Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 1 |
Tytuł artykułu

Bacterial diversity in Camaltı Saltern, Turkey

Warianty tytułu
Języki publikacji
A combination of culture-dependent and culture-independent approaches was employed to identify the bacterial diversity of Çamaltı solar saltern in Turkey. The bacterial communities of Çamaltı Saltern were analyzed by molecular techniques that included denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR amplified from DNA extracted from the water samples of the saltern and 16S rRNA gene library analysis. A total of 42 isolates were identified at the genus/species level and 17 of them were found to belong to the Bacteria domain. All bacterial isolates were phylogenetically related to Halobacillus, Virgibacillus and Halomonas genus. A total of 50 clones from 16S rRNA gene library were analyzed by ARDRA. 16S rRNA sequence analysisof these clones revealed that most (85%) of the bacterial clones were related to Salinibacter genus members of the Bacteroidetes. The sequences of DGGE bands were related to the uncultured Salinibacter, uncultured halophilic bacterium and Halomonas sp. This work highlights the halophilic bacterial diversity of Çamaltı marine solar saltern.
Słowa kluczowe
Opis fizyczny
  • Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
  • Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
  • Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 3389–3402.
  • Anton J., E. Llobet-Brossa, F. Rodríguez-Valera and R.I. Amann. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1: 517–523.
  • Anton J., R. Rosselló-Mora, F. Rodríguez-Valera and R. Amann. 2000. Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66: 3052–3057.
  • Anton J., A. Pena, F. Santos, M. Martinez-Garcia, P. Schmitt-Kopplin and R. Rossello-Mora. 2008. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Systems. 4:15.
  • Baati H., S. Guermazi, R. Amdouni, N. Gharsallah, A. Sghir and E. Ammar. 2008. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles. 12: 505–518.
  • Benlloch S., A. López-López, E.O. Casamayor, L. Ovreas, V. Goddard, F.L. Daae G. Smerdon, R. Massana, I. Joint, F. Thingstad and others. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4: 349–360.
  • Burns D.G., H.M. Camakaris, P.H. Janssen and M.L. Dyall-Smith. 2004a. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 70: 5258–5265.
  • Burns D.G., H.M. Camakaris, P.H. Janssen and M.L. Dyall-Smith. 2004b. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol. Lett. 238: 469–473.
  • Burns D.G., P.H. Janssen, T. Itoh, M. Kamekura, Z. Li, G. Jensen, F. Rodríguez-Valera, H. Bolhuis and M.L. Dyall-Smith. 2007. Haloquadratum walsbyi gen nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int. J. Syst. Evol. Microbiol. 57: 387–392.
  • Casamayor E.O., R. Massana, S. Benlloch, L. Ovreas, B. Diez, V.J. Goddard, J.M. Gasol, I. Joint, F. Rodriguez-Valera and C. Pedro’s-Alio. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4: 338–348.
  • DasSarma S. and P. DasSarma. 2012. Halophiles., 2012.03.30.
  • Dereeper A., V. Guignon, G. Blanc, S. Audic, S. Buffet, F. Chevenet, J.F. Dufayard, S. Guindon, V. Lefort, M. Lescot and others. 2008. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36: W465–469.
  • Diez B., J. Anton, N. Guixa-Boixereu, C. Pedros-Alio and F. Rodriguez-Valera. 2000. Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int. Microbiol. 3: 159–164.
  • Erdogmus S.F., M.B. Mutlu, S.E. Korcan, K. Guven and M. Konuk. 2013. Aromatic Hydrocarbon Degradation by Halophilic Archaea Isolated from Camalti Saltern, Turkey, pp. 224:1449. In: Water Air and Soil Pollution.
  • Gärtner A., M. Blümel, J. Wiese and J.F. Imhoff. 2011. Isolation and characterisation of bacteria from the Eastern Mediterranean deep sea. Antonie Van Leeuwenhoek. 100: 421–435.
  • Ghai R., L. Pašić, A.B. Fernández, A.B. Martin-Cuadrado, C.M. Mizuno, K.D. McMahon, R.T. Papke, R. Stepanauskas, B. Rodriguez-Brito, F. Rohwer and others. 2011. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1: 135.
  • Guixa-Boixereu N., J.I. Calderon-Paz, M. Heldal, G. Bratbak and C. Pedros-Alio. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11: 215–227.
  • Gunde-Cimerman N., A. Oren and A. Plemenitas. 2005. Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya – Introduction. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya 9: 1–6.
  • Hua N.P., A. Kanekiyo, K. Fujikura, H. Yasuda and T.Naganuma. 2007 Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp.nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int. J. Syst. Evol. Microbiol. 57: 1243–1249.
  • Hedi A., N. Sadfi, M.L. Fardeau, H. Rebib, J.L. Cayol, B. Ollivier and A. Boudabous. 2009. Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions. Int. J. Microbiol. 2009:731786.
  • Javor B.J., C. Requadt and W. Stoeckenius. 1982. Box-shaped halophilic bacteria. J. Bacteriol. 151:1532–1542.
