Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 1 |
Tytuł artykułu

Sulfur removal from dibenzothiophene by newly isolated Paenibacillus validus strain PD2 and process optimization in aqueous and biphasic (model-oil) systems

Warianty tytułu
Języki publikacji
Dibenzothiophene (DBT) is an organic sulfur compound which remains in oil after hydrodesulfurization (HDS) process and can be removed by biodesulfurization (BDS). A new strain of Paenibacillus validus (strain PD2) was isolated from oil contaminated soils that is able to desulfurize DBT. HPLC analysis and Gibb’s assay showed that this strain was capable to convert DBT to 2-Hydroxybiphenyl (2-HBP) as final product. The presence of dszC gene confirmed that DBT desulfurization occurred through the 4S pathway. Maximum growth and the highest induction in dsz operon obtained in the presence of dimethyl sulfoxide (DMSO) as sole sulfur source. DBT concentration, temperature and pH were optimized statistically for growing and resting cells by using Response Surface Methodology (RSM). All parameters in growing cells had a significant effect on 2-HBP production during BDS of DBT by P. validus PD2, although in resting cells temperature in range of 20–40°C was not a significant factor. Maximum BDS for growing cells was obtained at 0.41 mM DBT concentration, pH 6.92 and temperature 31.23°C. For resting cells, optimum pH, temperature and DBT concentration were 6.62, 27.73°C and 7.86 mM respectively. The results of this study showed that high concentrations of DBT could be desulfurized by P. validus strain PD2 in model-oil. Thus, the isolated strain could be introduced as a proper candidate for biodesulfurization of organic sulfur in the oil industry.
Słowa kluczowe
Opis fizyczny
  • Department of Biology, Faculty of Sciences, University of Isfahan, Hezarjarib Isfahan, Iran
  • Department of Biology, Faculty of Sciences, University of Isfahan, Hezarjarib Isfahan, Iran
  • Department of Biotechnology, Faculty of Advanced Sciences and Technology, University of Isfahan, Hezarjarib Isfahan, Iran
  • Ansari F., P. Prayuenyong and I.E. Tothill. 2007. Biodesulfurization of dibenzothiophene by Shewanella putrefaciens. J. Biol. Phys. Chem. 7: 75–78.
  • Ardakani M.R., A. Aminsefat, B. Rasekh, F. Yazdiyan, B. Zargar, M. Zarei and H. Najafzadeh. 2010. Biodesulfurization of dibenzothiophene by a newly isolated Stenotrophomonas maltophila strain Kho1. WASJ. 10: 272–2778.
  • Bahuguna A., M.K. Lily, A. Munjal, R.N. Singh and K. Dangwal. 2011. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J. Env. Sci. 23: 975–982.
  • Berg J.M., J. Tymoczko and L. Stryer. 2007. Biochemistry. Freeman and company, New York.
  • Borgne S.L. and R. Quintero. 2003. Biotechnological processes for the refining of petroleum. Fuel process technol. 81: 155–169.
  • Bustos-Jaimes I., G. Amador, G. Castorena and S. Le Borgne. 2003. Genotypic characterization of sulfur-oxidative desulfurizing bacterial strains isolated from Mexican refineries. Oil Gas Sci. Technol. 58: 521–526.
  • Caro A., K. Boltes, P. Letón and E. García-Calvo. 2007. Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem. Eng. J. 35: 191–197.
  • Denome S.A., E.S. Olson and K.D. Young. 1993. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843.
  • Derikvand P., Z. Etemadifar and D. Biria. 2014. Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis R1 immobilized cells in a biphasic system. Int. Biodeterior. Biodegrad. 86: 343–38.
  • Derikvand P., Z. Etemadifar and H. Saber. 2013. Optimization of nicotinamide and riboflavin in the biodesulfurization of dibenzothiophene using response surface methodology. BJM. p-ISSN, 2322–5173. 4: 35–40.
  • Etemadifar Z., G. Emtiazi and N. Christofi. 2008. Enhanced desulfurization activity in protoplast transformed Rhodococcus erythropolis. Am. Eurasian J. Agric. Environ. Sci. 3: 285–291.
  • Furuya T., K. Kirimura, K. Kino and S. Usami. 2001. Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium Phlei WU-F1. FEMS Microb. Lett. 24: 129–133.
  • Gallado M.E., A. Fernandez, V.D. Lorenzo, J.L. Garcia and E. Diaz. 1997. Designing recombinant Peudomonas strains to enhance biodesulfurization. J. Bacteriol. 176: 6707–6714.
  • Gou Z., H. Liu, M. Luo, J. Li S Xing and J. Chen. 2002. Isolation and identification of nondestructive desulfurization bacterium. Sci. China Series B: Chem. 45: 521–531.
  • Khurana S., M. Kapoor, S. Gupta and R. Kuhad. 2007. Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian J. Microbiol. 47: 144–152.
  • Kim Y.J., J.H. Chang, K. Cho, H.W. Ryu and Y.K. Chang. 2004. A physiological study on growth and dibenzothiophene (DBT) Desulfurization characteristics of Gordonia sp. CYKS1. Korean J. Chem. Eng. 21: 436–441.
  • Kirimura K., T. Furuya, Y. Nishii, Y. Ishii, K. Kino and S. Usami. 2001. Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterim Bacillus subtilis WU-S2B. J. Biosci. Bioeng. 91: 262–266.
  • Li M.Z., C.H. Squires, D.J. Monticello and J.D. Childs. 1996. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol. 178: 6409–6418.
  • Ma C.Q., J.H. Feng, Y.Y. Zeng, X.F. Cai, B.P. Sun, Z.B. Zhang, H.D. Blankespoor and P. Xu. 2006. Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere. 65: 165–169.
  • Ma X., L. Sun and C. Song. 2002. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal. today. 77: 107–116.
  • Madigan M.T., J.M. Martinko, D.A. and D.P. Clark. 2012. Brock Biology of microorganisms. Benjamin Cummings (eds.), San Francisco.
  • Matsubara T., T. Ohshiro, Y. Nishina and Y. Izumi. 2001. Purification, characterization, and over expression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol. 67: 1179–1184.
  • Mohebali G., A.S. Ball, A. Kaytash and B. Rasekh. 2008. Dimethyl sulfoxide (DMSO) as the sulfur source for the production of desulfurizing resting cells of Gordonia alkanivorans RIPI90A. Microbiology 154: 878–885.
  • Monticello, D.J. 2000. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotech. 11: 540–546.
  • Ohshiro T., Y. Kobayashi, Y. Hine and Y. Izumi. 1995. Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythropolis D-1. Biosci. Biotech. Biochem. 59: 1349–1354.
  • Ratkowsky D., J. Olley, T. McMeekin and A. Ball. 1982. Relationship between temperature and growth rate of bacterial cultures, J. Bacteriol. 149: 1–5.
  • Rhee S.K., J.H. Chang, Y.K. Chang and H.N. Chang. 1998. Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl. Environ. Microbiol. 64: 2327–2331.
  • Setti L., S. Bonoli, E. Badiali and S. Giuliani. 2003. Inverse phase transfer biocatalysis for a biodesulfurization process of middle distillates. BECTH MOCK УH-TA CEP. 44: 80–83.
  • Tan K.T., K.T. Lee and A.R. Mohamed. 2010. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via Response Surface Methodology. Bioresour. technol. 101: 965–969.
  • Yan H., M. Kishimoto, T. Omasa, Y. Katakura, K.I. Suga, K. Okumura and O. Yoshikawa. 2000. Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J. Biosci. Bioeng. 89: 361–366.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.