PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 2 |
Tytuł artykułu

Optimized microwave-assisted extraction of 6-gingerol from Zingiber officinale Roscoeand evaluation of antioxidant activity in vitro

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background. 6-Gingerol is one of the most pharmacologically active and abundant components in ginger, which has a wide array of biochemical and pharmacologic activities. In recent years, the application of microwave-assisted extraction (MAE) for obtaining bioactive compounds from plant materials has shown tremendous research interest and potential. In this study, an efficient microwave-assisted extraction (MAE) techniąue was developed to extract 6-gingerol from ginger. The extraction efficiency of MAE was also compared with conventional extraction techniques. Material and methods. Fresh gingers (Zingiber officinale Rosc.) were harvested at commercial maturity (originally from Shandong, laiwu, China). In single-factor experiments for the recovery of 6-gingerol, proper ranges of ratio of liquid to solid, ethanol proportion, microwave power, extraction time were determined. Based on the values obtained in single-factor experiments, a Box-Behnken design (BBD) was applied to determine the best combination of extraction variables on the yield of 6-gingerol. Results. The optimum extraction conditions were as follows: microwave power 528 W, ratio of liquid to solid 26 mL g1, extraction time 31 s and ethanol proportion 78%. Furthermore, more 6-gingerol and total polyphenols contents were extracted by MAE than conventional methods including Maceration (MAC), Stirring Extraction (SE), Heat reflux extraction (HRE), Ultrasound-assisted extraction (UAE), as well as the antioxidant capacity. Conclusion. Microwave-assisted extraction showed obvious advantages in terms of high extraction efficiency and antioxidant activity of extract within shortest extraction time. Scanning electron microscopy (SEM) images of ginger powder materials after different extractions were obtained to provide visual evidence of the disruption effect. To our best knowledge, this is the first report about usage of MAE of 6-gingerol extraction from ginger, which could be referenced for the extraction of other active compounds from herbal plants.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
13
Numer
2
Opis fizyczny
p.155-168,fig.,ref.
Twórcy
autor
  • College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
  • Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
  • Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, 100083 Beijing, China
autor
  • College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
  • Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
  • Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, 100083 Beijing, China
  • School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, China
autor
  • College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
  • Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
  • Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, 100083 Beijing, China
autor
  • College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
  • Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
  • Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, 100083 Beijing, China
autor
  • College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
  • Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
  • Research Center for Fruit and Vegetable Processing Engineering, Ministry of Education, 100083 Beijing, China
Bibliografia
  • Aspé E., Femández K., 2011. The effect of different extraction techniques on extraction yield, total phenolic, and antiradical capacity of capacity of extracts form Pinus radiata Bark. Ind. Crops Prod. 34 (1), 838-844.
  • Abdel-Aziz H.A., Windeck T., Płoch M., Verspohl E.J., 2006. Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur. J. Pharmacol. 530 (1-2), 136-143.
  • Ali B.H., Blunden G., Tanira M.O., Nemaar A., 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chen Toxicol. 46 (2), 409-420.
  • Balladin D.A., Headley O., Yen I.C., McGaw D.R., 1998. High pressure liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe). Renew Energ. 13 (4), 531-536.
  • Ballard T.S., Mallikarjunan P., Zhou K., O’Keefe S., 2010. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 120 (4), 1185-1192.
  • Beejmohun V., Fliniaux O., Grand E., Lamblin F., Bensaddek L., Christen P., Kovensky J., Fliniaux M., Mesnard F., 2007. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem. Anal. 18 (4), 275-282.
  • Bhattarai S., Trap V.H., Duke C.C., 2001. The stability of gingerol and shogaol in aqueous Solutions. J. Pharm. Sci. 90 (10), 1658-1664.
  • Chakraborty D., Bishayee K., Ghosh S., Biswas R., Mandal S.K., Khuda-Bukhsh A.R., 2012. [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug-DNA interaction and expression of certain signal genes in HeLa cells. Eur. J. Pharmacol. 5 (694), 20-29.
  • Cheng X.L., Liu Q., Peng Y.B., Qi L., Li P., 2011. Steamed ginger (Zingiber officinale): Changed Chemical profile and increased anticancer potential. Food Chem. 129 (4), 1785-1792.
  • Dewanto V., Wu X., Adom K.K., Liu R.H., 2002. Thermal Processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50 (10), 3010-3014.
  • Flotron V., Houessou J., Bosio A., Delteil C., Bermond A., Camel V., 2003. Rapid determination of polycyclic aromatic hydrocarbons in sewage sludges using microwave-assisted solvent extraction. J. Chromatogr. A, 999 (1-2), 175-184.
  • Hatano T., Kagawa H., Yasuhara T., Okuda T., 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Buli. 36 (6), 2090-2097.
  • Hayat K., Hussain S., Abbas S., Frooq U., Ding B., Xia S., Jia C., Zhang X., Xia W., 2009. Optimized microwave- assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 70 (1), 63-70.
  • Hayouni E.A., Abedrabba M., Bouix M., Hamdi M., 2007. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 105 (3), 1126-1134.
