PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 33 nr 3 | 155--167
Tytuł artykułu

Investigation of biomass mixture devolatilization process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, pyrolysis of selected biomass types and their mixtures was investigated using thermogravimetric analyzer (TGA). The purpose of the work was to study interactions between components of biomass mixtures and influence of ash composition on pyrolysis up to 600°C, using two heating rates 1 K/min and 10 K/min. Five different biomass samples were taken into consideration: oak, pine, wheat straw, rape straw and energy crop (willow). It was found, that during slow pyrolysis (1 K/min) the volatiles yield increased and interactions were more noticeable. Results showed that increasing content of some components, like wheat straw, willow, in some biomass mixtures may favor occurrence of interactions. It was also found, that increasing heating rate accelerates devolatilization process and shifts extreme of DTG to higher temperature. Authors attempted to present volatiles yield, in a given temperature range, as a linear function of elemental composition of biomass.
Słowa kluczowe
Wydawca

Rocznik
Strony
155--167
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44 – 100 Gliwice, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44 – 100 Gliwice, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44 – 100 Gliwice, Poland, magdalena.niestroj@polsl.pl
autor
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44 – 100 Gliwice, Poland
Bibliografia
  • [1] Yang H., Yan R., Chen H., Lee D. H., Zheng C. Characteristic of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, (2007), pp. 1781-1788
  • [2] Raveendran K., Ganesh A., Khilar K. C. Pyrolysis characteristics of biomass and biomass components. Fuel 75 No.8, (1996), pp. 987-998
  • [3] Sharma A. K., Ravi M. R., Kohli S. Modelling Product Composition in Slow Pyrolysis of Wood. SESI Journal, 16(1), (2006), pp.1-11
  • [4] Biagini E., Barontini F., Tognotti L. Devolatilization of Biomass Fuels and Biomass Components Studied by TG-FTIR Technique. Industrial & Engineering Chemistry Research, 45, (2006), pp. 4486-4493
  • [5] Bernhard P. Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Processing Technology, 92, (2011), pp. 1993-1998
  • [6] Rao T. R., Sharma A. Pyrolysis rates of biomass materials. Energy, 23, Issue 11, (1998), pp. 973–978
  • [7] Yang H., Yan R., Chen H., Zheng C., Lee D. H., Liang D. T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy &Fuels, 20, (2006), pp. 388-393
  • [8] Wang S., Guo X., Wang K., Luo Z. Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis, 91 (1), (2011), pp. 183-189
  • [9] Couhert C., Commandre J.M., Salvado S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel, 88, (2009), pp. 408–417
  • [10] Giudicianni P., Cardone G., Ragucci R. Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. Journal of Analytical and Applied Pyrolysis, 100, (2013), pp. 213-222
  • [11] Liu Q., Zhong Z., Wang S., Luo Z. Interactions of biomass components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 90, (2011), pp. 213-218
  • [12] Hosoya T., Kawamoto H., Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis, 80, (2007), pp. 118-125
  • [13] Han L., Wang Q. H., Ma Q. A., Yu C. J., Luo Z. Y., Cen K. F. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 88, (2010), pp. 199-206
  • [14] Wang D., Xiao R., Zhang H., He G. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 89 (2), (2010), pp. 171-177
  • [15] Eom I. Y., Kim J. Y., Kim T. S., Lee S. M., Choi D., Choid I. G., Choi J. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology, 104, (2012), pp. 687–694
  • [16] Yang H., Yan R., Chen H., Zheng C., Lee D. H., Liang D. T. Influence of mineral matter on pyrolysis of palm oil wastes. Combustion and Flame, 146, (2006), pp. 605-611
  • [17] Patwardhan P. R., Satrio J. A., Brown R. C., Shanks B. H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Biosource Technology, 101, (2010), pp. 4646–4655
  • [18] Bibrzycki J., Katelbach-Woźniak A., Niestrój M., Szlęk A. Badania procesu rozkładu termicznego podstawowych substancji organicznych biomasy. Archiwum Spalania, 12, No 1-2, (2012), pp. 39-45, ISSN 1641-8549
  • [19] Sander B. Fuel data for Danish biofuels and improvement of the quality of straw and whole crops. Biomass for energy and environment. Copenhagen, Denmark, 24-27 June 1996 Proceedings of the 9th European Bioenergy Conference, pp. 490-495
  • [20] Szczukowski S., Tworkowski J., Klasa A., Stolarski M. Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinna Vyroba, 48 (9), (2002), pp. 413-417
  • [21] Miller R. S., Bellan J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, Vol 126, (1997), pp. 97-137
  • [22] Antal M.J., Allen S.G., Dai X., Shimizu B., Tam M.S., Grønli M. Attainment of the theoretical yield of carbon from biomass. Industrial and Engineering Chemistry Research, 39, (2000), pp. 4024-4031
  • [23] Richard T., Trautmann N. Substrate Compostition Table. Cornell University Ithaca, NY 14853. 2002.(1996) http://compost.css.cornell.edu/calc/lignin.noframes.html
  • [24] Vassilev S. V., Baxter D., Andersen L. K., Vassileva C. G., Morgan T. J. An overview of the organic and inorganic phase composition of biomass. Fuel, 94, (2012), pp. 1-33
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-000ca8f4-d52c-49e7-9b83-a556cc3c2f19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.