RESPONSE OF SPRING WHEAT TO REDUCED TILLAGE SYSTEMS AND TO DIFFERENT LEVELS OF MINERAL FERTILIZATION

Małgorzata Haliniarz, Karol Bujak, Dorota Gawęda, Cezary Kwiatkowski
University of Life Sciences in Lublin

Abstract. Cost reduction in plant production, as well as ecological aspects, force farmers to apply numerous modifications in tillage. Usually, they consist in shallowing ploughing and replacing it with cultivating measures not overturning the soil. The aim of the study was determination of the effect of conventional and reduced tillage systems as well as of two levels of mineral fertilization on the yield of spring wheat in the second cycle of crop rotation: potato – spring wheat – field pea (edible form) – winter wheat. The research was carried out in the years 2003-2006 on lessive soil formed from loess included in the good wheat complex. Autumn tillage under spring wheat, cultivar Helia, included the following cultivation measures: A – pre-winter ploughing (18-22 cm), B – cultivatoring (10-15 cm), C – heavy harrowing (8-10 cm). In spring, harrowing was conducted on all plots as well as cultivatoring, harrowing, seeding and harrowing. The second experimental factor was mineral fertilization on two levels: 117.3 kg NPK (50 kg N, 17.5 kg P, 49.8 kg K) and 175.9 kg NPK (75 kg N, 26.2 kg P, 74.7 kg K). The conducted research indicated that replacing pre-winter ploughing with cultivatoring (B) or heavy harrowing (C) resulted in a statistically insignificant yield decrease, by 4.3% and 7.1% respectively, as well as in a deterioration of its structural components. On lessive soil formed from loess, an increase in fertilization with nitrogen, potassium and phosphorus by 50% did not vary significantly the spring wheat yield or its components. Under conditions of a higher fertilization level, the yield increased by 4.1%. Spring wheat yield was significantly modified only by weather conditions in particular years of research. An increase in the yield and its structural components was indicated in the second cycle of crop rotation in all experiment variants, compared to the research from the years 1999-2002. Therefore, it may be concluded that reduced tillage, consisting in conducting shallow cultivating measures not overturning the soil, is well tolerated by spring wheat.

Key words: conservation tillage, fertilization requirements, productivity, spring wheat

Corresponding author – Adres do korespondencji: dr Małgorzata Haliniarz, Department of Herbology and Plant Cultivation Techniques of University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, e-mail: malgorzata.haliniarz@up.lublin.pl
INTRODUCTION

Aiming at reducing production costs forces farmers to search for new cheaper tillage methods. Introducing the change, usually consists in shallowing ploughing or replacing it with shallow surface tillage. In some cases, mechanical tillage is completely omitted, and instead direct sowing is applied [Gawrońska-Kulesza 1997, Tebrügge and Düring 1999, Włodek et al. 1999, Ciesielska and Rzeźnicki 2007].

The aim of the research was determination of the effect of two methods of reduced tillage and diversified mineral fertilization on the yield of spring wheat in the second cycle of crop rotation: potato – spring wheat – field pea – winter wheat.

MATERIAL AND METHODS

Field experiments were carried out in the years 2003-2006 at the Experimental Field Station in Czesławice near Nałęczów (51°18′ N; 22°16′ E). The four-year experiment included the second cycle of crop rotation.

Statistical field experiment was located on lessive soil formed from loess included in a good wheat complex. The soil in the plough layer was characterized by a slightly acidic reaction (pH in 1 M KCL 6.5-6.6), as well as by a high content of available potassium and magnesium.

