PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 5, No. 1 | 57--62
Tytuł artykułu

Semi-Markov processes: application in system reliability and maintenance

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The author’s monograph “Semi-Markov Processes: Application in System Reliability and Maintenance” which will be published by Elsevier in 2014 is presented. The paper is composed of an introduction, the monograph contents, conclusions and the references the monograph contents is based on.
Wydawca

Rocznik
Strony
57--62
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
autor
  • Naval University, Gdynia, Poland
Bibliografia
  • [1] Anisimov, B.B. (1970). Multidimensional limit theorems for semi-Markov processes. Probability Theory and Mathematical Statistics. 3, 3-21 (in Rusian).
  • [2] Anisimov, B.B. (1970). Limit theorems for semiMarkov processes. Probability Theory and Mathematical Statistics 2, 3-15 (in Rusian).
  • [3] Asmussen, S. (1987). Applied Probability and Queues. Chichester: Wiley.
  • [4] Aven, T. (1985). Relibility evaluation of multistate systems with multistate components. IEEE Transactions on Reliability 34(2), 463-472.
  • [5] Baker, M.C.J. (1990). How often should a machine be inspected. International Journal of Quality Reliability Management 7, 14-18.
  • [6] Barlow, R.E. & Proshan, F. (1965). Mathematical theory of reliability. New York, London, Sydney; Wiley.
  • [7] Barlow, R.E. & Proshan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Rinchart and Winston.
  • [8] Billingsley, P. (1979). Probability and Measure. John Wiley & Sons.
  • [9] Block, H.W. & Savits, T.H. (1982). A decomposition for multistate monotone systems. Jouranal of Applied Probability 19; 2, 391-402.
  • [10] Bobrowski, D. (1985). Mathematical Models in Reliability Theory (in Polish). WNT, Warsaw.
  • [11] Brodi, S.M & Vlasenko, O.N. (1969). Reliability of systems with many kind of work. Reliability theory and queue theory. Nauka 165-171 (in Russian).
  • [12] Brodi, S.M. & Pogosian, J.A. (1973). Embedded stochastic processes in theory of queue. Naukova Dumka (in Russian).
  • [13] Ciesielski, Z. (1991). Asymptotic Nonparamertic Spline Density Estimation. Probab. Math. Statist. Vol. 12, 1-24.
  • [14] Cinlar, E. (1969). Markov renewal theory. Adv. Appl. Probab. No 2, 1, 123-187.
  • [15] Csenki, A. (1994). Dependability for Systems with a Partitioned State Space Markov and SemiMarkov Theory and Computatinal Implemantation. New York; Springer-Verlang Inc.
  • [16] Doob, J.L. (1953). Stochastic Processes. New York: John Wiley & Sons, London: Chapman & Hall.
  • [17] Domsta, J. & Grabski, F. (1995). The first exit of almost strongly recurrent semi-Markov processes. Applicationes Mathematicae 23; No. 3, 285-304.
  • [18] Epanechnikov, V.A. (1969). Non-parametric estimation of multivariate probability density. Theory of Probability and its Application 85(409), 66-72.
  • [19] Feller, W. (1964). On semi-Markov processes. Proc. Nat. Acad. Sci. 51; No. 4, 653-659.
  • [20] Feller, W. (1968). An Introduction to probability Theory and Its Applications. Vol. 1. Third Edition. New York, London, Sydney: John Wiley & Sons.Inc.
  • [21] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol.2. New York, London, Sydney: John Wiley & Sons.Inc.
  • [22] Gertsbakh. I.B. (1969). Models of preventive service. Sovetskoe radio. (in Russian).
  • [23] Gertsbakh, I.B. (1984). Asymptotic methods in reliability theory: a review. Adv. Appl. Prob. 16, 147-175.
  • [24] Gichman, I.I. & Skorochod, A.W. (1968). Introduction to the Theory of Stochastic processes. Warsaw; PWN (in Polish).
  • [25] Girtler, J. & Grabski, F. (1989). Choice of optimal time to preventive service of the ship combustion engine. Scientific Problems of Machines Operation and Maintenance 4, 481-489 (in Polish).
  • [26] Gniedenko, B.W., Bielajew, J.K. & Sołowiew, A,D. (1968). Mathematical Method in Reliability Theory. Warsaw: WN-T (in Polish).
  • [27] Grabski, F. (1981). Analize of random working rate based on semi-Markov processes. Scientifi Problems of Machines Operation and Maintenance 3-4, (47-48), 294-305 (in Polish).
