PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 12, no 2 | 274--290
Tytuł artykułu

Reliability determination and diagnostics of a mechatronic system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to reduce the number and time of layups and to increase the period of effective operation of a mechatronic system it is reasonable to carry out predictive recovery works during one stoppage (repair) for a group of component parts with equal, close or multiple operation hours to the prior-to-failure (limiting) state. Such approach gives also the possibility to carry out recovery works with separate elements in parallel, which allows to reduce the system layup time and to increase the production output.
Wydawca

Rocznik
Strony
274--290
Opis fizyczny
Bibliogr. 22 poz., fig.
Twórcy
  • Kalashnikov Izhevsk State University, Faculty of Quality Management, Department of Mechatronic Systems, Studencheskaya 7, 426069 Izhevsk, Russia, turygin_uw@mail.ru
  • Slovak University of Technology, Faculty of Materials Science and Technology, Institute of Production Technologies, J. Bottu 25, 917 24 Trnava, Slovakia, pavol.bozek@stuba.sk
  • Kalashnikov Izhevsk State University, Faculty of Quality Management, Department of Mechatronic Systems, Studencheskaya 7, 426069 Izhevsk, Russia, iva140742@gmail.com
  • Kalashnikov Izhevsk State University, Faculty of Quality Management, Department of Mechatronic Systems, Studencheskaya 7, 426069 Izhevsk, Russia, nikitin@istu.ru
Bibliografia
  • 1. Abramov I.V. and Turygin Yu.V. Operation efficiency and strategies of maintenance and repair of paper-making machines. Proceedings of the international conference Problems of system support of industrial production quality, Izhevsk, Russia 1997, 3-6.
  • 2. Abramov I.V., Turygin Yu.V., and Komarov K.L. Development of the repair cycle control model of continuously working complex systems according to statistical data. Methods of computational ex-periment in engineering practice, 2, 1992, 126-129.
  • 3. Abramov I.V., Turygin Yu.V. and Nikitin Yu.R. Model of equipment operation on the basis of technical state diagnostics, Methods of computational experiment in engineering practice, 3, 1992, 119-124.
  • 4. Grămescu, B. and Niţu, C. Parameter identification of a DC servomotor. Romanian Review Precision Mechanics, Optics and Mechatronics, 50, 2016, 227-230.
  • 5. Božek P. Robot path optimization for spot welding applications in automotive industry. Tehnički Vjesnik - Technical Gazette, 20(5), 2013, 913-917.
  • 6. Eryemin M.S., Abramov I.V. Abramov A.I. and Turygin Yu.V. Strategy of predictive machines repair. Repair, recovery, modernization, 1, 2011, 20-24.
  • 7. Klyagin V.I. and Sabirov F.S. Typical maintenance and repair system of metal- and wood-working equipment. Mashinostroyeniye, Russia.
  • 8. Kugel R.V. and Borisov Yu. S. Regulated distributions of machine elements lifetime. Vestnik mashi-nostroyeniya, 10, 1976, 7-10.
  • 9. Mikhlin V.M. Reliability control of agricultural equipment, Kolos, Russia.
  • 10. Liu, R., Yang, B., Zio, E. and Chen, X. Artificial intelligence for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 108, 2018, 33-47.
  • 11. Turygin Yu.V., Maga D. and Faitova N. Building of a flexible (adaptive) structure for mechatronic system’s repair cycle. Proceedings of 13th International Conference on Mechatronics - Mechatronika 2010, Trencianske Teplice, Slovakia 2010, 112-114.
  • 12. Turygin Yu.V. and Sychev A.A. Technique of repair cycle correction of paper-making equipment on the basis of technical state diagnostics. Proceedings of the scientific technical conference Scientists of Izhevsk technical university – to the production, Izhevsk, Russia 1990, 68.
  • 13. Turygin Yu., Božek P., Nikitin Yu., Sosnovich E. and Abramov A. Enhancing the reliability of mobile robots control process via reverse validation. International Journal of Advanced Robotic Systems, 2016, 1-8.
  • 14. Abramov I.V., Nikitin Y., Abramov A.I., Sosnovich E. and Božek P. Control and diagnostic model of brushless DC motor. Journal of Electrical Engineering, 65(5), 2014, 277-282.
  • 15. Božek P. and Pivarčiová E. Registration of Holographic Images Based on Integral Transformation. Computing and Informatics, 31(6), 2012, 1369-1383.
  • 16. Abramov I., Božek P., Abramov A., Sosnovich E. and Nikitin Y. Diagnostics brushless DC motors. Proceedings of the 55th Conference on Experimental Stress Analysis, 2017, 156-164.
  • 17. Stepanov P., Lagutkin S. and Nikitin Y. Development of the Algorithm for Definition of Residual Service Life by a Comprehensive Diagnosis of the Electromechanical Drive. Acta Mechanica Slovaca, 19(2), 2015, 52-56.
  • 18. Nikitin Y.R., Abramov I.V., Turygin Y.V. and Abramov A.I. Diagnostics of mechatronic systems. Acta Mechatronica, 1(1), 2016, 9-112.
  • 19. Dębski H., Wysmulski P. and Falkowicz K. A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploat. I Niezawodn. – Maint. Reliab., 18, 2016, 632–637.
  • 20. Grega R., Krajňák J., Žuľová L., Fedorko G. and Molnár V. Failure analysis of driveshaft of truck body caused by vibrations. Eng. Fail. Anal., 79, 2017, 208–215.
  • 21. Garbacz T., Jachowicz T., Gajdoš I. and Kijewski G. Research on the Influence of Blowing Agent on Selected Properties of Extruded Cellular Products. Adv. Sci. Technol. Res. J., 9 (28), 2015, 81–88.
  • 22. Žuľová L., Grega R., Krajňák J., Fedorko G. and Molnár V. Optimization of noisiness of mechanical system by using a pneumatic tuner during a failure of piston machine. Eng. Fail. Anal., 79, 2017, 845–851.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0e98ca4f-929c-4d1b-ae47-cf4d2666cea0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.