MODELOWANIE ORTEZY KOŃCZyny DOLNEJ

Streszczenie: Stosunkowo łatwo jest zaobserwować jak na przestrzeni lat zmieniły się protezy i ortezesy. Indywidualne dopasowanie protezy oraz ortez przyczyniło się do zminimalizowania dyskomfortu odczuwanego przez pacjenta podczas użytkowania wyżej wymienionych zaopatrzeń. Przedstawione wyniki prowadzonych badań pokazują specjalistom z dziedziny ortoteki alternatywne metody wspomagające przygotowanie ortez, a tym samym umożliwiają na dokładniejsze prace korekcji konstrukcji ortotycznych. Opisane techniki pozwolą przeprowadzać kilka wariantów opracowania i określać efekty bez znacznych rzemieślniczych prób. Zminimalizują problemy związane z pobieraniem form kończyny dolnej pacjenta, co wpłynie na poprawę dopasowania ortez.

Słowa kluczowe: ortez, modelowanie 3D, analiza MES

1. WSTĘP

Orteza jest zewnętrzną konstrukcją techniczną, dopasowaną do kończyny lub tułowia, wspomagającą lub zastępującą funkcję statyczną i ruchową zaopatrywanego segmentu oraz zabezpieczającą przed powstaniem deformacji lub pogłębianiem się zniekształceń już istniejących [3]. Projektowanie i wykonanie przedmiotu ortopedycznego wymaga analizy anatomicznej oraz biochemicznej zaopatrywanego odcinka i całego ciała [1,4,5,6]. W przypadku indywidualnego przygotowania ortez o konstrukcji bardziej skomplikowanej stosuje się formy będące odlewem gipsowym kończyny dolnej. Proces ten jest czasochłonny i obarczony pewną niedokładnością wynikającą z odkształceń presyjnych powierzchni kończyny dolnej podczas tworzenia formy. W tak przygotowanych ortezach często konieczne są poprawki i zmiany w konstrukcji przedmiotu w celu wyeliminowania niekorzystnych nacisków na skórę kończyny dolnej. Przy prowadzeniu prac korekcyjnych zachować należy właściwą sztywność konstrukcji, a w odpowiednich strefach ortezy zakres dopuszczalnych odkształceni. Wymaga to dużego doświadczenia specjalisty tworzącego ortezę [3]. Dzięki nowoczesnym rozwiązaniom z zakresu technik CAD/CAM możliwe stało się opracowanie systemów wspomagających często intuiicyjne działania specjalistów ortotyków.

2. METODYKA BADAŃ

2.1. Cel i obiekt badania

Celem badania jest opracowanie systemu wspomagającego prace specjalistów ortotyk przy pracach korekcyjnych konstrukcji ortez. Komputerowe wspomaganie projektowania ma
pomoc w określeniu wpływu dokonywanych zmian kształtu protezy na jej cechy użytkowe takie jak: sztywność, zdolność do odkształceń w poszczególnych strefach oraz charakter tych odkształceń.

W przypadku zaopatrzenia ortotycznego u dzieci, u których istotnym problemem jest brak cierpliwości i ruchliwości podczas tworzenia form gipsowych, będących bazą do konstruowania indywidualnych ortez podjęto próbę zastosowania skanera 3D wspomagającego proces projektowania i tym samym wyeliminowania niekorzystnych wynikających z klasycznych metod opartych na formach gipsowych. Zastosowanie skanowania optycznego polegającego na robieniu serii zdjęć w ulamku sekundy, a następnie złożenia tych zdjęć w model 3D eliminuje wszelkie kwestie związane z ruchliwością dzieci, co przy wcześniejszych technikach skanowania było istotnym problemem. Dla specjalistów opierających się na klasycznych metodach przygotowania ortez wykorzystujących modele gipsowe rozwiązaniem będzie generowanie tych modeli za pomocą wydruku 3D z wszelkimi za tym idącymi możliwościami korekty.

Obiektem badań jest dziecięca ortезa stawu skokowego typu GRAFO (Ground Reaction Ankle Foot Orthotic) wykonana z pre-impregnowanego włókna węglowego (PRE-PREG) przedstawiona na rys. 1.