  • [28] Grabski, F. (1982). Theory of Semi-Markov Operation Processes. ZN AMW; 75A; Gdynia (in Polish).
  • [29] Grabski, F. Piaseczny, L. & Merkisz, J. (1999). Stochastic models of the research tests of the toxicity of the exhaust gases. Journal of KONES International Combustion Engines Vol.6 No. 1-2, 34-41 (in Polish).
  • [30] Grabski, F. (2002). Semi-Markov models of reliability and operation. Warsaw : IBS PAN (in Polish).
  • [31] Grabski, F. (2003). Some problems of modeling transport systems. Warsaw-Radom; ITE (in Polish).
  • [32] Grabski, F. (2007). Application of semi-Markov processes in reliability. Electronic Journal, Reliability: Theory & Applications Vol.2, No.3-4, 60-75.
  • [33] Grabski, F. & Kołowrocki, K. (1999). Asymptotic Reliability of Multistate System with semiMarkov states of components. Proc. of the European Conference on Safety and Reliability - ESREL’99. Safety and Reliability, 317-322.
  • [34] Grabski, F. (2003). The reliability of an object with semi-Markov failure rate. Applied Mathematics and Computation 135, 1-16.
  • [35] Grabski, F. (2011). Semi-Markov failure rate process. Applied Mathematics and Computation 217, 9956-9965.
  • [36] Grabski, F. & Jaźwiński, J. (2009). Functions of Random Variables in Problems of Reliability, Safety and Logistics. Warsaw; WKŁ; 2009 (in Polish).
  • [37] Gyllenberg, M. & Silvestrov, D.S. (1999). Quasistationary phenomena for semi-Markov processes. In: Janssen J, Limnios N. (eds) SemiMarkov Models and Applications 33-60.
  • [38] Gyllenberg, M. & Silvestrov, D.S. (2008). QuasiStationary Phenomena in Nonlinearly Perturbed Stochastic System. De Gruyter Expositions in Mathematics, 44. XII+579.
  • [39] Harriga, MA. (1996). A maintenance inspection model for a single machine with general failure distribution functions. Pacific Journal of Mathematics 31(2), 403-415.
  • [40] Howard, R.A. (1960). Dynamic Programing and Markov Processes. Cambridge, Massachusetts; MIT Press.
  • [41] Howard, R.A.. (1964). Research of semiMarkovian decision structures. Journal of Operations Research Society 6, 163-199.
  • [42] Howard, R.A. (1971). Dynamic probabilistic system. Vol. II: Semi-Markow and decision processes. New York, London, Sydney, Toronto; Wiley.
  • [43] Iosifescu, M. (1980). Finite Markov Processes and Their Applications. John Wiley & Sons, Ltd.
  • [44] Jewell, W.S. (1963). Markov-renewal programming. Operation Research 11, 938-971.
  • [45] Kato, T. (1966). Perturbation Theory for Linear Operators. Berlin; Springer.
  • [46] Kołowrocki, K. (2001). On limit reliability functions of large multi-state systems with ageing components. Applied Mathematics and Computation 121, 313-361.
  • [47] Kołowrocki, K. (2004). Reliability of Large Systems. Elsevier.
  • [48] Kołowrocki, K. & Soszyńska-Budny, J. (2011). Asymptotic approach to reliability of large complex systems. Electronic Journal Reliability: Theory & Applications 2(4), 103-128.
  • [49] Kołowrocki, K. & Kuligowska, E. (2013). Monte Carlo simulation application to reliability evaluation of port grain transportation system operating at variable conditions. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 4( 1), 73-82.
  • [50] Kopociński, B. (1973). Outline of the renewal theory and reliability. Warsaw: PWN (in Polish).
  • [51] Kopocińska, I. & Kopociński, B. (1980). On system reliability under random load of elements. Aplicationes Mathematicae XVI,1, 5-14.
  • [52] Kopocińska, I. (1984). The reliability of an element with alternating failure rate. Aplicationes Mathematicae XVIII, 2, 187-194.
  • [53] Korczak, E. (1997). Reliability analisis of nonrepaired multistste systems. Advances in Safety and Reliability: ESREL’9,2213-2220.
  • [54] Korolyuk, V.S. & Turbin, A.F. (1976). SemiMarkov processes and their applications. Naukova Dumka (in Russian).
  • [55] Korolyuk, V.S. & Turbin, A.F. (1982). Markov Renewal Processes in Problems of Systems Reliability. Naukova Dumka (in Russian).
