Analiza konstrukcji hydraulicznego penetrometru otworowego i jego modernizacja dla zwiększenia zakresu pomiarowego

Analysis of hydraulic design of downhole penetrometer and his modernization in order to increase the measuring range

1. Wprowadzenie

Hydrauliczny penetrometr otworowy został opracowany i wdrożony przez Główny Instytut Górnicza w Katowicach w 1973 r. [4]. Produkcję penetrometrów realizował Zakład Budowy Urządzeń i Aparatury Naukowo-Doświadczalnej przy GIG, który w 1976 r. rozprowadził w kopalniach węgla kamiennego około 90 kompletów tych urządzeń wraz z odpowiednią instrukcją użytkowania i interpretacji wyników [6].

Urządzenie służy do badania parametrów wytrzymałościowych górótworu w warunkach in situ. W latach osiemdziesiątych i dziewięćdziesiątych ubiegłego wieku było mało używane w kopalniach, ponieważ nie obowiązywały wymagania związane z koniecznością badania parametrów górótworu.

Począwszy od 2002 r. gdy zaczęły obowiązywać nowe przepisy, wzrosło zainteresowanie penetrometrem, ponieważ dobór obudowy wyrobisk podziemnych należało wykonywać w oparciu o wyniki badań właściwości geomechanicznych górótworu [11].

Artykuł przedstawia rozwój konstrukcji penetrometru oraz najnowsze wyniki badań, których celem jest opracowanie urządzenia pozwalającego badać skaly o wytrzymałości na jednoosiowe ściśkanie powyżej 100 MPa.

* Główny Instytut Górnicza w Katowicach, ** SilLog w Zabrzu
2. Przegląd konstrukcji penetrometrów stosowanych w polskim górnictwie

Penetrometr składa się z następujących elementów (rys.1): 1 - głowica, 2 - miernik elektryczny wysuwu iglicy, 3 - ręczna pompa hydrauliczna, 4 - manometr do mierzenia ciśnienia w układzie hydraulicznym, 5 - żerdzie stalowe do przesuwania głowicy w otworze, 6 - przewód wysokociśnienny do podawania ciśnienia do głowicy penetrometru, 7 - przewód elektryczny łączący cewkę umieszczoną w głowicy z mier- nikiem, 8 - iglica wysuwana.

Zasada działania hydraulicznego penetrometu otwo- rowego polega na tym, że do otworu o średnicy 85–95 mm wywierconego w stropie lub spagu wyrobiska wprowadza się głowicę (1), a następnie ręczną pompką hydrauliczną (3), poprzez przewód wysokociśnieniowy podaje się olej (hydrol) do głowicy, powodując wysuw iglicy (8) z płaską powierzchni- ą cewką o średnicy 5 mm. Iglica ta wechsa się (przefukuje) w ściankę otworu wiertniczego. Przy określonym ciśnieniu krytycznym, które można odczytać na manometrze pompy (4) następuje zniszczenie ścianki otworu. Głowicę przesuwa się wzduł otworu z krokiem co 5 lub 10 cm, wykonując pomiar ciśnienia krytycznego wywołującego zniszczenie ścianki otworu. Uzyskane wyniki nanosi się na wykres, gdzie na osi odciętych odmierzane jest ciśnienie krytyczne, a na osi rzęd- nych głębokość, na której został wykonany pomiar.

W latach dziewięćdziesiątych ubiegłego wieku Ośrodek Badawczo-Rozwojowy Budownictwa Górnego BUDOKOP opracował urządzenie do szybkiego określania parametrów geomechanicznych skał w warunkach in situ [10]. Podstawową zaletą urządzenia były małe gabaryty głowicy penetrometu, umożliwiające pomiary w otworach o średnicy 28 mm oraz niski ciężar w granicach 5 kg (bez rurek przedłużających) (rys.3).

Zasada działania penetrometu polegała na wywieraniu nacisku na iglicę poprzez przesuwający się suwak umieszczony w głowicy. Przemieszczanie suwaka było powodowane ciśnie- niem cieczy wywołanym przez generatorkę ciśnienia (rys.4).

Podstawową wadą urządzenia był brak układu pomiaro- wego pozwalającego uchwycić moment skruszenia ścianki otworu penetrometrycznego. Odbywało się to na wycieczcie, obserwując wskazówkę manometru. Wątpliwości budził, również sposób współpracy iglicy z suwakiem ze względu na tarcie występujące pomiędzy nimi. Dla porównania wy- ników uzyskanych za pomocą penetrometu typu PHI-00
i PO-27 wykonano kilka prób, które polegały na tym, że w stropie wyrobiska chodnikowego w odległości około 1,0 m wykonano dwa otwory, jeden o średnicy 93 mm, a drugi o średnicy 28 mm. Uzyskane wyniki wykazały znaczne różnice we wskazaniach obydwu penetrometrów (rys. 5). W związku z powyższym zrezygnowano w GIG z używania penetrometru typu PO-27.