The experiment was set up with a split-block design in four replications. In a four-year rotation, three tillage methods were compared and two levels of mineral fertilization under plants grown in a crop rotation: potato – spring wheat – field pea (edible form) – winter wheat. In the whole crop rotation on plot A (conventional) in total 7 ploughings were conducted per rotation, on plot B (reduced) – 3 ploughings per rotation, on plot C (reduced) – 1 ploughing per rotation. Ploughings were replaced mainly with cultivatoring and disking. In the case of spring wheat, autumn tillage on particular plots included the following cultivation measures: A – pre-winter ploughing (18-20 cm), B – cultivatoring (10-15 cm), C – heavy harrowing (8-10 cm). In spring, harrowing was carried out on all plots as well as cultivatoring (10-15 cm), harrowing, seeding and harrowing. The second experimental factor were two levels of mineral fertilization, being on average annually per rotation 127.4 kg NPK and 191.2 kg NPK, including the applied under spring wheat 117.3 kg NPK (50 kg N, 17.5 kg P, 49.8 kg K) and 175.9 kg NPK (75 kg N, 26.2 kg P, 74.7 kg K). All phosphorus and potassium fertilizers were applied 2-3 days before sowing. On plots with a basic dose of NPK, nitrogen was applied before sowing, while on plots with an increased dose of NPK, additionally at the stage of shooting, 25 kg N were applied.

Spring wheat, cultivar Helia, was sown in the first decade of April at a rate of 4.5 million grains per 1 ha. Before sowing, the seed was dressed with Funaben T 480 FS (thiuram + carbenzadizim) at a rate of 200 g per 100 kg of grain. In order to decrease the effect of any external factors, which might modify the effect of experimental factors on
plants in the growing season of spring wheat, full chemical protection against weeds, diseases, pests and cereal lodging was used on all plots. Protection program of a spring wheat canopy included: Aminopielik D 450 SL (2,4D + dicamba) – 3.0 dm3·ha$^{-1}$ (22-29 BBCH), Puma Uniwersal 069 EW (fenoxaprop-P-ethyl) – 1.0 dm3·ha$^{-1}$ (22-29 BBCH), Antywylegacz Płynny 675 SL (chlorocholine chloride) – 1.5 dm3·ha$^{-1}$ (31-32 BBCH), Tilt Plus 400 SC (propiconazole + fenpropidin) – 1.0 dm3·ha$^{-1}$ (30-37 BBCH), Decis 2.5 EC (deltamethrin) – 0.25 dm3·ha$^{-1}$ (32-59 BBCH).

Before harvest, the number of heads per 1 m2 was determined, as well as plant height, number and weight of grains per head, and 1000 grain weight. Grain yield from particular plots was calculated per Mg·ha$^{-1}$. Obtained results were subjected to analysis of variance, while significance of differences was verified with Tukey’s test with significance level of $P = 0.05$. Moreover, coefficients of variation (CV) were calculated for all analyzed traits.

Weather conditions in particular growing seasons (April-July) were rather diversified (Table 1). First three years of research may be considered as dry, rainfall in these years was lower than the mean from the long-term period. In 2006, rainfall slightly exceeded the mean from the years 1966-1995, as it was affected by a very intensive rainfall in August, being 202.5 mm. The mean air temperatures in particular years of research, except 2004, were higher than the means from the long-term period.

Table 1. Rainfall and air temperature from April to August compared to the means from the years 1966-1995, according to the Meteorological Station in Czesławice

<table>
<thead>
<tr>
<th></th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall, mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>16.0</td>
<td>66.3</td>
<td>36.7</td>
<td>109.7</td>
<td>23.9</td>
<td>252.6</td>
</tr>
<tr>
<td>2004</td>
<td>52.4</td>
<td>26.6</td>
<td>66.1</td>
<td>96.8</td>
<td>57.8</td>
<td>299.7</td>
</tr>
<tr>
<td>2005</td>
<td>21.2</td>
<td>146.9</td>
<td>48.0</td>
<td>55.8</td>
<td>46.2</td>
<td>318.1</td>
</tr>
<tr>
<td>2006</td>
<td>26.1</td>
<td>68.1</td>
<td>23.2</td>
<td>26.6</td>
<td>202.5</td>
<td>346.5</td>
</tr>
<tr>
<td>Mean from 1966-1995</td>
<td>44.5</td>
<td>59.5</td>
<td>80.2</td>
<td>79.4</td>
<td>68.6</td>
<td>332.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Temperature, ºC</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>6.5</td>
<td>15.9</td>
</tr>
<tr>
<td>2004</td>
<td>7.7</td>
<td>11.6</td>
</tr>
<tr>
<td>2005</td>
<td>8.4</td>
<td>13.0</td>
</tr>
<tr>
<td>2006</td>
<td>8.5</td>
<td>13.3</td>
</tr>
<tr>
<td>Mean from 1966-1995</td>
<td>7.6</td>
<td>13.4</td>
</tr>
</tbody>
</table>

