pachori RB, Acharya UR. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett 2017;94:172–9.
  • [27] Bhati D, Sharma M, Pachori RB, Gadre VM. Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digital Signal Process 2017;62:259–73.
  • [28] Bhati D, Pachori RB, Gadre VM. A novel approach for time– frequency localization of scaling functions and design of three-band biorthogonal linear phase wavelet filter banks. Digital Signal Process 2017;69:309–22.
  • [29] Bhattacharyya A, Singh L, Pachori RB. Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digital Signal Process 2018;78:185–96.
  • [30] Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 2017;64 (9):2003–15.
  • [31] Sharma RR, Pachori RB. Time–frequency representation using IEVDHM–HT with application to classification of epileptic EEG signals. IET Sci Meas Technol 2017;12(1):72–82.
  • [32] Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inform Technol Biomed 2009;13(5):703–10.
  • [33] Kalbkhani H, Shayesteh MG. Stockwell transform for epileptic seizure detection from EEG signals. Biomed Signal Process Control 2017;38:108–18.
  • [34] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 2018;38(3):519–34.
  • [35] Thakur G, Wu H-T. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J Math Anal 2011;43(5):2078–95.
  • [36] Auger F, et al. Time-frequency reassignment and synchrosqueezing: an overview. IEEE Signal Process Mag 2013;30(6):32–41.
  • [37] Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern 1973;6:610–21.
  • [38] Roffo G, Melzi S, Castellani U, Vinciarelli A. Infinite latent feature selection: a probabilistic latent graph-based ranking approach. Comput Vis Pattern Recogn 2017. IR arXiv:1707.07538.
  • [39] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001;64(6):061907.
  • [40] Oberlin T, Meignen S, Perrier V. The Fourier-based synchrosqueezing transform. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2014. p. 315–9.
  • [41] Daubechies I, Lu J, Wu H-T. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harm Anal 2011;30(2):243–61.
  • [42] Singh S, Srivastava D, Agarwal S. GLCM and its application in pattern recognition. 2017 5th International Symposium on Computational and Business Intelligence (ISCBI). IEEE; 2017. p. 20–5.
  • [43] Theodoridis S, Pikrakis A, Koutroumbas K, Cavouras D. Introduction to Pattern Recognition: A Matlab Approach. Academic Press; 2010.
  • [44] Thakur G, Brevdo E, Fučkar NS, Wu H-T. The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. Signal Process 2013;93(5):1079–94.
  • [45] Goupillaud P, Grossmann A, Morlet J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 1984;23(1):85–102.
  • [46] Tsang IW, Kwok JT, Cheung P-M. Core vector machines: fast SVM training on very large data sets. J Mach Learn Res 2005;6:363–92.
  • [47] Kalbkhani H, Shayesteh MG, Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed Signal Process Control 2013;8(6):909–19.
  • [48] Naghsh-Nilchi AR, Aghashahi M. Epilepsy seizure detection using eigen-system spectral estimation and Multiple Layer Perceptron neural network. Biomed Signal Process Control 2010;5(2):147–57.
  • [49] Mousavi S, Niknazar M, Vahdat BV. Epileptic seizure detection using AR model on EEG signals. 2008 Cairo International Biomedical Engineering Conference, CIBEC 2008. 2008. pp. 1–4.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.