Detection of TBEV RNA in *Ixodes ricinus* ticks in north-eastern Poland

Beata Biernat¹, Stella Cieniuch¹, Joanna Stańczak¹

¹ Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Poland

Abstract

TBEV (Flaviviridae, *Flavivirus*) is an etiologic agent of tick-borne encephalitis (TBE), the most important arboviral human infection involving the central nervous system. The disease is endemic in a zone extending from central and eastern Europe to Siberia and Japan, and corresponds to the distribution of the ixodid ticks, which act both as the vectors and reservoir of TBEV. Humans acquire infection mainly by the bite of an infected tick. A continuous increase of TBE cases throughout Europe has been observed over a period of 30 years. The objective of this study was a preliminary determination of the infection level of ticks collected in north-eastern Poland, the endemic area of TBE. Questing *I. ricinus* ticks (adults, nymphs and larvae) were collected by flagging the lower vegetation in 55 locations in Poland in 2006–2009. A total of 2,075 ticks (676 females, 555 males, 799 nymphs and 45 larvae) were collected and examined for the presence of RNA TBEV by nested RT-PCR. The average number of ticks in one pool was 6.98. The minimum infection rate of ticks with TBEV was estimated in the total area as 0.96%. TBEV RNA was detected in all of the investigated developmental stages of ticks. The prevalence of viral infection in ticks is a useful indicator of TBE virus circulation, and may be used for risk assessment of the degree of natural focus activity and of the risk to contact TBE in a particular natural habitat.

Key words

Ixodes ricinus, TBEV, tick borne encephalitis virus, nRT-PCR, Poland

INTRODUCTION

Tick-borne encephalitis (TBE) is a viral zoonotic disease caused by the TBE virus (TBEV) belonging to the tick-borne flavivirus group, family Flaviviridae, genus *Flavivirus*. This is the most important tick-transmitted arbovirus of human pathogenicity in Europe and Asia. TBE is an endemic disease in a zone extending from central and eastern Europe to Siberia and Japan, and corresponds to the distribution of the ixodid ticks, which act both as the vectors and reservoir of TBEV. TBEV in nature is transmitted by hard ticks (Ixodidae), almost exclusively *Ixodes ricinus* and *I. persulcatus* [1]. Humans acquire the infection by the bite of an infected tick. Infection through the raw milk of goats, sheep and cattle is rare [2]. A continuous increase in the incidence of TBE throughout Europe has been observed over a period of 30 years. TBEV is the most important and widespread tick-borne arbovirus in Europe, causing more than 3,000 human cases of the disease annually [3, 4]. Süss [5] reports a nearly 400% increase of reported TBE morbidity in Europe between 1974 – 2004, and TBE can now be found in new regions; TBEV is present in at least 25 European and 7 Asian countries [6, 7]. The first cases of human TBE in Poland were reported in the Białowieża Primeval Forest over 50 years ago [8]. In the recent years, since the sudden and not entirely explained increase in the incidence of TBE in 1993, Poland recorded annually from 101 (in 1999) to 339 (in 2003) new cases of this disease. Based on the analysis of TBE cases in the years 1999 – 2004, it has been concluded that 93% of them were reported in the Provinces of: Podlaskie, Warmińsko-Mazurskie, Mazowieckie, Dolnośląskie and Opolskie [9], but little is known about the occurrence of TBEV in native *Ixodes ricinus* populations. The objective of this study was a preliminary determination of the infection of ticks collected from vegetation in north-eastern Poland, the endemic area of TBE.

MATERIALS AND METHOD

Tick collecting. Unfed ticks (adults, nymphs and larvae) were collected by flagging the lower vegetation in north-eastern Poland in the years 2006 – 2009. There were set 55 capture stations, located in the 35 UTM (Universal Transverse Mercator) squares system which splits Europe into 10-km squares, including over 3,000 squares in Poland.

A total of 2,075 ticks were collected in northern and north-eastern Poland in the following Provinces: Pomorskie (UTM squares CE: 18, 25, 35; CF: 06, 16, 17, 24, 25, 30, 31, 32, 33, 34, 43, 44, 72, 92; XA: 71), Warmińsko-Mazurskie (DE: 25, 65; DF: 00, 10, 21; EE: 34, 36, 38, 39, 58, 69) and Podlaskie – mainly Białowieża Primeval Forest (FD: 69, 75, 84, 85, 94) (Fig. 1).