RESULTS

Tests carried out in the second cycle of crop rotation: potato – spring wheat – field pea (edible form) – winter wheat, indicated that reduced tillage as well as diversified mineral fertilization had no significant effect on the yield of spring wheat. Differences in the grain yield in particular years of research were statistically proved (Table 2). The highest yields were obtained in 2004, while significantly lower ones in the first and last year of research. On average, in the four-year period, the highest grain yields were
obtained in case of conventional tillage (A), they amounted to 5.18 Mg·ha\(^{-1}\), lower by 4\% from plots where pre-winter ploughing was replaced with cultivatoring, while the lowest (4.81 Mg·ha\(^{-1}\)) in case of reducing autumn tillage to heavy harrowing (C). Higher level of mineral fertilization affected increase in the wheat yield on average by 0.2 Mg·ha\(^{-1}\). Significantly higher wheat yield under conditions of intensive fertilization in particular years of research was observed only in 2004. Coefficients of variation, being from CV = 19.2\% to CV = 22.3\%, testify to a low yield stability under conditions of diversified mineral fertilization and tillage systems.

Table 2. Grain yield of spring wheat, Mg·ha\(^{-1}\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2003</td>
<td>4.72</td>
<td>4.81</td>
<td>4.60</td>
</tr>
<tr>
<td>2004</td>
<td>6.02</td>
<td>5.53</td>
<td>5.73</td>
</tr>
<tr>
<td>2005</td>
<td>6.01</td>
<td>5.85</td>
<td>5.20</td>
</tr>
<tr>
<td>2006</td>
<td>3.95</td>
<td>3.64</td>
<td>3.71</td>
</tr>
<tr>
<td>Mean</td>
<td>5.18</td>
<td>4.96</td>
<td>4.81</td>
</tr>
</tbody>
</table>

CV, %
21.7 20.0 20.7 19.2 22.3 –

LSD\(_{0.05}\) for:
- years 0.461
- tillage system ns
- fertilization level ns
- interaction: year × fertilization level 0.773

A – conventional tillage
B – reduced tillage – cultivatoring
C – reduced tillage – harrowing
a – basic fertilization
b – increased fertilization
ns – non-significant differences

Experimental factors had no significant effect on the number of heads before harvest, however, this trait was significantly diversified throughout the years of research (Table 3). The highest number of heads per 1 m\(^{2}\) was observed in 2005, in other years of research the wheat produced a significantly sparser canopy. Analyzing the effect of diversified tillage on the number of heads, their similar number was observed in tillage variants A and B, while a lower one on plot with heavy harrowing. Under conditions of reduced tillage, lower variation of this trait was indicated, compared to conventional tillage. Mineral fertilization did not vary the number of heads before harvesting the wheat, while in variant B a higher variation of this trait was indicated (CV = 13.8\%). Similarly, no significant effect of experimental factors was proved on the height of spring wheat (Table 4). While comparing tillage systems, the tallest plants were observed under conditions of conventional tillage, in which the number of heads per m\(^{2}\) was the lowest, whereas the shortest plants where the lowest number of heads was noted. Also, higher head density occurring on plots with increased fertilization, positively affected the plant height.
Table 3. Head number before harvesting spring wheat as head·m⁻²

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2003</td>
<td>458.8</td>
<td>444.5</td>
<td>457.1</td>
</tr>
<tr>
<td>2004</td>
<td>457.0</td>
<td>470.5</td>
<td>434.5</td>
</tr>
<tr>
<td>2005</td>
<td>527.0</td>
<td>526.0</td>
<td>508.0</td>
</tr>
<tr>
<td>2006</td>
<td>432.0</td>
<td>438.0</td>
<td>416.0</td>
</tr>
<tr>
<td>Mean</td>
<td>468.7</td>
<td>469.8</td>
<td>453.9</td>
</tr>
</tbody>
</table>

