PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Nr 4 (124) | 36--44
Tytuł artykułu

Comparative Study on the Frictional Sound Properties of Woven Fabrics

Treść / Zawartość
Warianty tytułu
PL
Badanie porównawcze właściwości dźwięku tarcia tkanin
Języki publikacji
EN
Abstrakty
EN
An innovative Frictional Sound Automatic Measuring System (FSAMS) was designed to collect and enable analysis of the frictional sound spectra of four natural fibre woven fabrics which included cotton, linen, silk, and wool. The Fast Fourier Transform (FFT) method was used to convert time-domain signals into frequency-domain signals to enable the maximum sound amplitude (MSA) and the level pressure of the total sound (LPTS) of the cotton, linen, silk, and wool fabrics to be calculated and analysed. Subsequently auto-regression formulae were used to calculate the fabric auto-regressive coefficients (ARC, ARF, and ARE); the correlations between fabric frictional sound in terms of LPTS and AR coefficients, and mechanical properties as measured by KES-FB were also evaluated. Stepwise regression was then used to identify the key frictional sound parameters for the four types of fabric. The results show that LPTS values for cotton, linen, silk, and wool fabrics increase with their ARC values. It was revealed that the key mechanical parameters affecting fabric frictional sound for the four natural fibre woven fabrics were not the same for each fabric type: the parameters that influenced LPTS values were the fabric weight and bending hysteresis for the cotton fabric, tensile energy for the linen, tensile resilience for the silk and shear hysteresis at a 5° shear angle for the wool fabric.
PL
Do analizy spektrum akustycznego czterech tkanin (bawełnianej, lnianej, jedwabnej i wełnianej) zastosowano innowacyjny system automatycznego pomiaru dźwięku tarcia (FSAMS). Do przekształcania sygnałów w dziedzinie czasu w sygnały w dziedzinie częstotliwości wykorzystano metodę szybkiej transformaty Fouriera (FFT). Następnie obliczono współczynniki autoregresji tkanin (ARC, ARF i ARE) i oceniono właściwości mechaniczne tkanin. Wyniki pokazują, że wartości poziomu ciśnienia dźwięku totalnego (LPTS) dla tkanin bawełnianych, lnianych, jedwabnych i wełnianych wzrastają wraz z wartościami współczynnika ARC. Wykazano również, że kluczowe parametry mechaniczne wpływające na tarcie tkaniny nie były takie same dla wszystkich typów tkanin. Parametrami mechanicznymi wpływającymi na wartości LPTS tkaniny bawełnianej były: ciężar i histereza zginania tkaniny, w przypadku tkaniny lnianej największy wpływ miała siła rozciągania, a w przypadku tkaniny wełnianej sprężystość powrotna.
Wydawca