Ticks were sorted according to the collecting site, stage of development and sex, placed in pools of not more than 20 ticks in a mixture of phenol and chaotropic salts (Fenozol, A&A Biotechnology) and frozen at -20°C.

RNA extraction. After homogenisation in Fenozol with glass pearls using IKA Ultra Turrax Tube Disperser, total RNA was extracted by the phenol–chloroform method according to the protocol of A&A Biotechnology, and frozen at -80°C for further investigation.

Nested RT-PCR (reverse transcription-polymerase chain reaction): Reverse transcription reaction. Reverse transcription reactions were performed as described previously [10]. To make cDNA, 5 µl RNA, 5 µl 0.5 mM dNTP’s mixture...
Nested PCR. For nested PCR, two pairs of primers were used: 1) 5'-CTCTTTGCAGACTGTCCAGG-3', 2) 5'-GCCTTTGCT(C,T)CGGA-3'. 3) 5'-CCTTTAG(A,G)ATGGCCTT-3', 4) 5'-CGGA(C,T)AGCATTAGCAGGGCGT-3') for the 5'-NCR and the 5'-terminus of the C protein coding region, which are highly conserved among the TBEV isolates [11]. PCR reactions were carried out in a reaction mixture that contained: 2.0 µl of cDNA template, 0.5 U (0.5 µl) Taq polymerase RUN (A&A Biotechnology), 2.0 µl of 10 × PCR reaction buffer with Mg²⁺, 2.0 µl of 2.5 mM dNTPs mixture (MBI Fermentas), 0.5 µl of 10 µM primer (1,2 in the first round and 3 and 4 in the second) and nuclease free water to give a total volume 20 µl. In this assay, the size of the first round amplification product was 175 nucleotides and that of the second round amplification – 128 nucleotides. For the second round, 1 µl of product of the first round was used. Both amplification rounds were performed under the same conditions: 1 min at 96 °C for initial denaturation, followed by 38 cycles: 1 min at 92 °C denaturation, 1 min at 37 °C annealing, 2 min at 72 °C extension and 7 min final extension at 72 °C [12].

DNA sequencing. Amplification products were analysed by electrophoresis in 1.5% agarose gel stained with ethidium bromide. One positive (TBEV Langat strain, courtesy of dr Ch. Klaus, Friedrich Loeffler Institute, Jena, Germany) and 2 negative (sterile RNase-free water instead of tick RNA after the RT reaction and DDW instead of cDNA in nested PCR reactions) controls were run with each PCR reaction.

RESULTS

Altogether 2075 Ixodes ricinus ticks were tested: 676 females, 555 males, 799 nymphs and 45 larvae in 301 pools, of which 20 were RNA TBEV-positive in the nRT-PCR assay (6.73%).

-Amplification products were analysed by electrophoresis in 1.5% agarose gel stained with ethidium bromide. One positive (TBEV Langat strain, courtesy of dr Ch. Klaus, Friedrich Loeffler Institute, Jena, Germany) and 2 negative (sterile RNase-free water instead of tick RNA after the RT reaction and DDW instead of cDNA in nested PCR reactions) controls were run with each PCR reaction.

RESULTS

Altogether 2075 Ixodes ricinus ticks were tested: 676 females, 555 males, 799 nymphs and 45 larvae in 301 pools, of which 20 were RNA TBEV-positive in the nRT-PCR assay (6.73%).
(Tab. 1). Among the 35 UTM squares tested, ticks were found in 15 squares (Fig. 1) which constitutes 42.85% of the tested area.

Positive results were noted in all investigated Provinces. TBEV RNA was detected in all of the investigated developmental stages of ticks. The average number of ticks in one pool was 6.98 and average number of ticks in one positive pool: 8.2. The total number of ticks in infected pools was 164 (102 females, 19 males, 30 nymphs and 13 larvae). Provided that each positive pool always contained only one infected specimen, the minimum infection rate (MIR) of ticks with TBEV was calculated as 0.96%.