CV, % 12.8 12.2 11.6 10.5 13.8 –

LSD₀.₀₅ for:
- year 36.20 ns
- tillage system ns
- fertilization level ns

* explanations under Table 2

Table 4. Plant height in spring wheat, cm

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2003</td>
<td>76.4</td>
<td>78.1</td>
<td>77.1</td>
</tr>
<tr>
<td>2004</td>
<td>92.5</td>
<td>88.6</td>
<td>90.8</td>
</tr>
<tr>
<td>2005</td>
<td>77.3</td>
<td>77.6</td>
<td>73.7</td>
</tr>
<tr>
<td>2006</td>
<td>73.5</td>
<td>72.7</td>
<td>73.8</td>
</tr>
<tr>
<td>Mean</td>
<td>79.9</td>
<td>79.2</td>
<td>78.8</td>
</tr>
</tbody>
</table>

CV, % 10.4 8.2 10.2 9.2 9.9

LSD₀.₀₅ for:
- year 2.98 ns
- tillage system ns
- fertilization level ns

* explanations under Table 2

Replacing ploughing with cultivatoring or harrowing, as well as a higher dose of mineral fertilizers did not cause any significant differences in the weight and number of grains per head (Tables 5, 6). It can be observed that application of reduced tillage resulted in a slight deterioration of elements of the head structure. In the analyzed experiment, the grain number per head was characterized by a higher stability (CV = 8.6-10.6%) than their weight (CV = 20.2-16.9%).

The weight of 1000 grains was significantly dependent on weather conditions (Table 7). The plumpest grain, 1000 grain weight = 46.7 g, was produced by wheat in 2004. In other years of research, 1000 grain weight in wheat was significantly lower. Irrespective of the years of research, the analyzed tillage systems, as well as levels of mineral fertilization, did not vary significantly 1000 grain weight. Calculated values of the coefficient of variation of this trait for the experimental factors confirm a high diversity in grain plumpness. Replacing plough with tools not overturning the soil (variant B and C), caused an increase in the stability of 1000 grain weight. In both variants of mineral fertilization, diversity in the obtained values of 1000 grain weight was very similar.
Table 5. Grain number per spring wheat head

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
<td>C a</td>
</tr>
<tr>
<td>2003</td>
<td>31.3</td>
<td>32.7</td>
<td>30.7</td>
</tr>
<tr>
<td>2004</td>
<td>30.8</td>
<td>29.7</td>
<td>31.8</td>
</tr>
<tr>
<td>2005</td>
<td>33.1</td>
<td>32.6</td>
<td>31.6</td>
</tr>
<tr>
<td>2006</td>
<td>32.7</td>
<td>32.2</td>
<td>32.3</td>
</tr>
<tr>
<td>Mean</td>
<td>31.9</td>
<td>31.8</td>
<td>31.6</td>
</tr>
</tbody>
</table>

CV, % 10.4 9.9 8.9 8.6 10.6

LSD_{0.05} for:
- year ns
- tillage system ns
- fertilization level ns

* explanations under Table 2

Table 6. Grain weight per spring wheat head, g

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
<td>C a</td>
</tr>
<tr>
<td>2003</td>
<td>1.06</td>
<td>1.08</td>
<td>1.06</td>
</tr>
<tr>
<td>2004</td>
<td>1.47</td>
<td>1.38</td>
<td>1.46</td>
</tr>
<tr>
<td>2005</td>
<td>1.27</td>
<td>1.19</td>
<td>1.18</td>
</tr>
<tr>
<td>2006</td>
<td>0.99</td>
<td>0.90</td>
<td>1.06</td>
</tr>
<tr>
<td>Mean</td>
<td>1.20</td>
<td>1.14</td>
<td>1.12</td>
</tr>
</tbody>
</table>

CV, % 20.2 17.0 16.9 18.1 18.2 –

LSD_{0.05} for:
- year 0.115
- tillage system ns
- fertilization level ns

* explanations under Table 2

Table 7. 1000 grain weight of spring wheat, g

<table>
<thead>
<tr>
<th>Year</th>
<th>Tillage system</th>
<th>Fertilization level</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
<td>C a</td>
</tr>
<tr>
<td>2003</td>
<td>33.8</td>
<td>38.9</td>
<td>35.7</td>
</tr>
<tr>
<td>2004</td>
<td>47.6</td>
<td>46.5</td>
<td>46.1</td>
</tr>
<tr>
<td>2005</td>
<td>38.4</td>
<td>36.6</td>
<td>37.5</td>
</tr>
<tr>
<td>2006</td>
<td>30.4</td>
<td>30.2</td>
<td>32.8</td>
</tr>
<tr>
<td>Mean</td>
<td>37.5</td>
<td>37.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