  • [56] Korolyuk, V.S. & Turbin, A.F. (1993). Decompositions of Large Scale Systems. Kluwer Academic, Singapore.
  • [57] Korolyuk, V.S. & Swishchuk, A. (1995). SemiMarkov Random Evolutions. Derdrecht, Boston, Lomdon; Kluwer Academic .
  • [58] Korolyuk, V.S., Polishchuk, L.I. & Tomusyak, A.A. (1969). A limit theorem for semi-Markov processes. Cybernetic. Vol. 5, Issue 4, 524-526.
  • [59] Korolyuk, V.S. & Limnios, N. (2005). Stochastic System in Merging Phase Space. Singapore; World Scientific.
  • [60] Knopik, L. (2007). Some remarks on mean time between failures of repairable systems. Proc. Summer Safety and Reliability Seminars Vol. 2, 207-211.
  • [61] Lev’y, P. (1954). Proceesus semi-markoviens. Proc. Int. Cong. Math. Amsterdam 416-426.
  • [62] Letkowski, J. (2013). Application of the Poisson Process Distribution www.aabri.com/SA12Manuscripts/SA12083.
  • [63] Limnios, N. & Oprisan, G. (2001). Semi-Markov Processes and Reliability. Boston; Birkhauser.
  • [64] Lisnianski, A. & Frankel, I. (2009). NonHomogeneous Markov Reward Model for an Ageing Multi-State System under Minimal Repair. International Journal of Performability Engineering 4, 5, 303-312.
  • [65] Lisnianski, A. & Levitin, G. (2003). Multi-State System Reliliability: Assesment, Optimization and Applications. London, Sigapore: World Scientic.
  • [66] Moore, E.H. & Pake, R. (1968). Estimation of the transition distributions of a Markov renewal process. Ann. Inst. Statist. Math. 20, 411-424.
  • [67] Mine, H. & Osaki, S. (1970). Markovian Decision Processes. New York; AEPCI.
  • [68] Papadopoulou, A. & Vassiliou, P.C.G. (1999). Continuous time non-homogeneous semi-Markov systems. Semi-Markov models and applications. Kluver Acad. Publ., 241-251.
  • [69] Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, Inc.
  • [70] Pavlov, I.V. & Ushakov, I.A. (1978). The asymptotic distribution of the time until a semiMarkov process gets out of the kernel. Engineering Cybernetics 2(3).
  • [71] Pyke, R. (1961). Markov renewal processes: definitions and preliminary properties. Ann. of Math. Statist.32, 1231-1242.
  • [72] Pyke, R. (1961). Markov renewal processes with finitely many states. Ann. of Math. Statist. 32, 1243-1259.
  • [73] Pyke, R. & Schaufele, R. (1964). Limit theorems for Markov renewal processes. Ann. of Math. Statist. 32, 1746-1764.
  • [74] Shiryayev, A.N. (1984). Probability. New York, Berlin, Heidelberg, Tokyo; Springer-Verlag.
  • [75] Shpak, W.D. (1971). On some approximation for calculation of a complex system reliability. Cybernetics 10, 68-73 (in Russian).
  • [76] Silvestrov, D.C. (1980). Semi-Markov processes with a discrete state space (in Russian). Sovetskoe Radio.
  • [77] Silvestrov, D.C. (1980). Semi-Markov processes with a discrete state space (in Russian). Sovetskoe Radio.
  • [78] Silvestrov, D.C. (2008). Nonlinearly Perturbed Stochastic Processes. Theory of Stochastic Processes. Vol. 14 (30), No.3-4, 129-164.
  • [79] Smith, W.L. (1955). Regenerative stochastic processes. London: Proc. Roy. Soc. Ser. A, 232,631.
  • [80] Solovyev, A.D. (1979). Analytical Methods of Reliability Theory. Warsaw: WN-T.
  • [81] Taga, Y. (1963). On the limiting distributions in Markov renewal processes with finitely many states. Ann. Inst. Statist. Math. 15, 1-10.
  • [82] Takács, L. (1954). Some investigations concerning recurrent stochastic processes of a certain type. Magyar Tud. Akad. Mat. Kutato Int. Kzl. 3, 115-128.
  • [83] Takács, L. (1959). On a sojourn time problem in the theory of stochastic processes. Trans. Amer. Math. Soc. 93, 531-540.
  • [84] Zając, M. (2007). Reliability model of the intermodel system. PhD thesis. Wroclaw University of Technology.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-01c1c0bc-0cf6-47a3-a252-e0eddb7c67ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.