In adult ticks, the MIR was 1.21% and was higher in females than in males (1.77% and 0.54%, respectively), whereas in nymphs the MIR was 0.50%. For the first time in Poland, TBEV RNA was detected in all of the investigated Provinces of Wielkopolskie, Zachodniopomorskie and Pomorskie [17]. Relatively high MIR was noted in the Podlaskie Province of 1.29% and Warmińsko-Mazurskie (1.55%) Provinces which for many years have been considered to be highly endemic for many years (1.29%) and Warmińsko-Mazurskie (1.55%) Provinces which for many years have been considered to be highly endemic

The specificity of the obtained amplification products was confirmed by the sequence analysis of 20% of randomly chosen samples. All the obtained sequences were 100% identical to each other, and 100% homologous to the sequences deposited in the GenBank: strain Ljubljana JQ654701.1, Kumlinge GU183380.1 and Neudoerfl U27495.1.

DISCUSSION

The obtained results confirm the presence of TBEV endemic foci in all 3 Provinces: Podlaskie, Warmińsko-Mazurskie and Pomorskie [15]. Until the publication of the present study, in Poland, the research for the presence of TBEV in ticks had been conducted mostly in the Lublin Province [14] and resulted in the isolation of one strain of TBEV. The minimum infection rate with TBEV in ticks from this region was estimated at 1.8%. A subsequent study on I. ricinus from the Lublin Province, which involved the use of nRT-PCR as the detection method, resulted in a similar minimum infection rate value of 1.6% [15]. Also, parallel tests of raw milk conducted in the same region showed the presence of TBEV RNA in about 20% of tested sheep and goat milk samples, and in more than 11% of tested cow milk samples [16]. Studies on the detection of TBEV RNA by molecular methods of nRT-PCR were also conducted in the Provinces of Wielkopolskie, Zachodniopomorskie and Pomorskie [17]. Relatively high MIR was noted in the Podlaskie (1.29%) and Warmińsko-Mazurskie (1.55%) Provinces which for many years have been considered to be highly endemic [14]. In Pomorskie Province, the minimum infection rate is currently 0.73% (Tab. 1). In 2006 – 2010, there were 10 clinical cases of human TBE recorded in this region, 7 of which were founded in Paproć district [18]. In the presented study, 53 ticks were collected in this district; however, all of them
were TBEV-negative. No new cases of TBE were recorded at this time in Starogard Gdański district where Makówka et al. [17] showed that 7.9% of tick pools were positive; the MIR, however, was not calculated. In the current study, the MIR of ticks from this region was 1.12%, and 8.82% of tick pools were positive. Also, research conducted in recreational areas within the administrative boundaries of the Tri-city (Gdańsk: CF33, 43; Sopot: CF43; Gdynia: CF34) (Fig. 1) did not show any TBEV-infected ticks, even though about 28% of the whole ticks collection was tested; furthermore, no new cases of human TBE were recorded at this time [18]. In Podlaskie Province, where almost half of the Polish human cases are registered, the MIR was 1.29%. On the other hand, the study by Kondrusik et al. [19] concerning the same Province and involving the use of real-time PCR as the detection method, showed the MIR at 0.16%.

Analysing the results of the investigation of ticks for the presence of TBEV, Stefanoff et al. [20] showed that the prevalence of TBEV in ticks tends to be higher in studies using nested RT-PCR than real time PCR as the method for viral RNA detection. In the countries neighbouring with Poland, studies on the prevalence of TBEV in ticks were most widely conducted in Germany. In the State of Baden-Württemberg, south-west Germany, the percentage of infected ticks was 0% – 2.3%, as determined by nested RT-PCR [21]. A similar result was obtained in the neighbouring State of Bavaria where the percentage of infected ticks was 0.5% – 2.0% [22] and in Mecklenburg, northern Germany – 2.2% [23]. The study of I. ricinus from the Krkonose Mountains in the Czech Republic, involving the use of real-time PCR, indicated the presence of TBEV RNA in 0.36 % of the ticks [24]. In the central part of Lithuania, 3,234 ticks were tested for the presence of TBEV RNA by nested RT-PCR. The prevalence of infected ticks was only 0.2%, but the collection sites were selected at random, not focusing on known TBEV foci [25].

CONCLUSIONS

Despite the fact that the prevalence of infected ticks may change in a given region depending on the season as well as over the years [26], the presented study shows the presence of TBEV RNA in ticks from the areas where human TBE cases were recorded, and the presence of this pathogen was detected in the vector. The prevalence of viral infection in ticks can be a useful indicator of TBE virus circulation, and may be used for risk assessment of the degree of natural focus activity and the risk to contract TBE in a particular natural habitat. Precise designation of foci in the squares of the UTM system is an important contribution for the determination of the distribution of infected vectors.

REFERENCES