PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 11, no. 4 | 293--301
Tytuł artykułu

Asymptotic approximations to the non-isothermal distributed activation energy model for bio-mass pyrolysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions of the non-isothermal nth order distributed activation energy model (DAEM) using the Gamma distribution and discusses the special case for the positive integer value of the scale parameter (𝜆), i.e. the Erlang distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters and the distribution of activation energies.
Wydawca

Rocznik
Strony
293--301
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Statistics and Computer Science, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263153, India, drsurajbsingh@yahoo.com
Bibliografia
  • 1. Anthony D.B. (1974), Rapid devolatilization and hydrogasification of pulverized coal, DSc. thesis, Massachusetts Institute of Technology.
  • 2. Armstrong R., Kulesza B.L.J. (1981), An approximate solution to the equation x = exp (−x/ϵ), Bull. Institute of Mathematics and its Applications, 17, 56.
  • 3. Brown M. E. (2001), Introduction to Thermal Analysis, Techniques and Applications, Kluwer Academic Publisher, Dordrecht.
  • 4. Burnham A.K., Braun R.L. (1999),Global kinetic analysis of complex materials, Energy Fuels, 13, 1-22.
  • 5. Burnham A.K., Schmidt B.J., and Braun R.L (1995), A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues, Geochem, 23, 931-939.
  • 6. Capart R, Khezami L., Burnham A.K. (2004), Assessment of various kinetic models for the pyrolysis of microgranular cellulose, Thermochim. Acta, 417(1), 79-89.
  • 7. Conesa J. A., Marcilla A., Caballero J. A., Font R. (2001), Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data, J. Anal. Appl. Pyrolysis, 617, 58–59.
  • 8. Conesa J.A., Caballero J.A., Marcilla A., Font R. (1995), Analysis of different kinetic models in the dynamic pyrolysis of cellulose, Thermochim. Acta, 254, 175-192.
  • 9. Criado J.M., Pérez-Maqueda L.A. (2005), Sample controlled thermal analysis and kinetics, J. Therm. Anal. Cal., 80, 27-33.
  • 10. Dhaundiyal A., Singh S.B. (2016), Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the Weibull distribution, Archivum Combustionis, 36(2), 131-146.
  • 11. Dhaundiyal A., Singh S.B. (2016), Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 70, 64–70.
  • 12. Di Blasi C. (2008), Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, 34, 47-90.
  • 13. Doyle C.D. (1962), Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci. 6, 639-642.
  • 14. Ferdous D, Dalai A.K, Bej S.K., Thring R.W. (2002), Pyrolysis of lignins, experimental and kinetics studies, Energy Fuels, 16, 1405–1412
  • 15. Folgueras M.B., Diaz R.M., Xiberta J., Prieto I. (2003), Thermogravimetric analysis of the co-combustion of coal and sewage sludge, Fuel, 82, 2051-2055.
  • 16. Galgano A., Blasi C.D. (2003), Modeling wood degradation by the unreacted-core-shrinking approximation, Eng. Chem. Res, 42, 2101- 2111.
  • 17. Giuntoli J., de Jong W., Arvelakis S., Spliethoff H., Verkooijen A.H.M. (2009), Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis, Dry distiller's grains with solubles (DDGS) and chicken manure, Journal of Analytical and Applied Pyrolysis, 85(1), 301-312.
  • 18. Hanbaba P., van Heek K.H, Jüntgen H., Peters W. (1968), Nonisothermal kinetics of coal pyrol-yse , Part II , Extension of the theory of the evolution of gas and experimental confirmation of bituminous coal, Fuel Chemistry, 49(12), 1968, 368-376.,
  • 19. Howard J.B. (1981), Fundamentals of Coal Pyrolysis and Hydropyrolysis, in Chemistry of Coal Utilization, (M.A.Elliott, Ed) Wiley & Sons.
  • 20. Koreňová Z., JumaM., Annus J., Markoš J., Jelemensky L. (2006), Kinetics of pyrolysis and properties of carbon black from a scrap tire, Chemical Papers, 60, 422–426.
  • 21. Lakshmanan C.C., White N. (1994), A new distributed activation energy model using Weibull distribution for the representation of complex kinetics, Energy Fuels, 8, 1158–1167.
  • 22. Lapuerta, M., Hernández, J.J., Rodríguez, J. (2004), Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis, Biomass and Bioenergy, 27(4),385–91.
  • 23. Mysyk R.D., Whyman G.E., Savoskin M.V., Yaroshenko A.P. (2005), Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds, J. Therm. Anal and Cal., 79(3), 515-519.
  • 24. Niksa S., Lau, C-W. (1993), Global rates of devolatilization for various coal types Combust, Flame, 94, 293-307
  • 25. Otero M., Calvo L.F., Gil M.V., García A.I., Morán A. (2008), Cocombustion Of Different Sewage Sludge and Coal, A nonisothermal thermogravimetric kinetic analysis, Bioresource Technology, 99, 6311-19.
  • 26. Pitt G.J. (1962), The kinetics of the evolution of volatile products from coal, Fuel, 1, 267-274
  • 27. Pysiak J.J., Badwi Y.Al. (2004), Kinetic equations for thermal dissociation processes,76, 521–528
  • 28. Quan C., Li A., Gao N. (2009), Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management, 29, 2353–2360.
  • 29. Robeva R., Davies R., Hodge T., Enyedi A. (2010), Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics, CBE Life Sciences Education (The American Society for Cell Biology), 9 (3), 227–240.
  • 30. Skrdla P.J., Roberson R.T. (2005), Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies, applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals, J. Phys. Chem. B, 109, 10611- 10619.
  • 31. Solomon P.R., Hamblen D.G. (1983), Finding Order in Coal Pyrolysis Kinetics, Topical Report Submitted to the U.S. Department of Energy. Progr. Energy Combust. Sci., 9, 323-361.
  • 32. Suuberg E.M. (1983), Approximate solution technique for nonisothermal, Gaussian distributed activation energy models, Combust. Flame, 50,243-245
  • 33. Szczodrak J., Fiedurek J. (1996), Technology for conversion of lignocellulosic biomass to ethanol, Biomass and Bioenergy, 34, 367- 375.
  • 34. Teng H., Hsieh C.T. (1999), Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coa, Ind. Engg. Chem. Res, 37, 3618-3624.
  • 35. Vand V. (1943), A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc.,55, 222-246
  • 36. White J.E., Catallo W.J., Legendre B.L. (2011), Biomass pyrolysis kinetics, A comparative critical review with relevant agriculture residue case studies, J. Anal. Appl. Pyrolysis, 91 (1), 1-33, 37. Zhu H.M., Yan J.H., Jiang X.G., Lai Y.E., Cen K.F(2009), Analysis Of Volatile Species Kinetics During Typical Medical Waste Materials Pyrolysis Using A Distributed Activation Energy Model, Journal of Hazardous Materials, 162(2), 646-651.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW
przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0a39a712-b02d-488a-8871-992ce38a65b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.