PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 56 nr 4 | 1097--1108
Tytuł artykułu

Finite element study on thermal buckling of functionally graded piezoelectric beams considering inverse effects

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the buckling behavior and bifurcation point of Functionally Graded Piezoelectric (FGP) beams are investigated based on Euler-Bernoulli beam theory. The finite element method is employed to model the beam in thermal environment. The material properties of the beam are considered to vary gradually in the thickness direction and the beam is subjected to electrical and thermal loading. In this paper, direct and inverse piezoelectric effects are considered and buckling of the beam in the sensor state is investigated. By solving the eigenvalue problem, the buckling load of the FGP beam is obtained and the effect of various parameters such as power law index, temperature, applied voltage and beam aspect ratio on the buckling load are investigated. The results show that the boundary conditions are the main factor that affects the buckling load of the FGP beam.
Wydawca

Rocznik
Strony
1097--1108
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Mechanical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
autor
  • Mechanical Engineering Faculty, Sahand University of Technology, Tabriz, Iran , behjat@sut.ac.ir
autor
  • Mechanical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
Bibliografia
  • 1. Bathe K.J., 1996, Finite Element Procedures, Prentice Hall, New York
  • 2. Chen D., Yang J., Kitipornchai S., 2015, Elastic buckling and static bending of shear deformable functionally graded porous beam, Composite Structures, 133, 54-61
  • 3. Esfahani S.E., Kiani Y., Eslami M.R., 2013, Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations, International Journal of Mechanical Sciences, 69, 10-20
  • 4. Fallah A., Aghdam M.M., 2011, Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation, European Journal of Mechanics-A/Solids, 30, 571-583
  • 5. Fu Y., Wang J., Mao Y., 2012, Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment, Applied Mathematical Modelling, 36, 4324-4340
  • 6. Ghiasian S.E., Kiani Y., Eslami M.R., 2015, Nonlinear thermal dynamic buckling of FGM beams, European Journal of Mechanics A/Solids, 54, 232-242
  • 7. Jerome R., Ganesan N., 2010, New generalized plane strain FE formulation for the buckling analysis of piezocomposite beam, Finite Elements in Analysis and Design, 46, 896-904
  • 8. Kapuria S., Alam N., 2004, Zigzag theory for buckling of hybrid piezoelectric beams under electromechanical loads, International Journal of Mechanical Sciences, 46, 1-25
  • 9. Kiani Y., Eslami M., 2010, Thermal buckling analysis of functionally graded material beams, International Journal of Mechanics and Materials in Design, 6, 229-238
  • 10. Kiani Y., Rezaei M., Taheri S., Eslami M., 2011, Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams, International Journal of Mechanics and Materials in Design, 7, 185-197
  • 11. Komijani M., Esfahani S.E., Reddy J.N., Liu Y.P., Eslami M.R., 2014, Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation, Composite Structures, 112, 292-307
  • 12. Komijani M., Kiani Y., Eslami M., 2012, Non-linear thermoelectrical stability analysis of functionally graded piezoelectric material beams, Journal of Intelligent Material Systems and Structures, 24, 399-410
  • 13. Komijani M., Reddy J.N., Ferreira A.J.M., 2013, Nonlinear stability and vibration of pre/post-buckled microstructure-dependent FGPM actuators, Meccanica, 49, 1-17
  • 14. Li S.R., Batra R.C., 2013, Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams, Composite Structures, 95, 5-9
  • 15. Li S,-R., Zhang J.-H., Zhao Y.-G., 2006, Thermal post-buckling of functionally graded material Timoshenko beams, Applied Mathematics and Mechanics (English Edition), 27, 803-810
  • 16. Li Z.-M., Qiao P., 2015, Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression, Engineering Structures, 85, 277-292
  • 17. Nasirzadeh R., Behjat B., Kharazi M., 2014, Stability of FGP beams under thermoelectromechanical loading, International Journal of Material Science Innovations, 2, 164-177
  • 18. Rafiee M., Yang J., Kitipornchai S., 2013, Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams, Computers and Mathematics with Applications, 66, 1147-1160
  • 19. Rahimi G., Gazor M., Hemmatnezhad M., Toorani H., 2013, On the postbuckling and free vibrations of FG Timoshenko beams, Composite Structures, 95, 247-253
  • 20. Takagi K., Li J.F., Yokoyama S., Watanabe R., 2003, Fabrication and evaluation of PZT/PT piezoelectric composites and functionally graded actuators, Journal of the European Ceramic Society, 23, 1577-1583
  • 21. Wattanasakulpong N., Gangadhara Prusty B., Kelly D.W., 2011, Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams, International Journal of Mechanical Sciences, 53, 734-743
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0cc0d076-52da-4b30-8981-300bfa98d37f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.