GRAFO jest zaopatrzeniem przeznaczonym dla pacjentów z niepełnym wyprostom stawu kolanowego, w przebiegu różnych schorzeń, głównie:
- mózgowego porażenia dzieciecego,
- przepukliny oponowo-rdzeniowej

![Rys. 1. Dziecięca ortez a stawu skokowego typu GRAFO](image)

Orteza może być zastosowana jedynie w przypadku gdy staw kolanowy może być biernie skorygowany do pełnego wyprostu, przy jednoczesnym ustawieniu stopy w pozycji pośredniej (kat 90°). Efektem używania zaopatrzenia GRAFO jest wspomaganie wyprostu stawu kolanowego oraz korekcja stopy względem podudzia [3,6].

2.2. Stanowisko badawcze

Do wykonania skanów ortez stawu skokowego został wykorzystany skaner optyczny światła strukturalnego COMET LiND, stojak COMET rotary 30/460, stojak z możliwością ręcznego obrotu czy też nachylenia osi oraz komputer wyposażony w odpowiednie oprogramowanie. Stanowisko badawcze wraz z przygotowaną ortezą zostało przedstawione na rysunku poniżej (Rys. 2).
Proces skanowania polega na sczytywaniu współrzędnych x, y, z punktów badanej powierzchni i przedstawieniu jej w postaci chmury punktów.
Następnie wykorzystując program GeoMagic przeprowadzono obróbkę uzyskanego obrazu w celu przygotowania powierzchni do dalszych prac projektowych z wykorzystaniem programu INVENTOR firmy Autodesk oraz analiz wytrzymałościowych przy użyciu programu ANSYS.

2.3. Modelowanie ortez

Przeprowadzono także skanowanie formy gipsowej, które miało na celu przeprowadzenie analizy określającej stopień dopasowania wykonanej luski w stosunku do formy gipsowej będącej odzwierciedleniem powierzchni kończyny dolnej małego pacjenta. Dotychczas ocena taka była bardzo sugestywna i opierała się na wywiadzie specjalista-pacjent. W dalszym etapie prac badawczych wykonane zostaną mapy graficzne ukazujące stopień dopasowania, które pozwoli ortotetykowi dokładnie określić współpracę powierzchni ortezu z kończyną dolną.

Uzyskane skany 3D luski ortez stawu skokowego (rys.3) zostały poddane obróbce komputerowej (GeoMagic) (rys.4) i przekonwertowane do formatów CAD w celu dalszych prac projektowych polegających na wprowadzaniu wirtualnych zmian w konstrukcji ortez i oceny ich użytkowych takich jak sztywność i podatność na odkształcenia. Do analizy naprężeńowo-odkształceniowej przyjęto model obciążenia zakładający całkowite zwiotcenie mięśni, uwzględniono masę własną pacjenta (BW) oraz założenia biomechaniki chodu - zgięcie podczasowe 15°-20° i składowe reakcje podłoża do 120% BW [1].
Przyjęto obciążenie siłą skupioną 13N przyleżoną w miejscu przedstawionym na Rys. 5, a także policzono wariant dla 15 sił skupionych o łącznej wartości 13N. Wyniki analizy naprężeniowej zostały przedstawione w postaci graficznej (Rys.6) ukazując mapę rozkładu naprężeń zredukowanych w [MPa].

Rys.6. Mapa rozkładu naprężeń zredukowanych [MPa]

3. WNIOSKI

Badania mają charakter aplikacyjny dlatego opisane wstępne wyniki prowadzonych badań pomogą w dalszym etapie specjalistom z dziedziny ortotyki na dokładniejsze prace korekcji konstrukcji ortez z uwzględnieniem analizy odkształcenio-naprężeniowej. Pozwolą przeprowadzać kilka wariantów opracowania i określać efekty bez znudnych rzemioslniczych prób. Zminimalizują problemy związane z pobieraniem form kończyny dolnej pacjenta, co wpłynie na poprawę dopasowania ortez. W przypadku dzieci z porażeniem mózgowym będą jedyną informacją potwierdzającą optymalne dopasowanie ortez do kończyny. W dalszych badaniach będzie można proces wytwarzania ortez rozbudować o systemy CAM.

LITERATURA

MODELLING OF LOWER LIMB ORTHOSSES

Abstract: It can be easily noticed how prostheses and orthoses have evolved within last decades. Current technology enables to produce medical equipment of the type, thanks to which patients do not have to give up active lifestyle they were used to. Possibility of personal adjustment of prostheses or orthoses minimises discomfort felt by users. Results of performed study will help orthotics specialists in more precise correction of orthoses structure. It will allow them to create and analyse multiple design variants and evaluate them avoiding standard laborious procedures. Minimising problems related to obtaining lower limb cast is expected as well, thus, better fit of orthoses will be achieved.