Rocznik
Strony
36--44
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Creative Fashion Design, Nanya Institute of Technology, Taoyuan, Taiwan R. O. C., pnwang@nanya.edu.tw
autor
  • Department of Mechanical Engineering, Nanya Institute of Technology, Taoyuan, Taiwan R. O. C.
autor
  • Inorganic/Organic Composite Materials Laboratory, Department of Fiber and Composite Materials, College of Engineering, Head, Textile and Materials Industry Research Institute, Feng Chia University, Taichung, Taiwan R. O. C.
autor
  • Department of Clothing Design and Technology, Manchester Metropolitan University, Manchester, United Kingdom
autor
  • Graduate School of Applied Technology, Nanya Institute of Technology, Taoyuan, Taiwan R. O. C.
Bibliografia
  • 1. Bishop D P. Fabrics: Sensory and Mechanical Properties. Textile Progress 1996; 26, 1-57.
  • 2. Kim J, Cho G. Thermal Storage/Release, Durability and Temperature Sensing Properties of Thermostatic Fabrics Treated with Octadecane-Containing Microcapsules, Textile Research Journal 2002; 72, 12: 1093-1098.
  • 3. Postle R, Dhingra R C. Measuring and Interpreting Low-Stress Fabric Mechanical and Surface Properties. Textile Research Journal 1989, 59, 8: 448-459.
  • 4. Cho G, Casali J G. Sensory Evaluation of Fabric Sound and Touch by Free Modulus Magnitude Estimation 5th Proceedings of Asian Textile Conferences, pp.301-310 (1999).
  • 5. Cho G, Yi E. Fabric Sounds Parameters and Their Relationship with Mechanical Properties. Textile Research Journal 2000; 70: 828-836.
  • 6. Cho J, Yi E, Cho G. Physiological Responses Evoked by Fabric Sounds and Related Mechanical and Acoustical Properties. Textile Research Journal 2001, 71, 12: 1068-1073
  • 7. Na Y, Cho G. Variations in Sensibility to Fabric Frictional Sound by Fiber Type and Subject. Textile Research Journal 2003, 73, 9: 837-842.
  • 8. Cho G, Kim C, Yang Y. Characteristics of Sounds of Generated from Vapor Permeable Water Repellent Fabrics by Low-speed Friction. Fibers and Polymers 2008; 9, 5: 639-645.
  • 9. Na Y, Agnhage T, Cho G. Sound Absorption of Multiple Layers of Nanofiber Webs and the Comparison of Measuring Methods for Sound Absorption Coefficients. Fibers and Polymers 2012; 13, 10: 1348-1352.
  • 10. Jin E, Cho G. Effect of Friction Sound of Combat Uniform Fabrics on Autonomic Nervous System (ANS) Responses. Fibers and Polymers 2013; 14, 3: 500-505.
  • 11. Kawabata S. The Standardization and Analysis of Hand Evaluation. The Hand Evaluation and Standardization Committee Limited. Textile Machinery Society of Japan, 2nd Edition, 1980.
  • 12. Wang B N, He M X, Zheng G B, Sue M C, Lin J H. Clamping device. No. CN202241000U. China patent, 2012.
  • 13. Wang B N, He M X. Material tension apparatus. No. CN202265271U. China patent, 2012.
  • 14. Wang B N, He M X. Frictional sound testing equipment. No. CN202256263U. China patent, 2012.
  • 15. Wang B N, He M X, Zheng G B, Sue M C and Lin J H. Clamping device. No. M426030, pp. 8851-8856. Taiwan Patent, 2012.
  • 16. Wang B N, He M X. Material tension apparatus. No. M421498, pp. 8797-8802, Taiwan Patent, 2012.
  • 17. Wang B N, He M X. Frictional sound testing equipment, No. M426115, pp. 9357-9366, Taiwan Patent, 2012.
  • 18. Foreman J E K. Sound Analysis and Noise Control, Van Nostrand-Reinhold, New York, NY, USA, 2012.
  • 19. Marple SL. Digital Spectral Analysis with Applications. Prentice Hall, Englewood Cliffs, NJ, USA, 1987.
  • 20. Wang P N, Cheng K B. Dynamic Drape Property Evaluation of Natural-Fiber Woven Fabrics using a Novel Automatic Drape Measuring System. Textile Research Journal 2011; 81, 13: 1405-1415.
  • 21. Shyr T W, Wang P N, Lin J Y. Subjective and Objective Evaluation Methods to Determine the Peak-Trough Threshold of the Drape Fabric Node. Textile Research Journal 2009; 79, 13: 1223-1234.
  • 22. Lin J Y, Wang P N, Shyr T W. Comparing and Modelling the Dynamic Drape of Four Natural-fiber Fabrics. Textile Research Journal 2008, 78, 10:911-921.
  • 23. Shyr T W, Wang P N, Cheng K B. A Comparison of the Key Parameters Affecting the Dynamic and Static Drape Coefficients of Natural-Fibre Woven Fabrics by a Newly Devised Dynamic Drape Automatic Measuring System. Fibres and Textiles in Eastern Europe 2007; 15, 3(62): 81-86.
  • 24. Tsai KH, Tsai M C, Wang P N, Shyr T W. New Approach to Directly Acquiring the Drape Contours of Various Fabrics. Fibres and Textiles in Eastern Europe 2009, 74(3), pp. 54-59.
  • 25. Wang P N, Ho MH, Cheng K B, Murray R, Lin CH. A Study on the Friction Sound Properties of Natural-Fiber Woven Fabrics. Fibres and Textiles in Eastern Europe 2017, 122(2).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0de01d3f-5db5-41e1-ab7c-0aadf1191a23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.