Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |
Tytuł artykułu

Water pollution characteristics and assessment in different functional zones

Warianty tytułu
Języki publikacji
The investigation of water pollution from mainstream and dominating tributaries at different Hydrological conditions of the Qiantang River, East China, showed that water quality tends to deteriorate from upstream to downstream and possessed severe pollution levels in the dry season rather than the abundant and medium seasons. Analysis of PCA indicated that TN, NO¯₃, NH₃¯N, and TP with maximum values of 18.70, 2.57, 15.50, and 0.80 mg·L-1 were the dominant pollution factors, therein NO¯₃ accounted for the largest percentage of TN (up to 83.1% in various nitrogen species). Domestic sewage and the discharge of poultry and animal feces were the main point source pollution, and fertilizer that flushed into the river leaching from farms possessed the maximum proportion of non-point source pollution associated with NH₃¯N and TP. P mainly came from sewage discharge simultaneously. In addition, the Dayuan River was the tributary with the most severe pollution and owned significantly higher TN and NH₃¯N concentrations than that in mainstream and the medium values, reaching up to 3.17 and 8.99 mg·L⁻¹. Low DO concentration should be an important cause for denitrification from NO¯₃ to NO¯₂ and NH₃¯N in the Dayuan River.
Słowa kluczowe
Opis fizyczny
  • School of Life Sciences, Nanjing University, Nanjing, P. R. China
  • State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, P. R. China
  • School of Life Sciences, Nanjing University, Nanjing, P. R. China
  • School of Life Sciences, Nanjing University, Nanjing, P. R. China
  • 1. HILL R. Denitrification in the nitrogen budget of a river ecosystem. Nature 281, 291, 1979.
  • 2. HAMILTON S. K., TANK J. L., RAIKOW D. F., WOLLHEIM W. M., PETERSON B. J., WEBSTER J. R. Nitrogen uptake and transformation in a Midwestern U.S. stream: A stable isotope enrichment study. Biogeochemistry 54, 297, 2001.
  • 3. DAMO R., ICKA P. Evaluation of water quality index for drinking water. Pol. J. Environ. Stud. 22, 1045, 2013.
  • 4. FILGUEIRAS A. V., LAVILLA I., BENDICHO C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci. Total Environ. 330, 115, 2004.
  • 5. DEUTSCH B., MEWES M., LISKOW I., VOSS M. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org. Geochem. 37, 1333, 2006.
  • 6. HUANG F., WANG X. Q., LOU L. P., ZHOU Z. Q., WU J. P. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 44, 1562, 2010.
  • 7. CHEN S. J., GAO X. J., MAI B. X., CHEN Z. M., LUO X. J., SHENG G. Y., FU J. M., ZENG E. Y. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: Levels, distribution and potential hydrodynamic influence. Environ. Pollut. 144, 951, 2006.
  • 8. CHEN Y. Y., ZHU L. Z., ZHU R. B. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. J. Hazard. Mater. 141, 148, 2007.
  • 9. ZHOU R. B., ZHU L. Z., YANG K., CHEN Y. Y. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. J. Hazard. Mater. A 137, 68, 2006.
  • 10. ZHOU R. B., ZHU L. Z., CHEN Y. Y., KONG Q. X. Concentrations and characteristics of organochlorine pesticides in aquatic biota from Qiantang River in China. Environ. Pollu. 151, 190, 2008.
  • 11. ZHOU R. B., ZHU L. Z., CHEN Y. Y. Levels and source of organochlorine pesticides in surface waters of Qiantang River, China. Environ. Monit. Assess. 136, 277, 2008.
  • 12. SU S. L., LI D., ZHANG Q., XIAO R., HUANG F., WU J. P. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Res. 45, 1781, 2011.
  • 13. FANG X. B., ZHANG J. Y., CHEN Y. X., XU X. G. QUAL2K model used in the water quality assessment of Qiantang river, china. Water Environ. Res. 80, 2125, 2008.
  • 14. ZHEJIANG ENVIRONMENTAL PROTECTION BUREAU (ZEPB). twelve-five planning for water pollution prevention in qiantang river watershed. Hangzhou. 2006 [In Chinese].
  • 15. ZHEJIANG ENVIRONMENTAL PROTECTION BUREAU (ZEPB). Scheme for River Function Zoning and Water Environment Zoning of Zhejiang Province Document of Zhejiang Government, Hangzhou. 2006 [In Chinese].
  • 16. WEI F. S., QI T. Q. Methods for the Examination of Water and Wastewater. China Environmental Science Press, Beijing, 4th edn., 2002 [In Chinese].
  • 17. MEGLEN R. R. Examining large databases: a chemometric approach using principal component analysis. J. Chemometr. 5, 163, 1991.
  • 18. WINTER T. C., MALLORY S. E., ALLEN T. R., ROSENBERRY D. O. The use of principal component analysis for interpreting ground water hydrographs. Ground Water 38, 234, 2000.
  • 19. PADMANABHA IYER C. S., SINDHU M., KULKARNI S. G., TAMBEB S. S., KULKARNI B. D. Statistical analysis of the physico-chemical data on the coastal waters of Cochin. Sci. Total Environ. 5, 324, 2003.
  • 20. GARCÁ J. H., LI W. W., ARIMOTO R., OKRASINSKI R., GREENLEE J., WALTONA J., SCHLOESSLINB C., SAGE S. Characterization and implication of potential fugitive dust sources in the Paso del Norte region. Sci. Total Environ. 325, 95, 2004.
  • 21. BAPTISTA NETO J. A., SMITH B. J., MCALLISTER J. J. Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ. Pollut. 109, 1, 2000.
  • 22. MIL-HOMENS M., STEVENS R. L., ABRANTESA F., CATO I. Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont. Shelf Res. 26, 1184, 2006.
  • 23. GLASBY G. P., SZEFER P., GELDON J., WARZOCHA J. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci. Total Environ. 330, 249, 2004.
  • 24. MINISTRY OF ENVIRONMENTAL PROTECTION OF THE PEOPLE'S REPUBLIC OF CHINA (MEPC). Environmental quality standard for surface water. 2002 [In Chinese].
  • 25. RULE J. H. Assessment of trace element geochemistry of Hampton Roads harbor and lower Chesapeake Bay area sediments. Environ. Geol. 8, 209, 1986.
  • 26. TAYLOR S. R., MCLENNAN S. M. The geochemical evolution of the continental crust. Rev. Geophy. 33, 241, 1995.
  • 27. LOSKA K., CEBULA J., PELCZAR J., WIECHULA D., KWAPULINSKI J. Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Poll. 93, 347, 1997.
  • 28. CHEN J. S., GAO X. M., HE D. W., XIA X. H. Nitrogen contamination in the Yangtze River system, China. J. Hazard. Mater. 73, 107, 2000.
  • 29. CARACO N. F., COLE J. J. Human impact on nitrate export: an analysis using major world rivers. Ambio 28, 167, 1999.
  • 30. WU J., YU Z. M., QING T. M. Studies on nitrogen pollution characteristics in Hangzhou section of the Qiantang River. Resources and environment in the Yangtze Basin, 12, 552, 2003 [In Chinese].
  • 31. SMOLDERS A. J. P., LUCASSEN E. C. H. E. T., BOBBINK R., ROELOFS J. G. M., LAMERS L. P. M. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98, 1, 2010.
  • 32. RICHEY J. S., MCDOWELL W. H., LIKENS G. E. Nitrogen transformations in a small mountain stream. Hydrobiologia 124, 129, 1985.
  • 33. HAMILTON S. K., LEWIS JR W. M. Stable carbon and nitrogen isotopes in algae and detritus from the Orinoco River floodplain, Venezuela. Geochim. Cosmochim. Ac. 56, 4237, 1992.
  • 34. FENG L. J., XU J., XU X. Y., ZHU L., XU J., DING W., LUAN J. Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation. Int. Biodeter. Biodegr. 71, 72, 2012.
  • 35. JENSEN K., SLOTH N. P., RISGAARD-PETERSEN N., RYSGAARD S., REVSBECH N. P. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl. Environ. Microb. 60, 2094, 1994.
  • 36. REVSBECH N. P., JACOBSEN J. P., NIELSEN L. P. Nitrogen transformations in microenvironments of river beds and riparian zones. Ecol. Eng. 24, 447, 2005.
  • 37. RYSGAARD S., RISGAARD-PETERSEN N., SLOTH N. P., JENSEN K., NIELSEN L. P. Oxygen Regulation of Nitrification and Denitrification in Sediments. Limnol. Oceanogr. 39, 1643, 1994.
  • 38. ZHOU S., SAKIYAMA Y., RIYA S., SONG X. F., TERADA A., HOSOMI M. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique. Sci. Total Environ. 430, 93, 2012.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.