  • Hemwimon S., Pavasant P., Shotipruk A., 2007. Microwave- assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep. Purif. Technol. 54 (1), 44-50.
  • Jiang H.L., Timmermann B.N., Gang D.R., 2007. Characterization and identification of diarylheptanoids in ginger (Zingiber officinale Rosc.) using high-performance liąuid chromatography/electrospray ionization mass spectrometry. Rapid. Comm. Mass. Spectrom. 21 (4), 509-518.
  • Jolad S.D., Lantz R.C., Solyon A.M., Chen G.J., Bates R.B., Timmermann B.N., 2004. Fresh organically grown ginger (Zingiber offcinale): composition and effects on LPS-induced PGE 2 production. Phytochemistry 65 (13), 1937-1954.
  • Kalia K., Sharma K., Singh H., Singh B., 2008. Effects of extraction methods onphenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP- HPLC. J. Agric. Food Chem. 56 (21), 10129-10134.
  • Khan M.K., Abert-Vian M., Fabiano-Tixier A., Dangles O., Chemat F., 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119 (2), 851-858.
  • Kim E., Min J., Kim T., Lee S., Yang H., Han S., Kim Y., Kwon Y., 2005. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem. Bioph. Res. Co. 335 (2), 300-308.
  • Lee H.S., Seo E.Y., Kang N.E., Kim W.K., 2008. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem. 19 (5), 313-319.
  • Li H., Deng Z., Wu T., Liu R., Loewen S., Tsao R., 2012. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 130 (4), 928-936.
  • Liu Y., Wei S., Liao M., 2013. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response rurface methodology. Ind. Crops Prod. 49, 837-843.
  • Liyana-Pathirana C., Shahidi F., 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93 (1), 47-56.
  • Mandal V., Dewanjee S., Mandal S.C., 2009. Microwave- assisted extraction of total bioactive saponin fraction from Gymnema syhestre with reference to gymnema- genin: a potential biomarker. Phytochem. Anal. 20 (6), 491-497.
  • Mandal V., Mohan Y., Hemalatha S., 2008. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J. Pharm. Biomed. Anal. 46 (2),322-327.
  • Nigam N., Bhui K., Prasad S., George J., Shukla Y., 2009. [6]-Gingerol induces reactive oxygen species regulated mitochondrial celi death pathway in human epidermoid carcinoma A431 cells. Chem. Biol. Interact. 181 (1), 77-84.
  • Pérez-Serradilla J.A., Castro M.D., 2011. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem. 124 (4), 1652-1659.
  • Pan Y., He C., Wang H., Ji X., Wang K., Liu P., 2010. Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem. 121 (2), 497-502.
  • Proestos C., Komaitis M., 2008. Application of microwave- assisted extraction to the fast extraction of plant phenolic compounds. Int. J. Food Sci. Tech. 41 (4), 652-659.
  • Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26 (9-10), 1231-1237.
  • Romdhane M., Gourdon C., 2002. Investigation in solid-liquid extraction: influence of ultrasound. Chem. Eng. J. 87(1), 11-19.
  • Shukla Y., Prasad S., Tripathi C., Singh M., George J., Kualra N., 2007. In vitro and in vivo modulation of testosterone mediated alterations in apoptosis related proteins by [6]-gingerol. Mol. Nutr. Food Res. 51 (12), 1492-1502.
  • Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16 (3), 144-158.
  • Song J., Li D., Liu C., Zhang Y., 2011. Optimized micro- wave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov. Food Sci. Emerg. 12 (3), 282-287.
  • Sutivisedsak N., Cheng H., Willett J.L., Lesch W.C., Tangsrud R.R., Biswas A., 2010. Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris L.). Food Res. Int. 43 (2), 516-519.
  • Tsubaki S., Sakamoto M., Azuma J., 2010. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chem. 123 (4), 1255-1258.
  • Upadhyay R., Ramalakshmi K., Rao L.M., 2012. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem. 130 (1), 184-188.
  • Wu T., Yan J., Liu R., Marcone M.F., Aisa H.A., Tsao R., 2012. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 133 (4), 1292-1298.
  • Xiao W., Han L., Shi B., 2008. Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Sci. Tech­no!. 62 (3), 614-618.
  • Pan X., Niu G., Liu H., 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 42 (2), 129-133.
  • Yan M., Liu W., Fu Y., Zu Y., Chen C., Luo M., 2010. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem. 119(4), 1663-1670.
  • Yang G., Zhong L., Jiang L., Geng C., Cao J., Sun X., Ma Y., 2010. Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem.-Biol. Interact. 185 (1), 12-17.
  • Zhang B., Yang R., Liu C.Z., 2008. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonicaThunb. Sep. Sci. Technol. 62 (2), 480-483.
  • Zhang G., Hu M., He L., Fu P., Wang L., Zhou J., 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in \itro. Food Bioprod. Process 91 (2), 158-168.
  • Zhou H., Liu C., 2006. Microwave-assisted extraction of solanesol from tobacco leaves. J. Chromatogr. A, 1129 (1), 135-139.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f3a9e406-868a-42ea-9710-e4f674f2d84e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.