Zebrane doświadczenia w stosowaniu penetrometru typu PHI-00, pozwoliły na opracowanie w 2006 r. nowej generacji penetrometru typu Pen206 [8]. Nowe rozwiązanie urządzenia eliminuje szereg wad starego rozwiązania. Charakteryzuje się ono następującymi cechami (rys. 6):
- mniejszym ciężarem,
- elektronicznym sposobem rejestracji i obróbki uzyskanych wyników,
- dużą wytrzymałością naciskacza,
- niezawodnym uszczelnieniem głowicy.
Zestaw penetrometru otworowego typu Pen206 przedstawiono na rysunku 6. Jego parametry techniczne są następujące:
- maksymalne ciśnienie w układzie hydraulicznym: 70 MPa,
- możliwość badania skał o wytrzymałości na ściskanie: do 84 MPa,
- całkowita masa: 34 kg,
- średnica głowicy pomiarowej: 85 mm,
- masa głowicy pomiarowej: 5,30 kg,
- maksymalny wysuw naciskacza: 17 mm,
- dokładność przemieszczania naciskacza: ±0,1mm,
- dokładność rejestracji wytrzymałości na ściskanie i rozciąganie: ±1 MPa,
- zasięg pomiarowy w głęb. gór. do 10 m,
- ciężar robocza w układzie hydraulicznym: płyn hydrauliczny,
- temperatura pracy: 0-700 C,
- średnica końcówki naciskacza: 5 mm,
- rozdzielczość wskazówek położenia naciskacza:
 - wskaźnik paskowy 0,2 mm,
 - wskaźnik cyfrowy 0,1 mm,
- automatyczne rozpoznawanie momentu skruszenia skały,
Rys. 5. Porównanie wyników uzyskanych za pomocą penetrometru typu PHI-00 (penetrometr wielkośrednicowy) z wynikami uzyskanymi za pomocą penetrometru typu PO-27 (penetrometr małośrednicowy)

Fig. 5. Comparison of results obtained from PHI-00 (large-diameter) and PO-27 (small-diameter) penetrometers

- łatwe zapisywanie wyników pomiarów do pamięci wewnętrznej pulpitu,
- wspomaganie komputerowe obróbki danych pomiarowych i generowanie raportów,
- pamięć wewnętrzna pulpitu: 56 sesji pomiarowych (56 otworów),
- całkowita liczba poziomów pomiarowych w jednej sesji (w jednym otworze): 130,
- zasilanie akumulatorowe własne: 3,6 V,
- czas pracy z całkowicie naładowanym akumulatorem: minimum 10 godzin,
- klasyfikacja urządzenia ze względu na zagrożenie wybuchem: Grupa I, Kategoria M2, Ex ia I,
- klasa szczelności: głowica IP54 (pulpit i krosownica IP65),
- Certyfikat zewnętrznej oceny zgodności CE- Jednostka Certyfikująca GIG Katowice,
- Certyfikat badania typu WE w zakresie zgodności z Dyrektywą ATEX 94/9/WE: KDB 08ATEX099.

Pomiary w kopalni wykonuje się zgodnie z zasadami podanymi w dokumentacji techniczno-ruchowej. Wyniki opracowuje się za pomocą specjalnie do tego celu napisanego programu, który generuje raport z pomiarów w formie tabelarycznej i graficznej.

Ostatnim - znanym autorom artykułu - rozwiązaniem konstrukcyjnym penetrometru jest urządzenie opracowane w Zakładzie Budowy Urządzeń i Aparatury Naukowo-Doswiadczeniowej sp. z o.o. w Katowicach.

Penetrometr otworowy PHI-09, PHI-09R przeznaczony jest do badania wytrzymałości skał stropowych w celu klasyfikacji stropów wyrobisk, doboru obudowy wyrobisk ścianowych i korytarzowych oraz innych potrzeb związanych z prowadzeniem robót górniczych. Wersja PHI-09 różni się od wersji PHI-09R tym, że nie posiada automatycznego układu rejestracji wyników. Wyniki trzeba notować, a następnie wprowadzać do arkusza kalkulacyjnego.

Zestaw penetrometru otworowego typu PHI-09, PHI-09R przedstawiono na rysunku 7. Jego parametry techniczne są następujące [12]:
- maksymalne ciśnienie w układzie hydraulicznym: 70 MPa,
- średnica sondy: 88 mm,
Rys. 6. Zestaw hydraulicznego penetrometru otworowego typu Pen206: 1 - głowica penetrometru, 2 - przewód elektryczny, 3 - pompa, 4 - przewód wysokociśnieniowy, 5 - czujnik ciśnienia, 6 - pulpıt rejestrująco-sterujący, 7 - krosownica

Fig. 6. Set of Pen206 hydraulic downhole penetrometer: 1 - penetrometer’s head, 2 - electric cable, 3 - high pressure hydraulic hand pump, 4 - high pressure hydraulic hose, 5 - pressure sensor, 6 - recording and control console, 7 - wiring cross-box

- zasięg pomiarowy sondy: 10 m,
- maksymalny wysuw naciskacza: 15 mm,
- średnica końcówek naciskacza: 5 mm,
- zakres pomiaru wytrzymałości na ściskanie badanych skał: 0–108 MPa,
- dokładność pomiaru i rejestracji ciśnienia: ±0,1 MPa,
- całkowity ciężar: około 21,6 kg,
- temperatura pracy: 0–500 °C,
- stopień ochrony obudowy: IP-54,
- wizualizacja położenia naciskacza na panelu pomiarowym przy pomocy diod LED,
- komputerowa obróbka wyników pomiarów.

