No associations between rs2030712 and rs7456421 single nucleotide polymorphisms of HIPK2 gene and prevalence of chronic kidney disease. Results of a family-based study

Joanna Żywiec1, Katarzyna Kiliś-Pstrusińska2, Janusz Gumprecht1, Władysław Grzeszczak1, Aleksandra Werner3

1 Department of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, Katowice, Poland
2 Department of Paediatric Nephrology, Medical University, Wrocław, Poland
3 Institute of Computer Science, Silesian University of Technology, Gliwice, Poland

Abstract

Introduction: Different pathological processes can deteriorate kidney function and cause irreversible degeneration of its structure; however, an optimal way to inhibit or slow down progression of renal damage is unfortunately not available. In the light of promising data concerning homeodomain-interacting protein kinase 2 (HIPK2) upregulation in damaged kidneys animal model, and increased levels of this protein in patients with various kidney diseases, the influence of rs7456421 and rs2030712 single nucleotide polymorphisms of HIPK2 gene on chronic kidney disease incidence and progression was studied.

Material and methods: In 109 family ‘trios’, consisting of an affected child with CKD (48 females and 61 males, mean age 15.5 ±6.45 years) and both his/her parents, using Transmission Disequilibrium Test allele was used for the transfer of aforementioned SNPs from biological parents to their affected offspring.

Results: No statistical significance of allele transfer was found, which means that there were no associations between rs7456421 and rs2030712 SNPs of HIPK2 gene and the incidence of renal dysfunction. Multiple stepwise regression showed a history of chronic glomerulonephritis (OR=17.3), chronic interstitial nephritis without urinary tract defect (OR=4.4), and CT genotype of rs2030712 SNP (OR=2.6) as determinant of a more rapid progression of renal dysfunction, in contrast to the protective action of body mass index (OR=0.86).

Conclusions: On the basis of TDT results, the influence of rs7456421 and rs2030712 SNPs of HIPK2 gene on prevalence of chronic kidney disease was not identified. Further studies are needed to ascertain the tight relationships of HIPK2 gene polymorphisms with CKD of different etiologies.

Key words

HIPK2 gene polymorphism, chronic kidney disease, family-based study

INTRODUCTION

Most chronic renal disorders, regardless of etiology, finally develop certain irreversible degenerations, among them fibrosis. In the light of epidemiological evidence for high incidence of end-stage renal failure (ESRD), it is important to find an efficient key to inhibit or slow down its progression. In March 2012, breaking-news for nephrologists was published in Nature Medicine when an American-Chinese team of scientists team the significant influence of homeodomain-interacting protein kinase 2 (HIPK2) on the natural history of kidney fibrosis, which promised new directions for the therapy of ESRD patients [1]. The researchers ascertained higher HIPK2 expression both in a mice model of HIV-nephropathy (Tg26) and in the kidneys of patients with focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, and IgA nephropathy. They claimed that initial factors, such as DNA-damage or oxidative stress, cause HIPK2 expression increase, activating many different signaling pathways which may result in kidney fibrosis.

Objective: To estimate the influence of two selected polymorphisms of HIPK2 gene on the occurrence and progression of chronic kidney disease (CKD). For this purpose, there were detected single nucleotide polymorphisms (SNPs) rs7456421 and rs2030712 of gene HIPK2 (mapped on chromosome 7, at 7q32-q34 according to Entrez Gene) in 109 family ‘trios’ consisting of an affected child with CKD and both his/her parents. The study was a continuation of a previously started scientific project aimed at determining genetic factors affecting nephropathy incidence and progression according to a family-based study. The protocol of the study was approved by the Ethics Committee of the Medical University of Silesia. All measurements were performed with the conscious agreement of the patients and their legal guardians (informed consent was obtained from parents if their children were under the age of 16, and both by parents and children at the age of 16-18 years).
MATERIAL AND METHODS

The study was performed on a group of 109 patients with chronic kidney disease (48 females and 61 males, mean age 15.5 ± 6.45 years) and 109 pairs of their biological parents. Chronic interstitial nephritis (CIN) was the reason conducive to CKD for most of the patients (72.5%); in 62 (78%) of them, the urinary tract defect was a contributing or underlying condition. Another 30 patients (27.5%) suffered from chronic glomerulonephritis (CGN). Renal biopsy had been performed in the past in 22% patients for diagnostic purposes. Forty-two patients (38%) suffered additionally from hypertension.

At the time of the study, the median glomerular filtration rate measured according to the Schwartz (for children), or respectively by MDRD (Modification of Diet in Renal Disease) formula, was 28.2 ml/min. During the study, 51 (46.8%) patients were conservatively treated, whereas the others remained on chronic renal replacement therapy – 33 patients underwent continuous ambulatory peritoneal dialysis, 17 patients – haemodialysis, and 8 patients – kidney transplantation.

Based on patients' medical records (mean observation time period 7.1 ± 5.7 years) and available serum creatinine concentration data, the progression of chronic kidney disease was estimated, and the patients subsequently divided into two groups:

Those with rapid CKD progression, 54 (49.5%) patients with replacement therapy onset within a 5-year observation period from stage 2 CKD diagnosis and/or with doubled serum creatinine concentration, where the index 1/serum creatinine concentration was below 0.3.

55 (50.5%) patients were categorised with slow CKD progression course.

The mean value of the first and the last documented serum creatinine concentration were 2.25 (±2.36) and 4.66 (±3.0) mg/dl, respectively.

All study measurements were made in the Laboratory of the Department of Internal Diseases, Diabetology and Nephrology in Zabrze (Medical University of Silesia). For all study participants, genomic DNA was isolated from peripheral blood leukocytes with a DNA isolation kit (Epicentre Technologies Corporation, Madison, Wisconsin, USA) in an own laboratory modification. Fluorescence-labelled probes of a TaqMan Pre-designed SNP Genotyping Kit (Applied Biosystems Company, Foster City California, USA), designed for rs7456421 and rs2030712 SNPs measurements, were used for chosen polymorphisms genotyping. PCR and allele identifications were performed in a 7300 Real Time PCR of the Applied Biosystems Company.

After initial excluding as non-informative those families in which both parents were homozygotes, the Transmission Disequilibrium Test (TDT) was performed which estimates the allele transfer from biological parents to their affected offspring.

All statistical calculations were performed with Microsoft Office Excel 2003 and the Statistica 7 software package, with p<0.05 as a statistically significant value.

RESULTS

rs7456421 SNP of HIPK2 gene. The disposition of rs7456421 SNP genotype in the entire study group was as follow: 61.1% GG, 8.3% CC and 30.6% GC. There were differences in genotype distribution between subgroups with different CKD etiology (Tab. 1) but TDT did not revealed statistical significances of allele transfer in any cases (Tab. 3).

rs2030712 SNP of HIPK2 gene. Table 2 presents the distribution of genotypes in the group of all patients and regarding etiology subgroups. For entire study group: CC 31.1%, TT 17.9% and CT 51%, and respectively for CGN i CIN subpopulations: CC 46.4% vs 25.6%, TT 7.2% vs 21.8% and CT 46.4% vs 52.6% (Tab. 2). Based on the TDT test results, no correlations were found between rs2030712 SNP allele transfer and chronic kidney disease incidence (Tab. 4).

<table>
<thead>
<tr>
<th>Allele C transmitted observed/ expected</th>
<th>Allele G transmitted observed/ expected</th>
<th>chi²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients 40/42 44/42 44/42 40/42</td>
<td>0.1905 0.6625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGN 11/10.5 10/10.5 10/10.5 11/10.5</td>
<td>0.0476 0.8272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN 29/31.5 34/31.5 34/31.5 29/31.5</td>
<td>0.3968 0.5287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN without UTD 8/6 4/6 4/6 8/6</td>
<td>1.3333 0.2482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN with UTD 21/25.5 30/25.5 30/25.5 21/25.5</td>
<td>1.5882 0.2076</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele C transmitted observed/ expected</th>
<th>Allele T transmitted observed/ expected</th>
<th>chi²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients 45/44.5 44/44.5 44/44.5 45/44.5</td>
<td>0.0112 0.9156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGN 14/11 8/11 8/11 14/11</td>
<td>1.6364 0.2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN 31/33.5 36/33.5 36/33.5 31/33.5</td>
<td>0.3731 0.5413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN without UTD 8/6.5 5/6.5 5/6.5 8/6.5</td>
<td>0.6923 0.4054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN with UTD 23/27 31/27 31/27 23/27</td>
<td>1.1852 0.2763</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The results of multiple stepwise regression demonstrated the influence of CKD etiology, body mass index and CT genotype of rs 2030712 SNP on rapid progression of renal dysfunction. Although a history of chronic glomerulonephritis (odds ratio OR=17.3, p=0.000027) or chronic interstitial nephritis without urinary tract defect (OR=4.4, p=0.019) and CT genotype (OR=2.6, p=0.05) causes more rapid worsening of renal function, the body mass index was a protective factor (OR=0.86, p=0.033).

DISCUSSION

The nuclear serine/threonine kinases, which belong to the homeobox-interacting protein kinase (homeodomain-interacting protein kinase, HIPK) family, is identified by Kim et al. in 1998 as a highly evolutionary conserved protein structure in vertebrates (more than 90% homology in the kinase domain and about 70% in homeobox-interacting domain) that influence on homebox proteins and other types of transcription factors as coactivators or corepressors [2, 3]. It regulates by phosphorylation gene transcription during two fundamental biological processes: either embryonic differentiation and development, or cellular response to DNA-damaging agents [3, 4, 5, 6, 7, 8]. During the last fifteen years, from among four HIPK family members (HIPK1, HIPK2, HIPK3 and HIPK4) the functional role of homeodomain-interacting protein kinase 2 (HIPK2) has been defined for the best. HIPK2, called in literature as a ‘multitalent partner for transcription factors in DNA damage and development’ [3], is involved in different pathophysiological pathways by modulating activity of several proteins, among them: tumour suppressor protein p53 and its family members, p53 inhibitor MDM2, CtBP transcriptional co-repressor, bone morphogenetic protein (BMP), TGF-β and beta-catenin regulator axin [3, 4, 5, 9, 10, 11]. It also helps to control the hypoxic response, influences hematopoesis, vasculogenesis, transformation in the axial skeleton and differentiation of neuronal system [12, 13, 14, 15, 16, 17, 18, 19, 20]. There is strong evidence that HIPK2 expression presents a barrier against oncogenic transformation and tumour development [21, 22, 23, 24, 25, 26].

The multipotential role of HIPK2 and direction for future research has been appropriately expressed by Calzado et al. in *Cell Cycle* in 2007 with the words: How can a single kinase fulfill so many different functions? (…) The combined use of experimental approaches from cell biology, biochemistry and genetics will help to unravel further secrets of this ancient protein kinase [4].

The year 2012 revealed important news to renal pathophysiology when a multidisciplinary team from the USA and China identified homeodomain-interacting protein kinase 2 as a key regulator of kidney fibrosis [1]. A higher HIPK2 expression associated with tubulointerstitial injury or fibrosis and glomerulosclerosis were detected in human kidneys with HIV-associated nephropathy (HIVAN), focal segmental glomerulosclerosis (FSGS), diabetic nephropathy and severe IgA nephropathy. The HIPK2 concentration was also higher in the tubulointerstitium of other models of renal fibrosis, i.e. unilateral ureteral obstruction model and a folic acid-induced renal fibrosis model. Studies performed in a mouse model of kidney disease have identified HIPK2-mediated signaling pathways that lead to renal tubular epithelial cell (RTEC) apoptosis, which is a well known hallmark of tubulointerstitial injury. HIPK2 was also found as mediator of podocytes' de-differentiation and regulator of the NF-κB-inflammatory pathway conducive to tissue injury and fibrosis. As demonstrated by Jin et al., knocking out HIPK2 in mice with HIV-associated nephropathy model reduced proteinuria, podocyte hyperplasia and glomerulosclerosis, and led to significantly improved renal function. It was also revealed that reactive oxygen species (ROS) mediate HIV-induced HIPK2 expression and inhibition of ROS diminished kidney injury and fibrosis [1].

The relevance of all these findings gives hope for possible alternation in chronic kidney diseases’ treatment, taking into account HIPK2 as a future therapeutic target. Based on this report, we expected interesting results of HIPK2 polymorphisms analysis in patients with chronic kidney disease. However, the presented family-based study performed on 109 patients with CKD secondary to chronic glomerulonephritis did not demonstrate the influence of rs7456421 and rs 2030712 SNPs of HIPK2 gene on the incidence of renal dysfunction. While the findings of different genotype distribution in respective subgroups (Tab. 1-2) and results of multiple stepwise regression suggested some kind of its potential significance in chronic kidney diseases, it was supposed that the lack of relationship, apart from using TDT, may be due to the relatively small study group. When considering these suggestions, it would be more appropriate in the future to examine more patients.

CONCLUSIONS

On the basis of TDT results, no influence was identified of rs7456421 and rs 2030712 SNPs of HIPK2 gene on prevalence of chronic kidney disease.

The further studies are needed to ascertain the close connections of HIPK2 polymorphisms with CKD of different etiologies.

Acknowledgement

The study was supported by the Medical University of Silesia, Katowice, Poland (KNW-1-006/10).

REFERENCES