CV, % 18.3 17.5 14.8 16.9 16.8 –

LSD_{0.05} for:
- year 1.94
- tillage system ns
- fertilization level ns

* explanations under Table 2

In the second cycle of crop rotation, on all experimental plots, a higher grain yield in spring wheat was observed, compared to the one obtained in the first cycle (Table 8). This increase was most visible on plots with heavy harrowing. In the years 2003-2006,
increase in the number of heads per area unit occurred only under conditions of reduced tillage C, as well as with a decreased fertilization level. On plots with a reduced tillage B, head density in the first and second cycle of crop rotation was similar, whereas a lower number of heads in the years 2003-2006 was observed under conditions of conventional tillage with an increased mineral fertilization. Long-term application of reduced tillage favorably affected plant height, 1000 grain weight, as well as the number and weight of grains per head of spring wheat. However, in case of 1000 grain weight, number and weight of grains per head, the highest increase in parameters, compared to the mean from the years 1999-2002, occurred on plots with heavy harrowing. In the evaluated fertilization levels, higher proportional variations in the elements of head structure, compared to the first cycle, were observed under conditions of basic mineral fertilization.

Table 8. Proportional variations in grain yield and in particular components of yield structure and spring wheat canopy obtained in the years 2003-2006, compared to the first cycle of crop rotation (1999-2002) – values obtained in the first rotation were taken as 100%

<table>
<thead>
<tr>
<th>Specification</th>
<th>Tillage system</th>
<th>Fertilization level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A*</td>
<td>B</td>
</tr>
<tr>
<td>Grain yield</td>
<td>11.9%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Head number before harvest</td>
<td>-1.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Plant height</td>
<td>12.7%</td>
<td>12.8%</td>
</tr>
<tr>
<td>Grain number per head</td>
<td>16.0%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Grain weight per head</td>
<td>22.5%</td>
<td>20.0%</td>
</tr>
<tr>
<td>1000 grain weight</td>
<td>4.2%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

* explanations under Table 2

DISCUSSION

The research proved that the applied reduced tillage had no significant effect on the grain yield of spring wheat or on its components. In the second cycle of crop rotation, replacing pre-winter ploughing with cultivatoring (B) or heavy harrowing (C) resulted in a slight decrease in the yield, by 4.3% and 7.1%, respectively. In the first cycle of this crop rotation, Frant and Bujak [2007] indicated a significantly higher and statistically proved effect of tillage on the spring wheat yield. Reducing autumn cultivation treatments to cultivatoring and heavy harrowing decreased the yield by 8.2% and 11.9%, respectively, compared to the one obtained after conventional tillage. In the research of Kraska [2011], the yield of spring wheat grown on rendzina soil, in the conventional system was by 8.8-9.7% higher than on plots with conservation tillage. Other authors also indicate that reduced tillage, and especially the use of direct sowing, caused a decrease in the cereal grain yield [Dzienia et al. 1998, Blecharczyk et al. 1999, Diaz-Zorita 2000, Lal and Ahmadi 2000, López-Bellido et al. 2000, Orzech et al. 2002, Camara et al. 2003, Woźniak and Gontarz 2009].

Ciesielska and Rzeźnicki [2007] found the highest difference in the spring wheat yield between conventional tillage and direct sowing in the first year of using no-tillage system. In the following years of experiment, differences were significantly smaller. Similar tendencies to variations were observed in the conducted experiment. The greatest differences in the wheat yield obtained from plots with conventional tillage and
with reduced tillage were found in the first year of crop rotation cycle [Frant and Bujak 2007], while in the following years such great differences were not observed. Similar correlations were also proved by Vegeler et al. [2009].