  • Javor B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl. Environ. Microbiol. 48:352–360.
  • Kim M., K.H. Lee, S.W. Yoon, B.S. Kim, J. Chun and H. Yi. 2013. Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform. 11(3):102–113.
  • Lane D.J., B. Pace, G.J. Olsen, D. Stahl, M. Sogin and N.R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA. 82: 6955–6959.
  • Lim J.M., J.H. Yoon, J.C. Lee, C.O. Jeon, D.J. Park, C.K. Sung and C.J. Kim. 2004. Halomonas koreensis sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 54: 2037–2042.
  • Litchfield C.D. and A. Oren. 2001. Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia. 466:81–89.
  • Litchfield C.D., A. Irby, T. Kis-Papo and A. Oren. 2001. Comparative metabolic diversity in two solar salterns. Hydrobiologia 466: 73–80.
  • Litchfield C. and P. Gillevet. 2002. Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48–55.
  • Litchfield C., A. Oren, A. Irby, M. Sikaroodi and P.M. Gillevet. 2009. Temporal and salinity impacts on the microbial diversity at the Eilat, Israel solar salt plant. Global NEST Journal. 11: 86–90.
  • Margesin R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83.
  • Maturrano L., F. Santos, R. Rosselló-Mora and J. Antón. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl. Environ. Microbiol. 72: 3887–3895.
  • Mellado E. and A. Ventosa. 2003. Biotechnological potential of moderately and extremely halophilic microorganisms, pp. 233–256. In: Barredo J.L. (ed) Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala.
  • Mutlu M.B., M. Martínez-García, F. Santos, A. Peña, K. Guven and J. Antón. 2008. Prokaryotic diversity in Tuz Lake, a hypersaline environment in inland Turkey. FEMS Microbiol. Ecol. 65: 474–483.
  • Mutlu M.B. and K. Güven. 2011. Detection of prokaryotic microbial communities of Çamaltı Saltern-Turkey by Fluorescein In Situ Hybridization (FISH) and Real Time PCR Turkish Journal of Biology. 35:687–695.
  • Muyzer G., E.C. De Waal and A.G. Uitterrlinden. 1993. Profiling in complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.
  • Oren A. 1993. Ecology of extremely halophilic microorganisms, pp. 25–53 In: Vreeland R.H., L.I. Hochstein (eds.), TheBbiology of Halophilic Bacteria. CRC Press, Boca Raton.
  • Oren A. 2006. Life at high salt concentrations. Prokaryotes 2: 263–282.
  • Ovreas L., F.L. Daae, V. Torsvik and F. Rodriguez-Valera. 2003. Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb. Ecol. 46: 291–301.
  • Pašić L., N.P. Ulrih, M. Črnigoj, M. Grabnar and B.H. Velikonja. 2007. Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can. J. Microbiol. 53:8–18.
  • Park S.J., C.H. Kang and S.K. Rhee. 2006. Characterization of microbial diversity in a solar saltern of Korea based on 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16:1640–1645.
  • Podell S., J.A. Ugalde, P. Narasingarao, J.F. Banfield, K.B. Heidelberg and E.E. Allen. 2013. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One. 8(4): e61692.
  • Rastogi G. and R.K. Sani. 2011. Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment, pp. 29–57. In: Ahmad I., F. Ahmad, J. Pichtel (eds) Microbes and Microbial Technology: Agricultural and Environmental Applications. Springer, New York.
  • Rossello-Mora R., M. Lucio, A. Pena, J. Brito-Echeverria, A. Lopez-Lopez, M. Valens-Vadell, M. Frommberger, J. Anton and P. Schmitt-Kopplin. 2008. Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J. 2: 242–253.
  • Tıraş M. 2007. Çamaltı Tuzlası. Doğu Coğrafya Dergisi. Cilt 12, 18:291–300 (In Turkish). (English Translation: Traş M. 2007. Çamaltı Saltern. East Geography Journal. Vol. 12, 18: 291–300)
  • Tsiamis G., K. Katsaveli, S. Ntougias, N. Kyrpides, G. Andersen, Y. Piceno and K. Bourtzis. 2008. Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res. Microbiol. 159: 609–627.
  • Vaneechoutte M., R. Rossau, P. De Vos, M. Gillis, D. Janssens, N. Paepe, A. De Rouck, T. Fiers, G. Claeys and K. Kersters. 1992. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letters 93:227–234.
  • Ventosa A., J.J. Nieto and A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.
  • Villanueva L., J. Del Campo and R. Guerrero. 2010. Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats. FEMS Microbiol. Ecol. 74: 42e54.
  • Vreeland R.H., C.D. Litchfield, E.L. Martin and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salttolerant bacteria. Int. J. Syst. Bacteriol. 30485495.
  • Accessed 10 December 2013.
  • Zhaxybayeva O., R. Stepanauskas, N.R. Mohan and R.T. Papke. 2013. Cell sorting analysis of geographically separated hypersaline environments. Extremophiles 17(2): 265–275.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.