Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 66, no. 2 | 211--226
Tytuł artykułu

On the estimation of physical height changes using GRACE satellite mission data – A case study of Central Europe

Treść / Zawartość
Warianty tytułu
Języki publikacji
The dedicated gravity satellite missions, in particular the GRACE (Gravity Recovery and Climate Experiment) mission launched in 2002, provide unique data for studying temporal variations of mass distribution in the Earth’s system, and thereby, the geometry and the gravity fi eld changes of the Earth. The main objective of this contribution is to estimate physical height (e.g. the orthometric/normal height) changes over Central Europe using GRACE satellite mission data as well as to analyse them and model over the selected study area. Physical height changes were estimated from temporal variations of height anomalies and vertical displacements of the Earth surface being determined over the investigated area. The release 5 (RL05) GRACE-based global geopotential models as well as load Love numbers from the Preliminary Reference Earth Model (PREM) were used as input data. Analysis of the estimated physical height changes and their modelling were performed using two methods: the seasonal decomposition method and the PCA/ EOF (Principal Component Analysis/Empirical Orthogonal Function) method and the differences obtained were discussed. The main fi ndings reveal that physical height changes over the selected study area reach up to 22.8 mm. The obtained physical height changes can be modelled with an accuracy of 1.4 mm using the seasonal decomposition method.

Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
  • Institute of Geodesy and Cartography Centre of Geodesy and Geodynamics 27 Modzelewskiego St., 02–679 Warsaw, Poland,
  • Institute of Geodesy and Cartography Centre of Geodesy and Geodynamics 27 Modzelewskiego St., 02–679 Warsaw, Poland,
  • [1] Barthelmes, F. (2013). Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). The GFZ series, Scientific Technical Report (STR), STR 09/02, Revised Edition Jan. 2013, pp. 32.
  • [2] Barthelmes, F. (2016). International Centre for Global Earth Models (ICGEM). J Geod. 90(10): 1177-1180, In: H. Drewes, F. Kuglitsch, J. Adám, S. Rózsa (eds) The Geodesists Handbook 2016. J. Geod., 90(10): 907-1205.
  • [3] Dahle, C., Flechtner, F., Gruber, C., König, R., Michalak, G., Neumayer, K.-H. and König, D. (2014). GFZ RL05: An Improved Time-Series of Monthly GRACE Gravity Field Solutions. Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions, Adv. Tech. in Earth Sci.: 29-39.
  • [4] van Dam, T., Wahr, J. and Lavallée, D. (2007). A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J Geophys. Res., 112: B03404.
  • [5] Dziewonski, A.M. and Anderson, D.L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Int., 25:297-356.
  • [6] Eriksson, D. and MacMillan, D.S. (2014). Continental hydrology loading observed by VLBI measurements. J. Geod., 88(7), 675-690.
  • [7] Godah, W., Szelachowska, M. and Krynski, J. (2017). On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. Acta Geoph., 65(4), 713-725.
  • [8] Gua, Y., Yuana, L., Fana, D., Youa, W. and Suc, Y. (2017). Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models. Advances in Space Research 59(1): 88-102.
  • [9] Jolliffe, I. (2002). Principal component analysis. 2nd Edn, John Wiley & Sons, Ltd.
  • [10] Krynski, J., Kloch-Główka, G. and Szelachowska, M. (2014). Analysis of time variations of the gravity field over Europe obtained from GRACE data in terms of geoid height and mass variations. In: C. Rizos, P. Willis (eds), Earth on the Edge: Science for a Sustainable Planet, IAG Symposia, 139, 365-370.
  • [11] Kusche, J. and Schrama, E.J.O. (2005). Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J. Geophys. Res., 110, B09409.
  • [12] Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of time variable GRACEtype gravity field models. J. Geod., 81(11): 733-749.
  • [13] Kusche, J., Schmidt, R., Petrovic, S. and Rietbroek, R. (2009). Decorrelated GRACE time-variable. gravity solutions by GFZ, and their validation using a hydrological model. J. Geod., 83(10): 903-913.
  • [14] Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (1998). Forecasting: Methods and applications. 3rd Edition, New York: Wiley, 656 pp., ISBN: 978-0-471-53233-0.
  • [15] Pan, Y., Shen, W-B., Hwang, C., Liao, C., Zhang, T. and Zhang G. (2016). Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet. Sensors (Basel, Switzerland), 16(8): 1211.
  • [16] Rangelova, E. (2007). A dynamic geoid model for Canada, PhD. Thesis, University of Calgary. Department of Geomatics Engineering, Report No. 20261.
  • [17] Rangelova, E. and Sideris, M.G. (2008). Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J. Geodyn., 46(3): 131-143. jog.2008.03.006.
  • [18] Rangelova, E., Fotopoulos, G. and Sideris, M.G. (2010). Implementing a dynamic geoid as a vertical datum for orthometric heights in Canada. In: S.P.P. Mertikas (ed), Gravity, Geoid and Earth Observation, IAG Commission 2 Gravity Field, Chania, Greece, IAG Symposia, 135: 295-302, June 23-27, 2008, Springer.
  • [19] Springer, A., Eicker, A., Bettge, A., Kusche, J. and Hense, A., (2017). Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water, 9(4): 289. w9040289.
  • [20] Tan, W., Dongb, D., Chena, J. and Wua, B. (2016). Analysis of systematic differences from GPSmeasured and GRACE-modeled deformation in Central Valley, California. Advances in Space Research, 57(1): 19-29.
  • [21] Tapley, B.D., Bettadpur, S., Watkins, M. and Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607,
  • [22] Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B. and Gao, P. (2012). Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modifi ed models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49:190-199.
  • [23] Wang, S., Chen, J., Li, J., Hu, X. and Ni, S. (2016). Geophysical interpretation of GPS loading deformation over western Europe using GRACE measurements. Annals of Geophysics, (59)5: S0538.
  • [24] Watkins, M.M, Wiese, D.N, Yuan, D.N, Boening, C. and Landerer, F.W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys. Res. Solid Earth, 120(4): 2648-2671.
  • [25] Wei, W., (2006). Time Series Analysis: Univariate and Multivariate Methods. 2nd Edn, Pearson Addison Wesley, 2006 - Mathematics, 614 pp.
  • [26] Wouters, B., Bonin, J.A., Chambers, D.P., Riva, R.E., Sasgen, I. and Wahr, J. (2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Rep. Prog. Phys.,
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.