According to Filipovic et al. [2006], winter wheat from among all cereals, best adapts to reduced tillage. While comparing conventional tillage and no-tillage, the authors obtained the highest yields of this species from plots with conservation tillage. Anken et al. [2004], also confirmed high tolerance of wheat to conservation tillage. After using reduced tillage, they obtained higher average yields than in the conventional tillage, while after direct sowing they usually observed decrease in the winter wheat yield. Increase in the yield of spring wheat under conservation tillage and direct sowing into stubble-field, compared to conventional tillage, was also obtained by Ciha [1982]. He proved that reduced tillage favorably affects grain plumpness, whereas the number of heads or the number of grains per head was not varied by tillage systems.

In the conducted experiment, decrease in the spring wheat yield in variants with reduced tillage occurred as a result of a lower number of heads per m², and their lower productivity. Kraska [2011] and Weber [2012] proved that wheat yield was most strongly connected with the number of heads per area unit. This correlation is unfavorable from the point of view of applying reduced tillage. Many authors indicated that reduced tillage as well as zero-tillage to a great extent decreased the number of heads or plants per area unit [Blecharczyk et al. 1999, Lal and Ahmadi 2000, Malicki et al. 1998]. In the first cycle of the evaluated crop rotation, Frant and Bujak [2007] proved a significant effect of a tillage system on the number of heads per 1 m², however in the following years of the conducted experiment, no such significant effect was found. Similar tendencies were proved by Ciesielska and Rzeźnicki [2007]. In the studies of these authors, only in the first year of applying reduced tillage, there was a significantly lower number of heads per area unit, compared to conventional tillage. In the first cycle of the experiment, a significant effect of reduced tillage on the structure of head was only visible in the weight of grains per head in variant C [Frant and Bujak 2007]. In the years 2003-2006, no significant differences between head components were observed. Replacing ploughs with other cultivation tools affected a slight decrease in the number and weight of grains per head, however it did not negatively affect plumpness of grains. The obtained results are partly confirmed in the research of Kraska [2011], who indicated that reduced tillage used under spring wheat only slightly modified elements of head structure.

In the conducted research, higher NPK fertilization influenced an increase in the yield of spring wheat. Similar correlations were also indicated by Kołodzieżyk et al. [2007], Stępień [2004], Borkowska et al. [2002], as well as Biskupski et al. [2006]. The studies of Kołodzieżyk et al. [2012] proved that increasing nitrogen fertilization does not result in a relatively high yield. The factor limiting effectiveness of fertilization doses is natural soil fertility. In Czesławice, on lessive soil formed from loess, increase in a nitrogen dose by 50% resulted in an increase in the yield of wheat grain only by 4.1%. A decreasing yield-producing effectiveness of increasing nitrogen doses in wheat cultivation was also indicated by López-Bellido et al. [1998], López-Bellido and López-Bellido [2001], Lloveras et al. [2001], Kołodzieżyk et al. [2007], and Camara et al. [2003].

Spring wheat is characterized by high oscillations in the yield in particular growing seasons. It is connected with a significant effect of weather conditions, especially of the rainfall on plant development in phenophases which significantly determine plant’s
yield [Kołodziejczyk et al. 2007]. The research indicated a close correlation between the
grain yield quantity and rainfall in May and June, as well as the rainfall total in the
period from April to July [Jaskulski 1999]. In the conducted research, the lowest yield
was obtained in the last year of experiments (3.77 Mg·ha⁻¹), in which in April, June and
July there was water deficiency, while in August, the rainfall exceeded the mean rainfall
from the long-term period by 195%. Weather conditions also affect components of the
yield structure. Weber and Hryneczuk [1999] proved that deficiency of water at the stage
of full tillering as well as inflorescence in spring wheat significantly affects the
productive tillering, head length, as well as a number and weight of grains per head. In
2006, which was unfavorable for wheat, rainfall deficiency negatively affected the head
number per m², plant height of wheat, grain weight per head, as well as 1000 grain
weight.

CONCLUSIONS

1. Statistical analysis did not indicate any significant effect of the applied tillage
systems on the yield quantity of spring wheat grain or its structural components. Only
weather conditions in particular years of research had a significant effect on the yield of
spring wheat.