3. Wyznaczanie parametrów mechanicznych skał na podstawie wskazań penetrometru otworowego

Odczytanie ciśnienia na manometrze pompy w momencie zniszczenia ścianki otworu wiertniczego pozwala na korelowanie wyznaczonej przez penetrometr skały występującej w danym punkcie górotworu [5]:

Rys. 7. Penetrometr hydrauliczny PHI-09, PHI-09R [12]: 1 - sonda, 2 - ręczna pompa wysokociśnieniowa, 3 - wysokociśnieniowy wąż hydrauliczny, 4 - drag segmentowy, 5 - panel pomiarowy, 6 - przewód elektryczny

Fig. 7. PHI-09 PHI-09R hydraulic downhole penetrometer [12]: 1 - probe; 2 - high pressure hydraulic hand pump; 3 - high pressure hydraulic hose; 4 - segmented pole; 5 - metering panel; 6 - electric cable
– wytrzymałość na rozciąganie \(R_s\),
– wytrzymałość na ściskanie \(R_c\),
– wskaźnik urabialności \(f\),
– szczelinowatość skały \(S\).

Określenie wymienionych cech dla kolejnych punktów położenia wzdłuż profilu penetrometrycznego, pozwala na wykreślenie ciągłych profilów \(R_s, R_c, f\) oraz \(S\) dla zbadanej penetrometrii serii skalnej.

W wyniku przeprowadzonych badań ustalono zależność pomiędzy oporem penetracji a wytrzymałością skały na rozciąganie odpowiadające kierunkowi działania siły rozciągającej prostadplenu do powierzchni uwarstwienia dla wszystkich podstawowych typów skał karbońskich Górnopojeńskiego Zagłębia Węglowego. Poprzez opór penetracji rozumie się wartość krytycznego ciśnienia odczytanej na manometrze pumpy w momencie punktowego zniszczenia skały przez iglicę penetrometru.

Wykonano to poprzez równoległe badania wytrzymałości na rozciąganie metodą brazylijską oraz badania oporu penetracji dokładnie na tym samym poziomie litologicznym. Badania te prowadzono w następujący sposób:
– pobrano w kopalni próbkę blokowe wybranych skał o wymiarach 15x30 cm,
– przeciela do połowy każdy blok za pomocą piły szynkobrotowej w kierunku prostadplenu do uwarstwienia,
– z jednej połowy bloku wykonano dokładnie zorientowane przestrzennie próbki kostkowe o boku 5 cm a następnie przeprowadzono badania wytrzymałości na rozciąganie metodą brazylijską,
– z drugiej połowy bloku wykonano takie same próbki i umieszczono je odpowiednio zorientowane przestrzennie w bloku o otworem na penetrometr, który zalano betonom,
– w tak przygotowanym bloku betonowych skalnym wykonano badania oporu penetracji.

Przeprowadzone badania wykazały, że istnieje liniowa zależność pomiędzy wytrzymałością na rozciąganie a oporem penetracji skał karbońskich. Minimalną dla danego punktu wartość wytrzymałości na rozciąganie w przypadku działania siły prostadplnej do uwarstwienia skały można określić z zależności

\[
R_s = 0,077 p_m
\]

gdzie:
\(R_s\) – wytrzymałość na rozciąganie, MPa,
\(p_m\) – krytyczne ciśnienie penetracji, MPa.

Wytrzymałość na jednoosiowe ściskanie \(Rc\) określono na podstawie następującego równania empirycznego

\[
R_c = 1.2 p_m
\]

Równanie powyższe otrzymano w podobny sposób jak wytrzymałość na rozciąganie, poprzez równoległe badanie laboratoryjne wytrzymałości na jednoosiowe ściskanie oraz oporów penetracji szeregu skał karbońskich.

Wskaźnik urabialności \(f\) przybliżeniem można określić na podstawie następującego równania empirycznego

\[
f = 0,1 p_m
\]

Równanie (3) opracowano na podstawie prac Protodiakonowa, który wykazał istnienie liniowego związku pomiędzy wartością \(Rc\) oraz wartością \(f\).

Szczelinowatość skał \(S\) określono na podstawie zmian wartości \(p_m\) dla danego petrograficznego typu skały. Równanie do obliczania wskaźnika szczelinowatości ma postać

\[
S = \sqrt{\frac{A \cdot F}{W \cdot p_{\text{max}}}}
\]

gdzie:
\(A\) – amplituda zmian oporu penetracji \(p_{\text{max}},\) MPa,
\(F\) – liczba skokowych zmian oporu penetracji na określonym odcinku długości otworu,
\(W\) – liczba wykonanych cykli badania oporu penetracji (wgniotów) na rozpatrywany odcinku długości otworu,
\(p_{\text{max}}\) – średnia wartość \(p_m\) na odcinku badanej zmienności amplitudy, MPa.

Stosowanie przez wiele lat współczynników przeliczeniowych krytycznego ciśnienia penetracji na wytrzymałość na rozciąganie (0,777) i ścieśnianie (1,2) wykazało, że w wielu przypadkach zachodzą znaczné odchylenia w ten sposób uzyskanych wyników od wyników badań laboratoryjnych. Wobec powyższego przeprowadzono powtórné próby korelacji, w których uwzględniono zmienność litologiczną skały, ich wilgotność oraz stan spekanienia. Wykonane badania pozwoliły w sformułowaniu następujących najważniejszych wniosków [1]:

1. Wytrzymałość skał, określona dwoma metodami – laboratoryjną i in situ – jest uzależniona od:
 – wilgotności (stanu nasycenia kapilarnego lub stanu powietrzno-suchego powodującego spadek wartości wytrzymałości skał w stanie nasycenia kapilarnego w stosunku do wytrzymałości w stanie powietrzno-suchym o 20–40%),
 – spęków i powierzchni osłabienia powodujących spadek wartości ciśnienia krytycznego penetracji w stosunku do wytrzymałości w stanie nasycenia kapilarnego o 23–66% dla piaskowców drobnoziarnistych,
 – spęków i powierzchni osłabienia powodujących spadek wartości ciśnienia krytycznego penetracji w stosunku do wytrzymałości w stanie powietrznio-suchym o 41–62% dla ilówcow.

2. Współczynnik \(b=R_s/p_m\) zależy od typu litologicznego skały. Wynosi on:
 – 0,073 dla piaskowców,
 – 0,055 dla piaskowców z mułowcami,
 – 0,054 dla mułowców,
 – 0,037 dla ilówcow.

Ponieważ równania wyznaczającego wytrzymałość na rozciąganie skał w górotworze proponuje się zdefiniować następująco: \(R_s = 0,055 p_m\).

3. Współczynnik \(a=R_c/p_m\) zależy od typu litologicznego skały i jej wilgotności. Dla skał w stanie powietrznio-suchym uzyskano następujące wartości współczynnika \(a\):
 – 1,18 dla piaskowców,
 – 1,04 dla piaskowców z mułowcami,
 – 0,84 dla mułowców,
 – 0,96 dla ilówcow,
 – 0,072 dla węgl błęskujących.

Dla skał w stanie nasycenia kapilarnego uzyskano następujące wartości współczynnika \(a\):
 – 1,18 dla piaskowców,
 – 1,04 dla piaskowców z mułowcami,

Mając na uwadze fakt, że w czasie badań penetrometrem otworowym, często trudno jest zidentyfikować na danej głębokości otworu szczegółową odmianę litologiczną występującą tam skały, zaleca się stosowanie ogólnego współczynnika przeliczeniowego \(a=1,0\).

4. W wielu przypadkach wyniki badań laboratoryjnych i penetrometrycznych są trudne do porównania, bowiem wilgotność skał w otworach penetrometrycznych nie jest określona, zaś stopień spekanienia ścian otworu możliwy jest do określenia tylko w przypadku dysponowania kameryą introskopową.
W zestawie penetrometru otworowego PHI-09, PHI-09R produkowanego w Zakładzie Budowy Urządzeń i Aparatury Naukowo-Duświatelnej sp. z o.o. w Katowicach zastosowano następujące wzory przeliczeniowe do wyznaczania parametrów skali [11]:

\[
R_s = 0,099 \cdot p_m \tag{5}
\]

\[
R_s = 1,548 \cdot p_m \tag{6}
\]

gdzie:
- \(R_s\) – wytrzymałość na rozciąganie, MPa,
- \(R_s\) – wytrzymałość na jednoosiowe ścinanie, MPa,
- \(p_m\) – krytyczne ciśnienie penetracji, MPa.

4. Możliwe sposoby adaptacji penetrometru do badania skał o dużej wytrzymałości

Obecna konstrukcja penetrometru Pen206 pozwala na badanie skał o wytrzymałości do 84 MPa. Badanie skał o większej wytrzymałości wymaga stosowania większych naprężeń pod końcowką naciskacza. Ten cel można zrealizować na kilka sposobów:

1. Wymuszanie większych ciśnień roboczych poprzez użycie pomp oraz węży hydraulicznych wytrzymujących ciśnienie co najmniej 150 MPa. Takie elementy są produkowane, jednak trudno dostępne w handlu detalicznym. Dodatkowym problemem może okazać się uszczelnienie głowicy, przewidziane dla ciśnień rzędu 70 MPa.

2. Zwiększenie średnicy tłoka w głowicy, co powoduje zwiększenie przełożenia wartości ciśnienia manometrycznego penetrometru na naprężenia pod końcowką naciskacza. To rozwiązanie wymaga zaprojektowania i wykonania prototypu nowej głowicy, a wymagane tolerancje poszczególnych elementów wciążają się w skompromitowaną (a co za tym idzie kosztowną) obróbkę mechaniczną.

Biorąc pod uwagę wszystkie wady i zalety powyższych rozwiązań, do celów badań laboratoryjnych wybrano opracowanie nowego naciskacza o zmniejszonej średnicy końcowki roboczej. W celu przeprowadzenia badań wykonano 10 naciskaczy o średnicy końcówki zmniejszonej o 5 mm na 3,5 mm.

5. Program i metodyka badań nowej konstrukcji naciskacza

Badania nowej konstrukcji naciskacza podzielone zostały na 4 etapy, a mianowicie:

1. Badanie przygotowawcze polegające na:
 - Wyznaczaniu oporu wyzwuku tłoka oraz innych sił zmniejszających nacisk. Do wyznaczania tej charakterystyki użyto penetrometru Pen206 wraz ze zmodyfikowanym pulpitem, rejestrującym zmiany ciśnienia manometrycznego w funkcji wysuwu naciskacza. Badanie polegało na zarejestrowaniu przebiegu zmian ciśnienia manometrycznego w układzie hydraulicznym penetrometru podczas swobodnego wysuwu naciskacza od położenia początkowego \(D = 0\) mm do maksymalnego \(D = 17,4\) mm.
 - Wyznaczaniu charakterystyki spadku ciśnienia \(-dp\) w układzie hydraulicznym w stosunku do zmiany położenia naciskacza \(-dD\). Do wyznaczania tej charakterystyki użyto penetrometru Pne206 wraz ze zmodyfikowanym pulpitem rejestrującym zmiany ciśnienia manometrycznego w funkcji wysuwu naciskacza. Badanie polegało na zamontowaniu głowicy w przyrządzie umożliwiającym kontrolowanie wysuwu naciskacza, wymuszaniu w układzie hydraulicznym penetrometru określonej wartości ciśnienia, a następnie rejestracji spadku wartości ciśnienia manometrycznego w układzie wywołanego kontrolowym wysuwem naciskacza. Badanie przeprowadzono dla kilku różnych nominalnych wartości ciśnienia manometrycznego.
 - Wyznaczanie tempo spadku ciśnienia \(-dp\) w układzie hydraulicznym w funkcji czasu \(t\). Do wyznaczania tej charakterystyki użyto penetrometru Pen206 wraz ze zmodyfikowanym pulpitem, umożliwiającym rejestrację zmian ciśnienia manometrycznego w układzie w funkcji czasu. Badanie polegało na wymuszaniu w układzie hydraulicznym penetrometru określonej wartości ciśnienia i zarejestrowaniu zmian tej wartości w funkcji czasu. Badanie przeprowadzono dla kilku różnych nominalnych wartości ciśnienia manometrycznego.
 - Określenie rzeczywistej charakterystyki penetrometru \(R = f(p_m)\).

2. Wyselekcjonowanie próbek o wytrzymałości na ścinanie większej, niż możliwa do oznaczenia za pomocą penetrometru Pen206, które wykonano na stanowisku badawczym składającym się z (rys. 8):
 - penetrometru otworowego Pen206 (1) z głowicą umieszczoną w kanale bloku stalowego (2) w taki sposób, aby naciskacz mógł swobodnie wysuwać się poprzez szczeliny pomiędzy kanałami bloku,
 - pulpitu Pen206G (3) ze zmodyfikowanym oprogramowaniem wizualizującym przebieg badania,
 - komputera PC (4) wraz z przetwornikiem NVI_1301_02_EF (5) oraz aplikacją MDNV Data Logger w 2.06 do rejestracji przebiegu badania,
 - kamery cyfrowej do rejestracji wizualizowanego na pulpicie przebiegu badania oraz dokumentacji fotograficznej.

4. Zarejestrowane przez komputer PC dla każdego badania przebiegi ciśnienia i wysuwu mogą w przyszłości posłużyć do określenia kryteriów wykrywania momentu skruszenia twardej skał.

5. Przeprowadzenie badań na stanowisku składającym się z (rys.10):
 - przenośnej prasy hydraulicznej PR-0,
 - bloku stalowego umieszczonego na tłoku, służącego do mocowania rdzeni skalnych,

Fig. 8. Laboratory stand for selection of strong rock samples: 1 – Pen206 downhole penetrometer; 2 – steel block for mounting rock cores; 3 – modified Pen206 console; 4 – PC; 5 – NVI_1301_02_EF analog to digital converter

Rys. 9. Przebieg badania wizualizowany na ekranie pulpitu Pen206G. Widoczny moment skruszenia

Fig. 9. Rock sample examination process displayed on the Pen206G console’s screen. The crush moment may be observed

- specjalistycznego przyrządu, służącego do mocowania naciskaczy do śruby dociskowej prasy,
- systemu pomiarowo-rejestrującego, składającego się z:
 - elektronicznego przetwornika ciśnienia 250 bar, 4-20 mA, MH-2,
 - wielokanałowego rejestratora cyfrowego MADC-06 (SN:001/008/DL),
- czujnika przemieszczenia liniowego 0-50 mm, 0,5% RECTI-P12, MCB,
- komputera PC z oprogramowaniem SBP VIEW v 3.1, służącym do wizualizacji i rejestracji wartości ciśnienia manometrycznego w układzie hydraulicznym prasy oraz wysuwu tłoka.
Badanie polegało na zamontowaniu w przyrządzie (4) standardowego naciskacza, a następnie umieszczaniu w bloku rdzeni skalnych wyselekcjonowanych podczas badań opisanych w punkcie 2 i oznaczaniu krytycznego ciśnienia manometrycznego, przy którym następuje skruszenie rdzenia. Analogicznie do punktu 2, ciśnienie oznaczano kilkakrotnie w różnych punktach rdzenia, aby zminimalizować wpływ niejednorodności rdzenia na wyniki pomiarów. W następnej kolejności zamontowano w przyrządzie naciskacz o nowej konstrukcji i powtórzone oznaczanie krytycznych ciśnień dla tych samych próbek. Otrzymane wyniki wykorzystano do wyznaczenia korelacji pomiędzy ciśnieniami krytycznymi uzyskanymi w badaniu tych samych prób byżymi naciskaczami. Zarejestrowane przebiegi zmian wartości ciśnienia manometrycznego oraz wysuwu mogą być wykorzystane w przyszłości do określenia kryteriów wykrywania momentu skruszenia twardych skał.

6. Analiza uzyskanych wyników

Badania przegotowawcze pozwoliły na określenie rzeczywistych charakterystyk penetrometru Pen206. Charakterystykę zmian ciśnienia manometrycznego w funkcji wysuwu tła przedstawia rysunek 11.

Można na niej zauważyć, że aby ruch tła był możliwy, należy pokonać pewne opory, przekładające się na wartość ciśnienia manometrycznego rzędu 2-3,5 MPa. Wartość tych oporów rośnie wraz z wysuwem. Ich średnica w głównej mierze jest sprzężona z odpowiadającą za powrót tła do położenia zerowego (stąd wzrost wartości ciśnienia wraz ze wzrostem wysuwu). W mniejszym stopniu oddziaływują siły tarcia tła o cylinder i uszczelkę. Podczas oznaczania wytrzymałości na ściśkanie zmniejszają one siłę nacisku na skalę i powinno się je uwzględniać podczas analizy wyników pomiarów.

Rysunek 12 przedstawia przebieg zmian ciśnienia manometrycznego w układzie hydraulicznym penetrometru Pen206 w funkcji wysuwu naciskacza. Z przedstawionego wykresu wynika, że nachylenie charakterystyki \(dp/dD \) wynosi 0,6-0,7 MPa/mm, co oznacza, że jeśli przy skruszeniu skały powstanie krater o głębokości 1 mm, ciśnienie w układzie hydraulicznym spadnie o maksymalnie 0,7MPa.

Rysunek 13 przedstawia zarejestrowane spadki ciśnienia manometrycznego w układzie hydraulicznym penetrometru Pen206 w funkcji czasu. Można na nich zauważyć, że tempo spadku ciśnienia w układzie jest większe dla wyższych
Rys. 11. Zmiany ciśnienia manometrycznego w układzie hydraulicznym penetrometru w funkcji wysuwu tłoka

Fig. 11. Pressure variations in the penetrometer’s hydraulic system in relation to the piston’s slide

Rys. 12. Przykładowy wykres przebiegu zmian ciśnienia w układzie hydraulicznym penetrometru w funkcji wysuwu naciskacza

Fig. 12. Hydraulic pressure variations in relation to the penetrometer spire’s slide

wartości ciśnienia. Po upływie około 180 s wartość ciśnienia w układzie stabilizuje się. Taki charakter zmian w niezapo-wierzonym układzie hydraulicznym może świadczyć o jego sprężystości (giętki wąż hydrauliczny ma długość 15 metrów), ścisłościœmi médium hydraulicznego oraz o cofaniu się médium do pompy. W związku z tym pożądane jest jak najbardziej jednostajne dostarczanie médium do układu hydraulicznego oraz unikanie długich przerw pomiędzy kolejnymi ruchami pompy. Podczas oznaczania wytrzymałoœœ skala œaœyœœy być świadomyœœ występowania tego zjawiska i minimalizowaœœ jego wpływ poprzez odpowiedni sposób pompowania.

Biorąc pod uwagę wyniki badań przygotowawczych, wytrzymałość skala na jednoosiowe ściskanie wyznaczaną metodą penetrometryczną można opisaœ wzorem

\[R_c = K \cdot (p_m - p_0) \] \hspace{1cm} (7)

gdzie:

- \(R_c \) — wytrzymałość na jednoosiowe ściskanie,
- \(K \) — współczynnik korelacji, wynikający ze stałej penetrometrycznej (dla penetrometru opisanego w [3] \(K = 1.2 \)),
- \(p_m \) — ciśnienie manometryczne zarejestrowane podczas skruszenia,
- \(p_0 \) — ekwiwalentne ciśnienie wynikające z oporów głowicy penetrometru.

Według metodyki opisanej w rozdziale 5 wykonano 312 oznaczeń na 93 próbkach rdzeni tłocza, piaskowca i mułowca. W wyniku przeprowadzonych badań 14 próbek rdzeni, których nie udało się skruszyć za pomocą penetrometru ze standardowym naciskaczem, zakwalifikowano do dalszych badań. Zauważono, że w wyniku skruszenia twardych skał (głównie piaskowców dromozamiastych) naciskaczem nowej konstrukcji powstają niewielkie zagłębiania („kratery”) o głębokoœœ 1-2 mm (rys.14).

Rysunek 15 przedstawia przebieg kruszenia próbki piaskowca naciskaczem nowej konstrukcji zarejestrowany przez przetwornik NVI_1301_02_EF podłączony do komputera PC. W jego wyniku powstał krater o głębokoœœ 2 mm, a
spadek ciśnienia w układzie wyniósł 1 MPa, co jest zgodne z wynikami badań przygotowawczych. Widać również wahania ciśnienia spowodowane pompowaniem i spadki spowodowane zjawiskami opisanymi w rozdziale 6.

Na próbkach wyselekcjonowanych w badaniach penetrometrem wykonano 107 oznaczeń na prasie hydraulicznej. Rysunek 16 przedstawia przebieg kruszenia tej samej próbki piaskowca naciskaczami różnej konstrukcji. Można zauważyć około dwukrotną różnicę w ciśnieniach potrzebnych do skruszenia skały. Kraterki powstałe podczas skruszenia próbki są podobnej wielkości, co podczas badania penetrometrem, jednak ze względu na mniejszą pojemność układu hydraulicznego prasy oraz fakt, że połączenia hydrauliczne wykonane są sztywnymi przewodami, obserwowane spadki ciśnienia w układzie są znacznie większe, niż w przypadku penetrometru.

Na rysunku 17 przedstawiono naciskacze po próbach niszczących.

Dla oceny korelacji pomiędzy wynikami uzyskanymi za pomocą naciskacza o średnicy 5 mm i naciskacza o średnicy 3,5 mm przyjęto współczynnik dopasowania ciśnienia skruszenia skały „b” wyznaczony z zależności
Rys. 14. Zagłębiaenia („kratery”) na ściące rdzenia po działaniu naciskacza
Fig. 14. Holes („craters”) on rock core’s surface caused by the penetrometer spire

Rys. 15. Przebieg kruszenia skały naciskaczem nowej konstrukcji: 1 - ciśnienie w układzie hydraulicznym, 2 - wysuw naciskacza
Fig. 15. Rock sample crushing process using modified penetrometer spire: 1 - hydraulic pressure, 2 - spire’s slide

\[b = \frac{P_{\text{max,0,5}}}{P_{\text{max,0,3,5}}} \]

(8)

Założono ponadto, że współczynnik dopasowania ciśnienia skruszenia skały „b” spełnia następujące kryterium [2]

\[\nu = \frac{s}{x} \cdot 100\% \leq 10\% \]

(9)

gdzie:
- \(b \) — maksymalne ciśnienie powodujące skruszenie skały (materiału) przy stosowaniu naciskacza o średnicy 3,5 mm, MPa,
- \(P_{\text{max,0,5}} \) — maksymalne ciśnienie powodujące skruszenie skały (materiału) przy stosowaniu naciskacza o średnicy 0,5 mm, MPa,
- \(P_{\text{max,0,3,5}} \) — maksymalne ciśnienie powodujące skruszenie skały (materiału) przy stosowaniu naciskacza o średnicy 0,3,5 mm, MPa,
- \(\nu \) — współczynnik zmienności ciśnienia skruszenia skały „b”, %,
- \(s \) — odchylenie standardowe z próby,
- \(x \) — średnia arytmetyczna z próby.
Rys. 16. Kruszenie tej samej próbki naciskaczami różnej konstrukcji: 1 - ciśnienie w układzie hydraulicznym, 2 - wysuw naciskacza
Fig. 16. Process of crushing of the same rock sample using various types of penetrometer spires: 1 - hydraulic pressure, 2 - spire's slide

Rys. 17. Naciskacze po wykonaniu prób niszczących
Fig. 17. Spikes after destructive testing
Uzyskano w ten sposób zbiór wyników (tabl.1), który potraktowano jako próbę losową z populacji generalnej, dla której przeprowadzono analizę za pomocą programu Statistica (rys. 18).

Uzyskano następujące wyniki:
- średnia arytmetyczna: 2,000,
- przedział ufności przy założonym poziomie istotności \(\alpha=0,05 \): (1,950-2,050),
- wartość minimalna współczynnika dopasowania: 1,790,
- wartość maksymalna współczynnika dopasowania: 2,350,
- wariancja: 0,016,
- odchylenie standardowe: 0,128,
- współczynnik zmienności: 6,4 %.

W celu zbadania wiarygodności otrzymanych wyników wyznaczono konieczną liczbę oznaczeń współczynnika dopasowania „b” przy założonym poziomie istotności \(\alpha=0,05 \) i dokładności pomiaru ciśnienia \(\sigma=0,1 \) MPa z zależności [3]

\[n_k = \frac{t^2 \cdot S^2}{\alpha^2} \]

gdzie:
- \(n_k \) – konieczna liczba pomiarów,
- \(t^2 \) – wartość kwadratu rozkładu t-Studenta dla danego stopnia istotności \(\alpha \) i liczby stopni swobody \(r \),
- \(S^2 \) – wariancja z próby,
- \(\sigma \) – dokładność pomiaru ciśnienia.

Po podstawieniu do wzoru (10) następujących danych [2]: \(r^2 = 2,900, S^2=0,016 \) i \(\sigma=0,1 \) uzyskano konieczną liczbę obserwacji wskaźnika dopasowania „b” wynoszącą \(n_k =5 \).

Z powyższego wynika, że liczba koniecznych obserwacji jest mniejsza od rzeczywiste wykonanych (n=28), więc uzyskane wyniki można uznać za wiarygodne, przy założonym poziomie istotności \(\alpha=0,05 \).

Rys. 18. Podsumowanie badań statystycznych

Fig. 18. Summary of statistical research

Tablica 1. Zestawienie wyników pomiarów współczynnika dopasowania „b”

<table>
<thead>
<tr>
<th>Lp</th>
<th>Numer rdzenia</th>
<th>Pmax,65</th>
<th>Pmax,63,5</th>
<th>b</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48/P1</td>
<td>64,55</td>
<td>35,59</td>
<td>1,81</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>2</td>
<td>48/P1</td>
<td>8,59</td>
<td>4,54</td>
<td>1,89</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>3</td>
<td>48/P2</td>
<td>78,70</td>
<td>40,37</td>
<td>1,95</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>4</td>
<td>48/P2</td>
<td>9,79</td>
<td>4,33</td>
<td>2,02</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>5</td>
<td>58/P1P3</td>
<td>89,32</td>
<td>45,85</td>
<td>1,95</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>6</td>
<td>58/P1P3</td>
<td>11,30</td>
<td>5,73</td>
<td>2,01</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>7</td>
<td>58/P2</td>
<td>119,26</td>
<td>57,73</td>
<td>2,07</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>8</td>
<td>58/P2</td>
<td>14,46</td>
<td>6,65</td>
<td>2,11</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>9</td>
<td>55/P1</td>
<td>76,88</td>
<td>39,84</td>
<td>1,93</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>10</td>
<td>55/P1</td>
<td>8,75</td>
<td>4,38</td>
<td>2,00</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>11</td>
<td>55/P2</td>
<td>92,43</td>
<td>40,42</td>
<td>2,29</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>12</td>
<td>55/P2</td>
<td>11,44</td>
<td>4,86</td>
<td>2,35</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>13</td>
<td>65</td>
<td>73,35</td>
<td>41,06</td>
<td>1,79</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>14</td>
<td>65</td>
<td>9,46</td>
<td>5,11</td>
<td>1,85</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>70,75</td>
<td>35,93</td>
<td>1,97</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>16</td>
<td>66</td>
<td>9,59</td>
<td>4,69</td>
<td>2,04</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>72,18</td>
<td>36,71</td>
<td>1,97</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>18</td>
<td>67</td>
<td>11,10</td>
<td>5,44</td>
<td>2,04</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>19</td>
<td>68</td>
<td>76,36</td>
<td>38,33</td>
<td>1,99</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>11,48</td>
<td>5,56</td>
<td>2,06</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>21</td>
<td>69</td>
<td>102,26</td>
<td>48,66</td>
<td>2,10</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>22</td>
<td>69</td>
<td>13,94</td>
<td>6,46</td>
<td>2,16</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>23</td>
<td>70</td>
<td>74,34</td>
<td>39,2</td>
<td>1,97</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>9,79</td>
<td>4,80</td>
<td>2,04</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>25</td>
<td>71</td>
<td>80,89</td>
<td>41,82</td>
<td>1,93</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>26</td>
<td>71</td>
<td>10,00</td>
<td>5,00</td>
<td>2,00</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
<tr>
<td>27</td>
<td>72</td>
<td>73,46</td>
<td>40,29</td>
<td>1,82</td>
<td>Badania za pomocą Pen206 (rys.10)</td>
</tr>
<tr>
<td>28</td>
<td>72</td>
<td>9,34</td>
<td>4,94</td>
<td>1,89</td>
<td>Badania za pomocą prasy hydr. (rys.8)</td>
</tr>
</tbody>
</table>
6. Podsumowanie

Przeprowadzone badania pozwalają na przedstawienie następujących stwierdzeń:
1. Uzyskane w trakcie badań laboratoryjnych wyniki pozwalają stwierdzić, że wprowadzona modyfikacja konstrukcji naciskacza pozwala na badanie o wytrzymałości na jednoosiowe ściskanie powyżej 100 MPa.
2. Badania wykazały, że dla twardych skał „kratera” powstałe po skruszeniu są niewielkie. Z tej obserwacji oraz wyznaczonej charakterystyki penetrometru wynika, że przy skruszeniu twardych skał należy spodziewać się niewielkich zmian ciśnienia manometrycznego w układzie hydraulicznym penetrometru, co również zostało potwierdzone w badaniach. Zmiany te mają charakter bardzo szybki, rzędu kilku milisekund.
3. W celu zastosowania penetrometru do oznaczania wytrzymałości na ściskanie twardych skał należy na nowo określić kryteria rozpoznawania momentu skruszenia skały.
4. Dla pewności wykrywania momentu skruszenia skały korzystnie byłoby zmodyfikowanie układu hydraulicznego penetrometru tak, aby jak najmniej wpływał na pomiar ciśnienia. Przydatna byłoby również taka modyfikacja układu pomiarowego, by zdecydowanie szybciej mógł on reagować na zmiany położenia naciskacza.

Artykuł powstał w ramach realizacji pracy statutowej o numerze 11110253-140.

Literatura

11. Rozporządzenie Ministra Gospodarki z dnia 28.06.2002 r. w sprawie bezpieczeństwa i higieny pracy, prowadzenia ruchu oraz specjalistycz- nego zabezpieczenia przeciwpożarowego w podziemnych zakładach górniczych (Dz.U. Nr 139 poz.1169 oraz z 2006 r. Nr 124, poz.863).
12. Zakład Budowy Urządzeń i Aparatury Naukowo-Dotwierdzałej Sp. z o.o. Dokumentacja techniczna penetrometru otworowego PII-09, PII-09R.