2. On lessive soil formed from loess, increasing doses of NPK fertilizers by 50% did
not significantly vary the spring wheat yield or its components. Under conditions of
higher fertilization level, the yield increased by 4.1%, head density by 1.2%, grain
number per head by 0.6%, while 1000 grain weight by 0.8%.

3. In the second cycle of crop rotation in all experimental variants, an increase in the
yield and its structural components was observed, compared to the studies from the
years 1999-2002. The highest increase in the grain yield was observed on plots with
heavy harrowing (variant C).

REFERENCES

system effects under moist cool conditions in Switzerland. Soil Till. Res. 78, 171-183.

plonowanie oraz wybrane wskaźniki architektury lanu kulki odmian pszenicy jarej [Influence
of different levels of nitrogen fertilization on yielding and selected indices of canopy
arhitecture in several spring wheat cultivars]. Pam. Puł. 142, 31-41 [in Polish].

uprawy roli na fizyko-chemiczne właściwości gleby [Effect of long-term application of tillage
systems on physical and chemical properties of soil]. Fragm. Agron. 1(93), 7-13 [in Polish].

a właściwości fizyczne gleby oraz plonowanie pszenicy oziomej i grochu [Influence of
differentiated soil tillage on the physical properties of soil and yielding of winter wheat and

pszenicy jarej w zależności od nawożenia azotowego [Yield quantity and quality in some
spring wheat cultivars in relation to nitrogen fertilization]. Ann. Univ. Mariae Curie-
Skłodowska, Sect. E, Agricultura 57, 99-103 [in Polish]

Response of spring wheat...

Streszczenie. Ograniczenie kosztów produkcji roślinnej oraz względy ekologiczne zmuszają rolników do licznych modyfikacji w uprawie roli. Najczęściej polegają one na spłycaniu orek oraz zastępowaniu ich uprawkami nieodwracającymi roli. Celem badań było określenie wpływu płuńnego i bezorkowego systemu uprawy roli oraz dwóch poziomów nawożenia mineralnego na plonowanie pszenicy jarej w drugiej rotacji płodoznawczej ziemniak – pszenica jara – groch siewny forma jadalna – pszenica ozima. Badania przeprowadzono w latach 2003-2006 na glebie płuwej wytworzonej z lessu, zaliczanej do kompleksu przydatności rolniczej pszennego dobrego. Jesienna uprawa roli pod pszenicę jara odmiany Helia obejmowała następujące zabiegi uprawowe: A – orka przedzimowa (18-22 cm), B – kultywatorowanie (10-15 cm), C – bronowanie broniącą (8-10 cm). Wiosną na wszystkich obiektach wykonywano bronowanie, kultywatorowanie, bronowanie, siew i bronowanie. Drugim czynnikiem badawczym było nawożenie, występujące na dwu poziomach: 117,3 kg NPK (50 kg N, 17,5 kg P, 49,8 kg K) i 175,9 kg NPK (75 kg N, 26,2 kg P, 74,7 kg K). Przeprowadzone badania wykazały, iż zastąpienie orki przedzimowej kultywatorowaniem (B) lub bronowaniem roli broniącą (C) skutkowało nieistotnym statystycznie obniżeniem plonu – odpowiednio o 4,3% i 7,1% – oraz pogorszeniem elementów jego struktury. Na glebie płuwej wytworzonej z lessu zwiększenie nawożenia azotowego, potasowego i fosforowego o 50% nie różniło istotnie plonu pszenicy jarej oraz jego składowych. W warunkach wyższego poziomu nawożenia plon zwiększył się o 4,1%. Plonowanie pszenicy jarej istotnie modyfikowały tylko warunki pogodowe w poszczególnych latach badań. W drugiej rotacji płodoznawczej w wszystkich wariantach doświadczenia wykazano wzrost plonu oraz elementów jego struktury w porównaniu z wynikami badań z lat 1999-2002. W związku z powyższym można wnioskować, iż pszenica jara dobrze toleruje uproszczenia w uprawie roli polegające na wykonaniu płytkich uprawek nieodwracających roli.

Słowa kluczowe: potrzeby nawozowe, produkcyjność, pszenica jara, uprawa konserwująca

Accepted for print – Zaakceptowano do druku: 17.07.2013

For citation – Do cytowania: