THE EFFECTIVENESS OF DOMESTIC SEWAGE TREATMENT IN A HOUSEHOLD SEWAGE TREATMENT PLANT WITH A MODIFIED GRAVEL AND SAND FILTER

Rozprawa habilitacyjna

Kraków 2013
RADA PROGRAMOWA – RESEARCH COUNCIL

Radomir Adamovský (Praga), Atılım Atilgan (İsparta), Waclaw Bieda, Wilhelm Opitz von Boberfeld (Giessen), Károly Bodnár (Szeged), Jerzy Gruszczynski, Bent Hasholt (Kopenhaga), Jozsef Horvath (Szeged), Dušan Húška (Nitra), Stanisław Krzanowski (przewodniczący), Csaba Juhász (Debrecen), Josep Maria Llop-Torné (Lleida), Antoni T. Miler, Pavel Neuberger (Praga), Ferenc Pál-Fám (Kaposvár), Jan Pawelek, Stefan Pogran (Nitra), Artur Radecki-Pawlik, Jerzy Ratomski, Stanisław Rolbiecki, Czesław Ryczak, Ulas Senyigit (İsparta), Janusz L. Siemiński, Mirosław J. Skibniewski (Maryland-College Park), Stefan Stojko (Lwów), Rastislava Stolišnová (Bratislava), Ryszard Slizowski, Emilio V. Carral Vilariño (Santiago de Compostela), Gerlind Weber (Wiedeń), Stanisław Węglarczyk, Andrzej Woźniak, Zdzisław Wójcicki

Recenzenci: prof. dr hab. inż. Jan Pawelek
prof. dr hab. inż. Janusz Ryszard Rak

ISSN 1732-5587

Monografię wykonano w Katedrze Inżynierii Sanitarnej i Gospodarki Wodnej
Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie

W pracy wykorzystano wyniki badań prowadzonych w ramach projektu badawczego własnego,
finansowanego z Narodowego Centrum Nauki (Ministerstwo Nauki i Szkolnictwa Wyższego),
N N523 411838, realizowanego w latach 2010-2013.

WYDAWCJA – EDITOR

Komisja Technicznej Infrastruktury Wsi PAN w Krakowie
Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich

© Copyright by:
Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich,
ul. św. Jana 28, 31-018 Kraków
SPIS TREŚCI

1. Wprowadzenie .. 11
2. Cel, zakres i tezy pracy ... 13
3. Przegląd literatury ... 17
 3.1. Jakość ścieków bytowych na terenach wiejskich ... 17
 3.2. Potrzeby związane z realizacją przydomowych oczyszczalni ścieków 18
 3.3. Klasyczne filtry piaskowe o przepływie pionowym 24
 3.3.1 Informacje ogólne ... 24
 3.3.2 Charakterystyka materiałów używanych do budowy 37
 3.3.3 Kolmatacja złoża filtracyjnego ... 41
 3.3.4 Redukcja zanieczyszczeń ... 43
4. Opis obiektów badań ... 46
 4.1. Badania modelowe .. 46
 4.1.1 Wstępny model wycinkowy „M1” ... 46
 4.1.2 Model „R1” – komora rozdzielcza ... 49
 4.1.3 Finalny model wycinkowy „M2” ... 51
 4.2. Badania terenowe .. 53
 4.2.1 Położenie obiektu badań .. 53
 4.2.2 Osadnik gnilny ... 54
 4.2.3 Zmodyfikowany filtr zwirowo-piaskowy „F1” .. 55
 4.2.3.1 Uwagi wstępne .. 55
 4.2.3.2 Komora rozdzielcza .. 57
 4.2.3.3 Układ rozprowadzający ścieki ... 59
 4.2.3.4 Warstwy filtracyjne ... 61
 4.2.3.5 Układ napowietrzająco złożone filtracyjne 63
 4.2.3.6 Urządzenia do poboru próbek ... 63
5. Metodyka badań ... 65
 5.1. Uwagi wstępne .. 65
 5.2. Badania modelowe .. 65
 5.2.1 Wstępny model wycinkowy „M1” ... 65
 5.2.2 Model „R1” – komora rozdzielcza ... 67
 5.2.3 Finalny model wycinkowy „M2” ... 67
 5.3. Badania terenowe – prototyp „F1” ... 67
6. Wyniki badań i ich analiza .. 77
 6.1 Analiza wyników badań laboratoryjnych .. 77
 6.1.1 Analiza wstępnych wyników badań laboratoryjnych – model „M1” 77
 6.1.1.1 Uwagi wstępne .. 77
 6.1.1.2 Analiza wartości stężen oraz redukcji zanieczyszczeń 77
6.1.1.3 Określenie istotności różnic między średnimi wartościami badanych wskaźników zanieczyszczeń w ściekach... 91

6.1.1.4 Określenie wpływu obciążenia hydraulicznego na jakość ścieków oraz na redukcję zanieczyszczeń ... 95

6.1.1.5 Określenie wpływu liczby dawek ścieków w ciągu doby na ich jakość oraz redukcję zanieczyszczeń... 100

6.1.2 Analiza wyników badań uzyskanych z modelu „R1” 106
6.1.3 Analiza wyników badań z modelu „M2” 109

6.2. Analiza wyników badań terenowych – prototyp „F1” 117
6.2.1 Analiza temperatury ścieków .. 117
6.2.2 Analiza ilości ścieków dopływających do prototypu „F1” ... 124
6.2.3 Analiza wartości badanych wskaźników w ściekach dopływających i odpływających z prototypu „F1” 133
6.2.4 Miąższość warstwy filtracyjnej jako czynnik różnicujący wartość wskaźników zanieczyszczenia ścieków 166
6.2.5 Analiza redukcji badanych wskaźników 174
6.2.6 Kinetyka reakcji w prototypie „F1” 185
6.2.7 Analiza mikrobiologiczna ścieków 191
6.2.8 Analiza niezawodności działania prototypu „F1” 201

7. Podsumowanie i wnioski ... 204
Bibliografia ... 208
Streszczenie .. 217
Załącznik nr 1 .. 221
Załącznik nr 2 .. 223
6.1.1.4 Determination of the effect of hydraulic load on the sewage quality and efficiency of pollutant reduction 95
6.1.1.5 Determination of the effect of sewage dosage per day on its quality and efficiency of pollutant removal ... 100
6.1.2 Analysis of results obtained from “R1” model 106
6.1.3 Analysis of results obtained from “M2” model 109
6.2. Analysis of field research results – “F1” prototype 117
6.2.1 Analysis of sewage temperature ... 117
6.2.2 Analysis of the amount of sewage flowing into “F1” prototype 124
6.2.3 Analysis of the examined indicators in sewage flowing into and out of “F1” prototype ... 166
6.2.4 Filtration layer thickness as a factor differentiating sewage pollution indicators ... 166
6.2.5 Analysis of the efficiency of the examined pollutant reduction ... 174
6.2.6 Reaction kinetics in “F1” prototype 185
6.2.7 Microbiological analysis of sewage 191
6.2.8 Analysis of the reliability of “F1” prototype 201

7. Summary and conclusions .. 204
Bibliography ... 208
Summary .. 219
Attachment no. 1 ... 221
Attachment no. 2 ... 223
SPIS WAŻNIEJSZYNCH OZNAČEŃ

LIST OF THE MOST IMPORTANT SYMBOLS

- **BZT₅** – biologiczne zapotrzebowanie tlenu / *BOD₅* – biological oxygen demand

 \[\text{mgO}_2 \cdot \text{dm}^{-3} \]

- **ChZT₅ₚ** – chemiczne zapotrzebowanie tlenu / *COD₅ₚ* – chemical oxygen demand

 \[\text{mgO}_2 \cdot \text{dm}^{-3} \]

- **df** – liczba stopni swobody / *df – degrees of freedom*,

- **dSₙ** – różnica wartości wskaźnika zanieczyszczeń przypadająca na przyrost czasu filtracji / *difference between values of pollution indicator per the increase in filtration time*,

- **dᵣ** – przyrost czasu filtracji / *increase in the filtration time*,

- **F⁻** – wartość empiryczna sprawdzianu testu / *empirical value of the statistics*,

- **„F₁”** – prototyp zmodyfikowanego filtru żwirowo-piaskowego o przepływie pionowym (zakryty) / *prototype of the modified vertical flow gravel and sand filter (covered)*,

- **H** – miąższość złoża / *thickness of the bed [mm]*,

- **jtk⁻** – jednostki tworzące kolonie / *CFU - colony forming units*,

- **k₀** – stała kinetyki reakcji zerowego rzędu / *constant of zero-order reaction kinetics [mg dm⁻³ ⋅ d⁻¹]*,

- **k₁** – stała kinetyki reakcji pierwszego rzędu / *constant of first-order reaction kinetics [d⁻¹]*,

- **k₂** – stała kinetyki reakcji drugiego rzędu / *constant of second-order reaction kinetics [d⁻¹ ⋅ mg⁻¹ ⋅ dm³]*,

- **„M₁”** – model badawczy (do badań wstępnych) / *research model (for preliminary research)*,

- **„M₂”** – model badawczy wtórny – odwzorowujący prototyp „F₁” / *secondary research model – replicating the “F₁” prototype*,

- **Max** – wartość maksymalna / *maximum value*,

- **mᵣ** – mediana / *median*.

- **miano** – najmniejsza objętość badanej próbki, w której stwierdzono obecność oznaczanych wskaźników / *The smallest volume of the sample, which revealed the presence of the determined indicators*.

- **Min** – wartość minimalna / *minimum value*,

- **MS** – średnia suma kwadratów / *mean squares*,

- **N** – liczba próbek [szt.] / *number of samples [pcs.]*,

- **Nₖ₃ₐₓ** – współczynnik nierównomierności maksymalnego dobowego dopływu ścieków / *coefficient of nonuniformity of maximum daily sewage inflow*.
N_{\text{dmin}} – współczynnik nierównomierności minimalnego dobowego dopływu ścieków / coefficient of nonuniformity of minimum daily sewage inflow,
N-\text{NH}_4 – azot amonowy / ammonium nitrogen [mgN-\text{NH}_4 dm^{-3}],
N_{\text{Kj}} – azot Kjeldahla / Kjeldahl nitrogen [mgN_{\text{Kj}} dm^{-3}],
N-\text{NO}_2 – azot azotynowy / nitrite nitrogen [mgN-\text{NO}_2 dm^{-3}],
N-\text{NO}_3 – azot azotanowy / nitrate nitrogen [mgN-\text{NO}_3 dm^{-3}],
N_{\text{og}} – azot ogólny / total nitrogen [mgN_{\text{tot}} dm^{-3}],
N_{\text{org}} – azot organiczny / organic nitrogen [mgN_{\text{org}} dm^{-3}],
NPL – najbardziej prawdopodobna liczba / most probable number,
p – prawdopodobieństwo testowe p / p test probability [-],
P_{\text{og}} – fosfor ogólny / total phosphorus [mgP_{\text{tot}} dm^{-3}],
PO\text{S} – przydomowa oczyszczalnia ścieków / domestic sewage treatment plant,
PPW_{\text{vol}} – polowa pojemność wodna gruntu / field capacity of the ground [%],
q – dawka ścieków / dose of sewage [mm d^{-1}],
Q_{\text{dmax}} – maksymalny średni dobowy dopływ ścieków / maximum average daily sewage inflow [dm^3 d^{-1}],
Q_{\text{dmin}} – minimalny średni dobowy dopływ ścieków / minimum average daily sewage inflow [dm^3 d^{-1}],
Q_{\text{dir}} – średni dobowy dopływ ścieków / average daily sewage inflow [dm^3 d^{-1}],
Q_{\text{hru}} – średni godzinowy dopływ ścieków /average hourly sewage inflow [dm^3 h^{-1}],
„R1” – model do badania komory rozdzielczej / research model of distribution chamber,
R^2 – współczynnik determinacji / coefficient of determination,
RLM – Równoważna Liczba Mieszkańców / Population Equivalents,
RS – specjalny współczynnik korelacji / special correlation coefficient [-]
R_{xy} – współczynnik korelacji / correlation coefficient,
S_{2\text{mir}} – wartość średnia wskaźnika na odpływie z modelu / average value of the indicator at the outflow of the model,
S_{2\text{pir}} – wartość średnia wskaźnika na odpływie z pomiarów / average value of the indicator at the outflow from measurements,
S_o – wartość danego wskaźnika zanieczyszczenia na wyjściu z modelu / value of a given pollution indicator at the output of the model [mg dm^{-3}],
S_a – wartość danego wskaźnika zanieczyszczenia na wejściu do modelu / value of a given pollution indicator at the input to the model [mg dm^{-3}],
SS-\text{Effect} – suma kwadratów (suma kwadratów odchylen od średniej) / sum of squares (sum of squared deviations from the mean),
S-W - wartość testu Shapiro-Wilk / Shapiro-Wilk’s test value [-],
t – wartość statystyki t-Studenta / Student’s t-test value,
T_p – temperatura powietrza / air temperature [\degree C],
t_p – czas zatrzymania ścieków z złożu / time of sewage retention in the bed [d],
T_{\text{id}} – temperatura ścieków dopływających do filtra „F1” / temperature of sewage flowing into the “F1” filter [\degree C],
T_{\text{io}} – temperatura ścieków odpływających z filtra „F1” / temperature of sewage flowing out of the “F1” filter [\degree C].
Skuteczność oczyszczania ścieków...

t_{ukr} – wartość krytyczna testu na poziomie istotności α / critical value of the test at the significance level α,

V – połowa pojemność wodna całego złoża filtracyjnego / field capacity of the whole filter bed [m3],

V_{zm} - współczynnik zmienności / coefficient of variability [-],

WBR - względny średniokwadratowy błąd resztowy / relative mean squared residual error [-],

WN - współczynnik niezawodności / reliability coefficient [-],

X_{dop} – wartość dopuszczalna / admissible value,

X - wartość średnia / mean value,

α - poziom istotności / level of significance,

σ - odchylenie standardowe / standard deviation,

μ – odkształcenie gruntu / gravity drainage capacity of the ground [-],

ε – porowatość złoża filtracyjnego / porosity of the filter bed [-].
1. WPROWADZENIE

Rozwój przydomowych oczyszczalni ścieków w Polsce obserwuje się od kilkudziesięciu lat. W roku 1998 zarejestrowanych przydomowych oczyszczalni było 4000 podczas gdy w 1999 roku liczba ta wzrosła do 18054 szt. [Święgoń 2003]. Intensywny wzrost obserwowano w latach kolejnych, gdzie w 2008 roku zarejestrowanych było 51 943 oczyszczalni przydomowych [GUS 2009], w 2010 liczba ta wzrosła do około 81 tysięcy [GUS 2011], a w 2011 zarejestrowano około 103 tysiące [GUS 2012]. Potencjalny właściciel posesji musi wziąć pod uwagę możliwość podłączenia do kanalizacji zbiorowej w przyszłości. Jeżeli ze względów na ukształtowanie terenu, rodzaj zabudowy w dłuższym okresie czasu nie ma takiej możliwości to ekonomicznie uzasadnione staje się...

2. CEL, ZAKRES I TEZY PRACY

Celem pracy była analiza skuteczności działania prototypu zmodyfikowanego filtra żywiro-piaskowego o przepływie pionowym. Cel pracy został zrealizowany poprzez wykonanie wstępnych badań laboratoryjnych z wykorzystaniem modelu wycinkowego „M1” w skali 1:1, a następnie wykonanie prototypu zmodyfikowanego filtra „F1” w terenie i określenie skuteczności działania w warunkach terenowych. Na tej podstawie autor zaproponował nowatorskie rozwiązanie, zmodyfikowany filtr żywiro-piaskowy o przepływie pionowym. Obecnie trwają procedury związane ze zgłoszeniem patentowym prototypu zmodyfikowanego filtra żywiro-piaskowego.

Badania laboratoryjne na modelu „M1” przeprowadzono dla 3 wariantów dawkowania ścieków (4, 12, 24 razy na dobę). Dla każdego z wariantów dawkowania zastosowano cztery obcięcia hydrauliczne z rozpiętością filtracyjną (38, 77, 100, 135 dm³·m⁻²·d⁻¹). Model „M1” składał się z dwóch zasadniczych warstw. Pierwszą stanowiła warstwa zabezpieczająca wykonana z drobnego wiru średni miarodajny d₁₀=1,66 mm oraz o miąższości wynoszącej 50 cm. Zadaniem tej warstwy było zmniejszenie zanieczyszczeń jakie dopływają do właściwej warstwy filtracyjnej. Drugą warstwę stanowił piasek o średnicy mierodajnej d₁₀=0,40 mm i miąższości 60 cm. Zasadniczym celem wstępnych badań laboratoryjnych było określenie wartości wskaźników zanieczyszczeń po prześciereniu przez poszczególne warstwy i na tej podstawie określenie skuteczności oczyszczania. Analizie fizykochemicznej zostały poddane następujące wskaźniki zanieczyszczenia ścieków: BZT₅, ChZT₅, oraz zawiesina ogólna. Autor podjął próbę określenia, czy warstwa drobnego wiru w istotny sposób zmniejszy zanieczyszczenia jakie dopływają do modelu, a co za tym idzie zabezpieczy właściwą warstwę filtracyjną przed kolmatacją. Dodatkowo określono wpływ liczby dawkowań ścieków do modelu w ciągu doby na jakość ścieków oczyszczonych oraz na redukcję zanieczyszczeń.

Autorskie rozwiązanie filtra piaskowego o przepływie pionowym polegało na:
- wprowadzeniu przed właściwą warstwą filtracyjną (piaskową) warstwy zabezpieczającej z drobnego wiru,
- zastosowaniu innowacyjnego układu rozprowadzającego ścieki w postaci autorskiego rozwiązania,
- zmniejszeniu powierzchni filtra w stosunku do rozwiązań klasycznych.
Klasyczne filtry piaskowe o przepływie pionowym zajmują znaczną powierzchnię (25-30 m² dla pięcioosobowego gospodarstwa). W pracy podjęto próbę zmniejszenia wymiarów filtra w planie. Ważnym elementem modyfikacji złoża jest zaprojektowanie odpowiedniego systemu rozprowadzania ścieków tak, aby wykorzystać warstwę filtracyjną w jak najwyższym stopniu. Rozstawa drzew rozprowadzających ścieki po powierzchni złoża filtracyjnego w konwencjonalnych rozwiązaniach jest bardzo duża i wynosi według Heidricha [1998] 200 cm. Przy mieszkości właściwej warstwy filtracyjnej wynoszącej od 60 do 100 cm może dochodzić do nierównomiernej obciążenia złoża filtracyjnego. Poprzez zwiększenie wykorzystania warstwy filtracyjnej oraz wprowadzenie dodatkowej warstwy zabezpieczającej (z drobnego wiru) można znacznie zmniejszyć wymiary filtra piaskowego o przepływie pionowym, przy równoczesnym zachowaniu jakości filtratu na dopuszczalnym poziomie.

Na podstawie wstępnych badań modelowych został zaprojektowany prototyp zmodyfikowanego filtra żwirowo-piaskowego, a następnie wybudowany w terenie. W oparciu o analizy fizyko-chemiczne ścieków dopływających do filtra oraz oczyszczonych zostały przedstawione wartości stężeń ścieków w badanym okresie. Dodatkowo wykonano analizy fizyko-chemiczne ścieków pobranych z różnych głębokości złoża. Dokonano również zestawienia skuteczności zmniejszenia badanych wskaźników na poszczególnych głębokościach filtra. Określona została ilość ścieków przepływająca przez prototyp oczyszczalni, a także temperatura powietrza, ścieków wstępnie oczyszczonych oraz oczyszczonych. Na podstawie zbryanych danych dokonano szczegółowej ich analizy i interpretacji.

W ramach badań laboratoryjnych z wykorzystaniem modelu „M1” podjęto próbę określenia:

- stężeń badanych wskaźników w ściekach dopływających do modelu oraz odpływających z komory „A” (warstwa drobnego żwiru) i komory „B” (właściwa warstwa filtracyjna wykonana z piasku),
- skuteczności zmniejszenia zanieczyszczeń po komorze „A”, po komorze „B” oraz całkowitej dla modelu,
- wpływu liczby dawek na jakość ścieków oczyszczonych po komorze „A” i „B”,
- wpływu liczby dawek na redukcję zanieczyszczeń po komorze „A” i „B”,
- skuteczności zmniejszenia zanieczyszczeń przy zadanych obciążeniach hydraulicznych.

W ramach przeprowadzonych badań terenowych z wykorzystaniem prototypu filtra „F1” określono:

- ilość ścieków bytowych dopływających do filtra,
- temperaturę powietrza oraz temperaturę ścieków dopływających i odpływających z filtra,
Skuteczność oczyszczania ścieków...

- wartości wskaźników fizyko-chemicznych zanieczyszczenia w ściekich dopływających oraz odpływających z filtru: BZT₅, ChZT₆, tlen rozpuszczony, zawiesina ogólna, odczyn pH, fosfor ogólny, azot amonowy N-NH₄, azot organiczny, azot całkowity Kjeldahla, azot azotanowy N-NO₃ oraz azot ogólny, (dodatkowo określono wartości wskaźników fizyko-chemicznych ścieków pobranych z następujących głębokości złoża filtracyjnego: 10, 30, 50, 90 cm),
- wartości wskaźników mikrobiologicznych zanieczyszczenia ścieków: bakterie grupy coli, Escherichia coli, Enterokoki, Salmonella sp., Shigella sp. oraz Clostridium perfringens w ściekich dopływających do filtra, na odpływie z warstwy żwirowej oraz na odpływie z warstwy piaskowej,
- redukcję zanieczyszczeń fizyko-chemicznych w filtrze,
- redukcję zanieczyszczeń mikrobiologicznych w filtrze,
- niezawodność działania filtra w zakresie spełnienia wymogów jakościowych stawianych ściekom oczyszczonym (zgodnie z Rozporządzeniem [2006]),
- stałe kinetyki reakcji dla różnych rzedów.

W związku z tym, że pod względem konstrukcyjnym model „M1” różnił się od wybudowanego w terenie prototypu „F1” następującymi elementami:
- układem rozprowadzającym ścieki po powierzchni złoża,
- układem napowietrzającym złożo,
- oddzieleniem warstwy zabezpieczającej od właściwej warstwy filtracyjnej poprzez komorę powietrzną (rysunek 19),

Autor zdecydował się wybudować w laboratorium model „M2” odwzorowujący prototyp „F1”. W ramach przeprowadzonych badań laboratoryjnych z wykorzystaniem modeli „M1”, „R1” oraz „M2” określono:
- wartości badanych wskaźników zanieczyszczenia ścieków dopływających do modelu i ścieków oczyszczonych przy zadanych obciążeniach hydraulicznych złoża filtracyjnego (analizie poddano trzy wskaźniki: BZT₅, ChZT₆, oraz zawiesinę ogólną),
- redukcję zanieczyszczeń przy zadanych obciążeniach hydraulicznych,
- czas zatrzymania ścieków przy zadanych obciążeniach hydraulicznych.

W ramach rozprawy przyjęto do zweryfikowania następujące tezy:

w przypadku badań laboratoryjnych z wykorzystaniem modeli „M1”, „R1” oraz „M2”
- żwirowa warstwa zabezpieczająca w istotnym stopniu redukuje wartości badanych wskaźników zanieczyszczenia ścieków,
- liczba dawków w ciągu doby wpływa na jakość ścieków oczyszczonych i skuteczność zmniejszania zanieczyszczeń,
- średnica przewodów rozprowadzających w głowicy rozdzielczej wpływa na równomierne rozdielenie dawki ścieków,
w przypadku badań terenowych z wykorzystaniem prototypu „F1”
– miąższość złoża filtracyjnego w istotny sposób wpływa na stężenie ścieków oczyszczonych na poszczególnych głębokościach,
– badane wskaźniki fizyko-chemiczne najintensywniej redukowane są w początkowych głębokościach złoża filtracyjnego,
– żwirowa warstwa zabezpieczająca w istotnym stopniu redukuje wartości badanych wskaźników mikrobiologicznych,
– zmodyfikowany filtr piaskowy w istotnym stopniu redukuje wartości wskaźników mikrobiologicznych.

Badania wykonano w Katedrze Inżynierii Sanitarnej i Gospodarki Wodnej, na Wydziale Inżynierii Środowiska i Geodezji Uniwersytetu Rolniczego w Krakowie. Badania zostały wykonane w ramach projektu badawczego własnego (N N523 411838), realizowanego w latach 2010-2013 pt. „Innowacyjne rozwiązania w zakresie wymiarowania i konstruowania filtrów piaskowych o przepływie pionowym w przydomowych oczyszczalniach ścieków”. Projekt badawczy finansowany był przez Ministerstwo Nauki i Szkolnictwa Wyższego (od 2011 roku przez Narodowe Centrum Nauki w Krakowie).
3. PRZEGLĄD LITERATURE

3.1. JAKOŚĆ ŚCIEKÓW BYTOWYCH NA TERENACH WIEJSKICH

Ścieki bytowe to wody zanieczyszczone o zmienionych parametrach fizycznych, chemicznych i bakteriologicznych zużyte w wyniku działalności życiowej i produkcyjnej człowieka. Pochodzą one z WC jako ścieki fekalne, z umywalek, kuchni, pralek itp. Ścieki bytowe mogą powstawać w gospodarstwach domowych, instytucjach użyteczności publicznej, zakładach przemysłowych (w wyniku funkcjonowania personelu). Surowe ścieki bytowe, pochodzące z pojedynczego gospodarstwa charakteryzują się znaczną zmiennością jakości pod względem zanieczyszczeń organicznych jak również ilości powstających ścieków [Ślizowski i Chmielowski 2007, Chmielowski i Ślizowski 2008d, Chmielowski 2009, Chmielowski i Ślizowski 2009a].

Jakość ścieków można scharakteryzować za pomocą dwóch parametrów [Osmulská-Mróz 1995]:

– stężenia zanieczyszczeń,
– ładunku zanieczyszczeń.

Stężenie zanieczyszczeń można określić na podstawie jednostkowego ładunku zanieczyszczeń oraz jednostkowej średniej ilości ścieków:

\[
S = \frac{s_x}{q_{dir}} \quad [g \cdot m^{-3}]
\]

gdzie:

\(s_x \) – jednostkowy ładunek zanieczyszczeń x przypadający na jednego mieszkańca \([g \cdot M^{-1} \cdot d^{-1}]\),

\(q_{dir} \) – jednostkowa średnia dobowa ilość ścieków przypadająca na jednego mieszkańca \([m^3 \cdot M^{-1} \cdot d^{-1}]\).

W związku z ekonomicznym zużywaniem wody wodociągowej można spodziewać się, że stężenie ścieków będzie wzrastać. Według Sikorskiego [1998] utrzymuje się stała tendencja większych stężeń zanieczyszczeń w ściekich z kanalizacji zagrodowych, w porównaniu ze stężeniem zanieczyszczeń w ściekich z kanalizacji zbiorowych.

Drugim parametrem określającym jakość ścieków jest ładunek zanieczyszczeń, który można obliczyć z następującej zależności:
\[L = S \cdot q_{st} \quad [g \cdot M^{-1} \cdot d^{-1}] \]

gdzie:
- \(S \) – stężenie zanieczyszczeń [g \cdot m^{-3}].
- \(q_{st} \) – jednostkowa średnia ilość ścieków przypadająca na jednego mieszkańca [m^3 \cdot M^{-1} \cdot d^{-1}].

Średnie jednostkowe ładunki zanieczyszczeń dla wybranych wskaźników według różnych autorów przedstawia tabela 1.

Tabela 1. Średnie jednostkowe ładunki zanieczyszczeń wg różnych autorów

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>Jednostka</th>
<th>Wartość wg autora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[Henze i inni 1995]</td>
</tr>
<tr>
<td>BZT(_5)</td>
<td>gO(_2)\cdot M^{-1}\cdot d^{-1}</td>
<td>57,0</td>
</tr>
<tr>
<td>ChZT</td>
<td>gO(_2)\cdot M^{-1}\cdot d^{-1}</td>
<td>-</td>
</tr>
<tr>
<td>Zawiesiny ogólne</td>
<td>g\cdot M^{-1}\cdot d^{-1}</td>
<td>71,5</td>
</tr>
<tr>
<td>Azot ogólny (N(_{oz}))</td>
<td>g\cdot M^{-1}\cdot d^{-1}</td>
<td>12,8</td>
</tr>
<tr>
<td>Fosfor ogólny (PO(_4))</td>
<td>g\cdot M^{-1}\cdot d^{-1}</td>
<td>2,7</td>
</tr>
</tbody>
</table>

W zależności od źródła danych wartość BZT\(_5\) waha się od 45 do 80 gO\(_2\)\cdot M^{-1}\cdot d^{-1}. ChZT przyjmuje wartości od 55 do 210 gO\(_2\)\cdot M^{-1}\cdot d^{-1}. Jest to szeroki zakres danych wynikający z różnej ilości zużywanej wody oraz czynności wykonywanych w domu. Jednostkowy ładunek fosforu ogólnego według wyżej wymienionych autorów kształtuje się od 2,5-2,7 gPO\(_4\)\cdot M^{-1}\cdot d^{-1}.

3.2. POTRZEBY ZWIĄZANE Z REALIZACJĄ PRZYDOMOWYCH Oczyszczalni Ścieków

Według danych GUS [2012] liczba zbiorników bezodpływowych (tzw. szamb), w których czasowo składa się nieczystości ciekłe, spadła z 2 406 756 szt. w 2010 roku do 2 359 439 szt. w roku 2011. Są to w dalszym ciągu bardzo duże liczby niebezpiecznych miejsc punktowego skażenia środowiska naturalnego. Eksploatacja potencjalnego dołu wybieranego w dłuższym okresie czasu jest kosztowna. Często zdarza się, że właściciele tego typu urządzeń przepom-
Skuteczność oczyszczania ścieków...

Na rysunku 2 przedstawiono liczbę przydomowych oczyszczalni ścieków zarejestrowanych w gminach z podziałem na województwa w roku 2011. Najwięcej POŚ zarejestrowano w województwie mazowieckim (14 437 szt.), a najmniej w województwie podkarpackim (930 szt.) Na zróżnicowanie liczby POŚ w poszczególnych województwach może mieć stopień ich skanalizowania i zwodociągowania, a także charakter zabudowy oraz ukształtowanie terenu [Jóźwiakowski, Pytka 2010].

Rysunek 1. Liczba zbiorników bezodpływowych w poszczególnych województwach w 2011 roku [GUS 2012]

Figure 1. Number of septic tanks in each voivodeship in 2011 [CSO 2012]
Rysunek 2. Liczba przydomowych oczyszczalni ścieków w poszczególnych województwach w 2011 roku [GUS 2012]

Figure 2. Number of domestic sewage treatment plants in each voivodeship in 2011 [CSO 2012]

Na uwagę zasługuje wzrastająca z roku na rok liczba zarejestrowanych POŚ. Na rysunku 3 zestawiono liczbę zarejestrowanych POŚ w gminach w latach 2006-2011.

Obecnie jest zarejestrowanych blisko 103 tysiące przydomowych oczyszczalni ścieków, w najbliższych latach będzie obserwowany gwałtowny rozwój budowy POŚ.

Na rysunku 4 przedstawiono uproszczony schemat postępowania przy wyborze sposobu unieszkodliwiania ścieków.

Rysunek 4. Etapy postępowania przy wyborze rozwiązania zagospodarowania ścieków

Figure 4. Stages of procedures when choosing sewage management solutions

Podejmując decyzję o wyborze rozwiązania problemu ze ściekami bytowymi na terenach wiejskich należy wziąć pod uwagę czy będzie budowana kanalizacja w terenie, z którego mają być odprowadzane ścieki. Informacje takie można uzyskać w Urzędzie Gminy. Jeżeli dla danego terenu jest opracowany Plan Zagospodarowania Przestrzennego to jest sytuacja ułatwiona, bo jest tam informacja na temat sanacji danego terenu. Jeżeli brak jest takich planów można korzystać z informacji zawartych w Warunkach Zabudowy. Jeżeli jest istniejąca kanalizacja zbiorcza to należy się do niej podłączyć. W przypadku gdy nie ma kanalizacji zbiorczej należy się zorientować kiedy i czy w ogóle będzie budowana kanalizacja. Jeżeli nie będzie budowanej kanalizacji w ogóle lub w „długim” okresie czasu racjonalne jest wybudowanie POŚ.

Jako „dług” okres należy traktować czas, w którym nakłady poniesione na budowę POŚ będą mniejsze lub zrównać się z kosztami poniesionymi na budowę dołu wybieralnego (szamba) wraz z kosztami wywozu nieczystości taborem asenizacyjnym.

Jako podstawę wyboru rozwiązania systemu odprowadzania ścieków można zastosować wskaźniki efektywności techniczno-ekonomicznej inwestycji.
Według zaleceń Błażejewskiego [2003] można stosować jedną z dwóch metod wyboru rozwiązania unieszkodliwiania ścieków:

– metoda wartości bieżącej netto NPV (Net Present Value),
– metoda rocznego kosztu oczekiwanej.

Przy wyborze optymalnego rozwiązania technologicznego przydomowej oczyszczalni ścieków można się kierować kryteriami zrównoważonego rozwoju, obejmującymi w sposób zintegrowany aspekty technologiczne, środowiskowe, ekonomiczne i społeczne zaproponowane przez Muchę i Mikosza [2009].

Na rynku krajowym jest obecnie wielu producentów przydomowych oczyszczalni ścieków, oferujących najróżniejsze rozwiązania. Najogólniej można na rynku wyróżnić następujące rodzaje przydomowych oczyszczalni ścieków:

A. Oczyszczające ścieki w warunkach sztucznych:
 a) osad czynny (niskoobciążony),
 b) SBR,
 c) złoża biologiczne.

B. Oczyszczające ścieki w środowisku gruntowym:
 a) drenaż rozszczepiający,
 b) filtr piaskowy o przepływie pionowym,
 c) filtr piaskowy o przepływie poziomym,
 d) oczyszczalnie hydrobotaniczne.

Normy europejskie z dziedziny oczyszczania ścieków opracowuje komitet Techniczny CEN/TC 165 „Wastewater Engineering”. Pierwszą normą europejską z zakresu oczyszczania małych ilości ścieków jest PN-EN 12566 – Małe oczyszczalnie ścieków dla obliczeniowej liczby mieszkańców (OLM) do 50. Norma ta podzielona jest na 6 części:

– PN-EN 12566-1:2004/A1:2006 Część 1: Prefabrykowane osadniki gnilne,
– EN 12566-2 Część 2: Systemy infiltracji do gruntu,
– PN-EN 12566-4:2009 Część 4: Osadniki gnilne budowane na miejscu z elementów prefabrykowanych – warunki wykonania i odbioru,
– EN 12566-5:2004 Część 5: Systemy filtrowania wstępnego oczyszczono-nego odpływu (włączać filtry piaskowe),
– metody testowania efektywności oczyszczania ścieków na działce użytkownika EN 12566-5.

Obecnie dostępne są trzy części przedmiotowej normy: Część 1, część 3 oraz część 4. Pozostałe części są w przygotowaniu i będą wprowadzone do stosowania w najbliższym czasie.
Warunki techniczne jakim powinny odpowiadać budynki [Rozporządzenie 2004] określają minimalne odległości zbiorników na ścieki i przydomowych oczyszczalni od innych obiektów, głównie ze względów sanitarnych:
- 7,5 m od granicy działki, drogi publicznej lub chodnika przy ulicy,
- 15 m od okien i drzwi budynków mieszkalnych i magazynów środków spożywczych.

Studnia będąca ujęciem wody do picia powinna znajdować się w odległości co najmniej:
- 15 m od zbiorników do gromadzenia nieczystości oraz podobnych szczelnych urządzeń,
- 70 m od drenażu rozsaczającego.

Niemniej jednak bezpieczne odległości studni od urządzeń kanalizacyjnych zależą w dużym stopniu od wodoprzepuszczalności gruntu i kierunku przepływu wód gruntowych.

Figure 5. Migration routes of pollutants from underground sewage percolation systems [Błażejewski 1997]

Według Błażejewskiego [1997] zanieczyszczenia mogą przedostawać się do wód podziemnych w dwojaki sposób:

– spływając po powierzchni i wnikając pionowo w dół wzdłuż cembrowiny studni i innych nawierconych otworów,

– infiltrując w głąb gruntu z powierzchni (wraz z wodami opadowymi) lub urządzeń do podziemnego rozszczepiania ścieków.

3.3. KLASYCZNE FILTRY PIASKOWE O PRZEPŁYWIE PIONOWYM

3.3.1. Informacje ogólne

Filtr piaskowy to urządzenie stosowane najczęściej po osadniku gnilnym. Stanowi on jedno z najbardziej popularnych rozwiązań unieszkodliwiania ścieków. Filtry piaskowe okresowo zalewane wprowadzono do techniki oczyszczania ścieków w 1868 roku [Osmulska – Mróz 1995]. Można wyróżnić trzy rodzaje filtrów piaskowych okresowo zalewanych:
– filtry podziemne, nazywane często filtrami gruntowymi,
– filtry o swobodnej powierzchni,
– filtry z recyrkulacją.

Według Błażejewskiego [1994] filtry piaskowe można podzielić na:
– filtry z pionowym przepływem ścieków, wśród których możemy wy-
 różnić filtry pionowe zakryte i filtry pionowe odkryte z jednorazowym przepły-
 wem ścieków oraz wielokrotnym przepływem ścieków (recyrkulacja),
– filtry piaskowe z poziomym przepływem ścieków.

Na rysunku 6 przedstawiono w formie graficznej podział filtrów piasko-
 wych według Błażejewskiego [1994].

Filtry piaskowe [Kunst i Kayser 2000].

Rysunek 6. Podział filtrów piaskowych wg Błażejewskiego [1994]

Figure 6. Division of sand filters according to Błażejewski [1994]
Jednym z najprostszych układów oczyszczania małych ilości ścieków jest połączenie osadnika gnilnego z filtrem piaskowym. Filtry te zapewniają wysoki stopień oczyszczania ścieków z nitryfikacją, ale bez wysokiej defosfatacji i de-nitryfikacji [Bartoszewski 1997]. Klasyczne rozwiązanie filtra piaskowego przedstawiono na rysunkach 7 i 8.

Rysunek 7. Filtr piaskowy o przepływie pionowym – widok z góry.
(1- przewód rozprowadzający, 2- przewód zbierający, 3- studzienka rozdzielcza, 4- studzienka zbiorcza, 5- rura wywiewna) [Ślizowski i Chmielowski 2005]

Figure 7. Vertical flow sand filter – view from above. (1- distribution pipe, 2- collecting pipe, 3- distribution manhole, 4- collective manhole, 5- exhaust pipe)

[Ślizowski and Chmielowski 2005]

Rysunek 8. Filtr piaskowy o przepływie pionowym – przekrój poprzeczny

[Heidrich 2008]

Figure 8. Vertical flow sand filter – cross section [Heidrich 2008]

1 – grunt rodzimy,
2 – żwirowa warstwa rozprowadzająca – żwir Φ 4-15 mm, grubość 20 cm,
3 – układ perforowanych przewodów rozprowadzających,
4 – właściwa warstwa filtracyjna - piasek φ 0,25-1,0 mm, grubość 60 cm,
5 – żwirowa warstwa podtrzymująca - piasek φ 1,0-2,0 mm, grubość 5 cm,
6 – warstwa zbierająca - żwir φ 8-10 mm, grubość 20 cm,
7 – układ perforowanych przewodów zbierających, ułożonych w dolnej części filtru i obsypanych żwir,
8 – folia z tworzywa sztucznego,
9 – geowłóknina.

Czas zatrzymania ścieków w filtrze piaskowym o przepływie pionowym według Błażejewskiego [2003] można określić ze wzoru:

\[t_p = \frac{V}{Q_d} = \frac{PPW_{\text{vol}} \cdot H}{100q} = \frac{(\varepsilon - \mu) \cdot H}{q} [-] \tag{3} \]

gdzie:

- \(V \) – polowa pojemność wodna całego złoża filtracyjnego [\(m^3 \)],
- \(Q_d \) – natężenie dopływu ścieków [\(m^3 \cdot d^{-1} \)],
- \(PPW_{\text{vol}} \) – polowa pojemność wodna gruntu [%], (dla piasku grubego 6-10 \% objętości, dla piasku drobnego 10-15\%),
- \(H \) – miąższość złoża [\(mm \)],
- \(q \) – dawka ścieków [\(mm \cdot d^{-1} \)],
- \(\mu \) – odszczelinowość gruntu [-],
- \(\varepsilon \) – porowatość [-].

Według Błażejewskiego [2009] dozowanie cykliczne powoduje skrócenie czasu zatrzymania ścieków w złożu w stosunku do ciągłego doprowadzania ścieków, powodem tego stanu jest w mniejszym stopniu wykorzystywana pojemność wodna gruntu. Jeżeli mamy do czynienia z dojrzałym złożem, kiedy to rozwinięta jest blona biologiczna na powierzchni ziaren filtru, ścieki jest prawie tłokowy co oznacza, że średni czas przebywania ścieków nie ulega większym zmianom.

Mało rozpowszechnioną w Polsce jest Niemiecka odmiana filtrów piaskowych o przepływie pionowym, a mianowicie filtry w rowach. Niemiecka norma DIN 4261 przedstawia przykład filtrów piaskowych wykonanych w rowach (rysunek 9).

Filtry tego rodzaju wykonuje się przez wykopanie rowów o szerokości dna 50 cm. Następnie uszczelnia się filtr przez wyłożenie dna i ścian rowu folią z tworzywa sztucznego. Na dnie rowu układa się drenaż odwadniający w postaci rury perforowanej z tworzywa sztucznego. Rów wypełnia się materiałem filtracyjnym, który stanowi żwir o średnicy 4-8 mm. Ścieki rozprowadzane są za pomocą drenażu rozprowadzającego z tworzywa sztucznego. Przykrycie filtra stanowi warstwa gruntu rodzimego oraz gruntu próchniczego.
Rysunek 9. Filtr piaskowy w rowach wg DIN 4261 (wymiary w cm)
Figure 9. Sand filter in ditches according to DIN 4261

Zastrzeżenia budzi bardzo duża średnica ziarn warstwy filtracyjnej. Z badań przeprowadzonych przez Autora pracy, maksymalna średnica \(d_{10} \) warstwy filtracyjnej w filtrach piaskowych o przepływie pionowym nie powinna przekraczać 1,65 mm. Zastosowanie dużej średnicy uziarnienia warstwy filtracyjnej powoduje znaczne pogorszenie jakości filtratu, dotyczy to głównie BZT5 i zawiesziny ogólnej (tabela 2).

Table 2. Zestawienie podstawowych statystyk opisowych BZT5 ścieków oczyszczonych dla badanych wielkości zastępczej średnicy \(d_{10} \) uziarnienia złoża filtracyjnego
[Chmielowski i Sliuszowski 2008a]

<table>
<thead>
<tr>
<th>Statystyka opisowa BZT5</th>
<th>Jednostka</th>
<th>Zastępcza średnica uziarnienia złoża filtracyjnego</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d_{10} = 0,28) mm</td>
<td>(d_{10} = 1,29) mm</td>
</tr>
<tr>
<td>Średnia wartość</td>
<td>mgO₂⋅dm⁻³</td>
<td>Grunt próchniczy</td>
</tr>
<tr>
<td>Minimalna wartość</td>
<td>mgO₂⋅dm⁻³</td>
<td>Grunt rodzimy</td>
</tr>
<tr>
<td>Maksymalna wartość</td>
<td>mgO₂⋅dm⁻³</td>
<td></td>
</tr>
</tbody>
</table>
Skuteczność oczyszczania ścieków...

Jak widać w tabeli 2, już przy średnicy uziarnienia $d_{50}=2,84$ mm warstwy filtracyjnej wartość BZT$_3$ w filtracji przekracza wartość dopuszczalną przez Rozporządzenie [2006].

Ulepszeniem filtra piaskowego w rowach wg DIN 4261 jest filtr piaskowy w rowach systemu Rennera [Ebers i Bischofsberger 1992]. Zastosowano w nim dodatkową warstwę filtracyjną o średnicy uziarnienia od 0 do 4 mm. Najwyraźniej autor tej modyfikacji zaobserwował wadliwy dobór średnicy uziarnienia warstwy filtracyjnej i wprowadził dodatkowo znacznie mniejszą frakcję (rysunek 10).

Rysunek 10. Filtr piaskowy w rowach systemu Rennera [Ebers i Bischofsberger 1992] (wymiary w cm)
Figure 10. Sand filter in ditches of the Renner system [Ebers and Bischofsberger 1992]

W tabeli 3 przedstawiono charakterystykę użytkową i eksploatacyjną najpopularniejszych metod oczyszczania ścieków bytowych w przydomowych oczyszczalniach. Z tabeli 3 można wywnioskować, że filtry piaskowe systemu Rennera odznaczają się niskimi kosztami wykonania przy średniej zajmowanej powierzchni, małej uciążliwości pracy i dużej stabilności pracy. Te parametry przydomowej oczyszczalni pozwalają na szerokie stosowanie filtrów piaskowych o przepływie pionowym w pojedynczych gospodarstwach lub niewielkich grupach gospodarstw. Zastosowanie dodatkowej warstwy w systemie Rennera
pozwoliło na uzyskanie dużej stabilności w porównaniu z wytycznymi normy DIN 4261.

Table 3. Porównanie różnych typów przydomowych oczyszczalni ścieków

<table>
<thead>
<tr>
<th>Typ oczyszczalni</th>
<th>Stabilność pracy</th>
<th>Uciążliwość obsługi</th>
<th>Koszy</th>
<th>Zajmowana powierzchnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osad czynny</td>
<td>mała</td>
<td>bardzo duża</td>
<td>bardzo wysokie</td>
<td>mała</td>
</tr>
<tr>
<td>Złoża zraszane</td>
<td>średnia</td>
<td>duża</td>
<td>wysokie</td>
<td>mała</td>
</tr>
<tr>
<td>Złoża tarczowe</td>
<td>średnia</td>
<td>duża</td>
<td>wysokie</td>
<td>mała</td>
</tr>
<tr>
<td>Złoża zanurzone napowietrzane</td>
<td>mała</td>
<td>duża</td>
<td>wysokie</td>
<td>mała</td>
</tr>
<tr>
<td>Złoża trzinowe pionowe</td>
<td>duża</td>
<td>mała</td>
<td>średni</td>
<td>średnia</td>
</tr>
<tr>
<td>Złoża trzinowe poziome</td>
<td>średnia</td>
<td>mała</td>
<td>średni</td>
<td>średnia</td>
</tr>
<tr>
<td>Filtry piaskowe w rowach wg DIN 4261</td>
<td>mała</td>
<td>mała</td>
<td>niskie</td>
<td>średnia</td>
</tr>
<tr>
<td>Filtry piaskowe w rowach systemu Rennera</td>
<td>duża</td>
<td>mała</td>
<td>niskie</td>
<td>średnia</td>
</tr>
<tr>
<td>Stawy ściekowe</td>
<td>duża</td>
<td>bardzo mała</td>
<td>niskie</td>
<td>duża</td>
</tr>
<tr>
<td>Drenaż rozciągający</td>
<td>niepewna</td>
<td>bardzo mała</td>
<td>niskie</td>
<td>duża</td>
</tr>
</tbody>
</table>

Na rysunku 11 przedstawiono wykres dopuszczalnego obciążenia hydraulicznego drenaży i kopców filtracyjnych [Błażejewski 1997]. Przy piaskach grubych dopuszczalne obciążenie hydrauliczne nie powinno przekraczać 45 dm3·m$^{-2}$·d$^{-1}$ i wraz ze zmniejszaniem się średnicy materiału wypełniającego złoże filtracyjne dla piasku drobnego nie powinno przekraczać 19 dm3·m$^{-2}$·d$^{-1}$. Z poniższego wykresu widać wyraźnie, że wraz ze zmniejszaniem się średnicy uzarnienia złoża filtracyjnego czas zatrzymania ścieków wzrasta. Dla piasku grubego kształtuje się na poziomie 5-10 min natomiast dla gliny osiąga nawet 780 min.

W przypadku zawiesiny ogólnej (rysunek 12) przy większych obciążeniach hydraulicznych Reed i in. [1995] zaobserwował spadek redukcji tego wskaźnika.

Badania w zakresie zależność ładunku usuniętego na złożu od ładunku doprowadzonego do złoża filtracyjnego przedstawił w swojej pracy Tanner [2000].
Skuteczność oczyszczania ścieków...

Rysunek 11. Dopuszczalne obciążenia hydrauliczne drenaży i kopców filtracyjnych [Błażejewski 1996]

Figure 11. Permissible hydraulic loads of filter drainage and mound systems [Błażejewski 1996]

Rysunek 12. Usuwanie zawiesiny ogólnej w zależności od obciążenia hydraulicznego złoża [Reed i inni 1995]

Figure 12. Removal of total suspended solids depending on the hydraulic load of the bed [Reed et al. 1995]
Rysunek 13. Obciążenie ładunkiem substancji organicznej wyrażonej w BZT₅ i ChZTₐₗ oraz wydajności jej usuwania dla systemów gruntowych [Tanner 2000]

Figure 13. Load of organic matter expressed as BOD₅ and CODₐₗ and its removal efficiency for ground systems [Tanner 2000]

Z rysunku 13 wyraźnie widać, że ze wzrostem ładunku doprowadzonego do złoża usunięty został większy ładunek zanieczyszczeń. Dotyczy to dwóch podstawowych wskaźników: BZT₅ oraz ChZTₐₗ.

Bardzo silną zależność ($r_{xy}=0,986$) pomiędzy ładunkiem ChZTₐₗ usuniętym a doprowadzonym (rysunek 14) uzyskano na podstawie badań przeprowadzonych na grupie filtrów piaskowych o przepływie pionowym [Chmielowski i Śliszowski 2008c].

Rysunek 14. Zależność ładunku ChZTₐₗ usuniętego na złożu od ładunku doprowadzonego do złoża filtra piaskowego [Chmielowski i Śliszowski 2008c]

Figure 14. Dependency of CODₐₗ load removed from the bed and the load supplied to the sand filter bed [Chmielowski and Śliszowski 2008c]
Podobna sytuacja występuje w przypadku azotu ogólnego, co przedstawiono na rysunku 15.

\[S_{OBZT_5} = 5,258 \cdot L_{BZT_5} + 1,697 \text{ [mgO}_2 \cdot \text{dm}^{-3}] \]

Rozstawa przewodów rozprowadzających ścieki w klasycznym rozwiązaniu filtrów piaskowych stosowanych w Polsce jest bardzo duża i wynosi nawet 2,0 m (fot. 1). Wyraźnie widać, że układ przewodów rozprowadzających ścieki jest mało efektywny pod względem równomiernego obciążenia całego złoża. Rozstawa, którą się proponuje projektantom jest zdecydowanie zbyt duża (2,0 m). Dwukrotnie mniejszą rozstawę proponuje się według norm francuskich [DTU 1992]. Na rysunku 16 przedstawiono układ przewodów rozciągających i zbierających według normy EN 12566-5:2004.
Fotografia 1. Filtr piaskowy o przepływie pionowym – faza montażu rur rozsądzających nad właściwą warstwą filtracyjną – zaznaczona odległość pomiędzy drenami rozprowadzającymi ścieki wstępnie oczyszczone (fotografia własna)

Photo 1. Vertical flow sand filter – phase of percolation pipe fitting over the proper filtration layer – highlighted distance between drains distributing pre-treated sewage (own photography)

Na rysunku 16 przedstawiono drogę filtracji ścieków od przewodów rozprowadzających do zbierających z wyraźnymi przestrzeniami złoża nie uczestniczącymi w procesie oczyszczania. Również w tym przypadku nasuwa się pytanie o nierównomiernym rozprowadzeniu ścieków po powierzchni złoża.

Z fotografi 1 i rysunku 17 wyraźnie widać dysproporcje w rozstawie drenów rozprowadzających ścieki, w stosunku do całkowitej szerokości filtra. Takie projektowanie powoduje nieefektywne wykorzystanie złoża filtracyjnego w procesie oczyszczania ścieków. Powoduje to również nierównomierne obciążenie złoża, co może sprzyjać szybszej kolmatacji złoża w pobliżu otworów w drenach.

Taka sytuacja może prowadzić do tego, że w jednej części filtra złoże jest nadmiernie obciążone, podczas gdy w innych odległych od drenu strefach są niewykorzystane przestrzenie. W związku z powyższym autor zdecydował się na opracowanie takiego rozwiązania w zakresie rozprowadzania ścieków, które pozwoli na optymalne wykorzystanie warstwy filtracyjnej. Optymalne rozwiązanie polega na równomiernym obciążeniu całej powierzchni złoża filtracyjnego, wówczas złoże będzie pracowało wydajniej i nie nastąpi lokalna zwiększone kolmatacja złoża.
Rysunek 16. Układ przewodów rozsaczających i zbierających według normy EN 12566-5:2004 (norma w przygotowaniu)

Figure 16. Percolation and collection pipe system according to the standard EN 12566-5:2004 (standard in preparation)

Rysunek 17. Przekrój przez filtr piaskowy o przepływie pionowym – na czerwono zaznaczono obciążenie złoża filtracyjnego, (wymiary w cm) [Wieczysty 1982]

Figure 17. Cross section of the vertical flow sand filter – load of filter bed is marked in red [Wieczysty 1982]

Powierzchnia jednostkowa filtrów piaskowych

Według Heidricha i in. [2008] jednostkową powierzchnię filtrów piaskowych o przepływie pionowym można określić z warunków 5 i 6:

\[F_j = \frac{q_{d\text{max}}}{q_F} \left[m^2 \cdot M^{-1} \right] \]

gdzie:

- \(F_j \) – jednostkowa powierzchnia filtru piaskowego \([m^2 \cdot M^{-1}] \),
- \(q_{d\text{max}} \) – jednostkowa maksymalna dobowa ilość ścieków \([dm^3 \cdot M^{-1} \cdot d^{-1}] \),
- \(q_F \) – obciążenie hydrauliczne powierzchni filtra \([dm^3 \cdot m^{-2} \cdot d^{-1}] \).
\[
F_j = \frac{S_p}{A_F} \left[m^2 \cdot M^{-1} \right]
\]

gdzie:
- \(F_j\) – jednostkowa powierzchnia filtru piaskowego \([m^2 \cdot M^{-1}]\),
- \(S_p\) – jednostkowy ładunek zanieczyszczeń organicznych w ściekach po osadniku gnilnym \([gBZT_5 \cdot M^{-1} \cdot d^{-1}]\),
- \(A_F\) – obciążenie powierzchni filtru ładunkiem zanieczyszczeń \([gBZT_5 \cdot m^{-2} \cdot d^{-1}]\).

Heidrich i in. [2008] podaje, że przy założeniach:
- \(q_{d_{\text{max}}} = 120 \text{ dm}^3 \cdot M^{-1} \cdot d^{-1}\),
- \(q_f = 40 \text{ dm}^3 \cdot m^{-2} \cdot d^{-1}\),
- \(S_p = 36 \text{ gBZT}_5 \cdot M^{-1} \cdot d^{-1}\), (ładunek jednostkowy ścieków surowych wynosi 60 gBZT_5 \cdot M^{-1} \cdot d^{-1} a w osadniku gnilnym następuje 40% zmniejszenie BZT_5)
- \(A_F = 5 \text{ gBZT}_5 \cdot m^{-2} \cdot d^{-1}\).

Jednostkowa powierzchnia filtru piaskowego o przepływie pionowym wynosi odpowiednio 3,0 \(m^2 \cdot M^{-1}\) dla warunku 5 oraz 7,2 \(m^2 \cdot M^{-1}\) dla warunku 6.

Natomiast według Błazejewskiego [1997, 2003] jednostkowa powierzchnia zakrytego filtru piaskowego o przepływie pionowym może wynosić:
- 2,5 \(m^2 \cdot M^{-1}\) - przy zużyciu wody 100 \(dm^3 \cdot M^{-1} \cdot d^{-1}\),
- 5,0 \(m^2 \cdot M^{-1}\) - przy zużyciu wody 200 \(dm^3 \cdot M^{-1} \cdot d^{-1}\).

Biorąc pod uwagę dane przedstawione w tabeli 4 widać wyraźnie, że jednostkowa powierzchnia filtrów piaskowych o przepływie pionowym jest zależna od liczby obsługiwanych mieszkańców. Przy dwóch mieszkańców wynosi aż 7,5 \(m^2 \cdot M^{-1}\), podczas gdy przy dziesięciu mieszkańcach jest ponad dwukrotnie mniejsza i wynosi 3,5 \(m^2 \cdot M^{-1}\).

Podsumowując informacje zawarte w dostępnej literaturze należy stwierdzić znaczne różnice pomiędzy proponowanymi wartościami jednostkowej powierzchni filtru piaskowego o przepływie pionowym w zakresie od 2,5 do 7,5 \(m^2 \cdot M^{-1}\).

Tabela 4. Zalecane parametry filtrów piaskowych o przepływie pionowym w zależności od liczby obsługiwanych mieszkańców [DUT 1992]

<table>
<thead>
<tr>
<th>Parametry filtru</th>
<th>Symbol</th>
<th>Jednostka</th>
<th>Liczba mieszkańców</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szerokość filtru B</td>
<td>[m]</td>
<td>(5 \quad 5 \quad 5 \quad 5 \quad 5)</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td>Długość filtru L</td>
<td>[m]</td>
<td>(3 \quad 4 \quad 5 \quad 6 \quad 7)</td>
<td>(4)</td>
</tr>
<tr>
<td>Powierzchnia całkowita filtru</td>
<td>(F_c)</td>
<td>([m^2])</td>
<td>(15 \quad 20 \quad 25 \quad 30 \quad 35)</td>
</tr>
<tr>
<td>Powierzchnia jednostkowa filtru</td>
<td>(F_j)</td>
<td>([m^2 \cdot M^{-1}])</td>
<td>(7,5 \quad 5,0 \quad 4,2 \quad 3,75 \quad 3,5)</td>
</tr>
</tbody>
</table>
3.3.2. Charakterystyka materiałów używanych do budowy

Polska norma [PN-86/B-02480] określa pięć zasadniczych frakcji uziarnienia gruntów (tabela 5). Szkielet gruntowy składa się z ziaren i cząstek różnych rozmiarów i zazwyczaj różnych nieregularnych kształtów. Wielkości ziaren i cząstek są wyrażone za pomocą tzw. średnic zastępczych.

Tabela 5. Frakcje uziarnienia gruntów nie skalistych [PN-86/B-02480]

<table>
<thead>
<tr>
<th>Nazwa frakcji</th>
<th>Wymiary i zakres średnic zastępczych d [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamienista (f_k)</td>
<td>$d>40$</td>
</tr>
<tr>
<td>Zwirowa (f_l)</td>
<td>$40<d>2$</td>
</tr>
<tr>
<td>Piaskowa (f_s)</td>
<td>$2<d>0,05$</td>
</tr>
<tr>
<td>Pyłowa (f_p)</td>
<td>$0,05<d>0,002$</td>
</tr>
<tr>
<td>Iłowa (f_i)</td>
<td>$d<0,002$</td>
</tr>
</tbody>
</table>

Grunty możemy podzielić na sypkie i spoiste. Grunty sypkie są klasyfikowane na podstawie zawartości poszczególnych frakcji (tabela 6), natomiast grunty spoiste dzieli się ze względu na strukturę uziarnienia.

Tabela 6. Klasifikacja żwirów i piasków [PN-86/B-02480]

<table>
<thead>
<tr>
<th>Nazwa gruntu</th>
<th>Zawartość frakcji [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>2 mm</td>
</tr>
<tr>
<td>Żwir</td>
<td>>50</td>
</tr>
<tr>
<td>Pospórk</td>
<td>50-10</td>
</tr>
<tr>
<td>Piasek gruboziarnisty ($d_{50}>0,5$ mm)</td>
<td><10</td>
</tr>
<tr>
<td>Piasek średnioziarnisty (0,5<d_{50}>0,25 mm)</td>
<td><10</td>
</tr>
<tr>
<td>Piasek drobnoziarnisty ($d_{50}>0,25$ mm)</td>
<td><10</td>
</tr>
<tr>
<td>Piasek pylasty</td>
<td>Lecz frakcji pyłowej 10-30% a frakcji ilowej 0-2%</td>
</tr>
</tbody>
</table>

Charakterystyczną cechą fizyczną gruntów przeznaczonych do oczyszczania ścieków jest porowatość. Porowatość gruntu, a ścisłej współczynnik porowatości objętościowej można przedstawić za pomocą zależności (7). Określa się go stosunkiem objętości порów do objętości całego gruntu.

$$n = \frac{V_p}{V} [-]$$

gdzie:
- n – współczynnik porowatości [-],
- V_p – objętość порów w gruncie [dm3],
- V – objętość całej próbki gruntu [dm3].
Porowatość dla celów projektowych filtrów piaskowych można oszacować
na podstawie prostych badań polowych przy użyciu pojemnika o znanej objęto-
ści. Do pojemnika należy wsypać badany grunt i lekko go zagęścić przez kilka-
krotnie potrząsanie pojemnikiem. Następnie wlać wodę do poziomu gruntu.
Objętość dodanej wody stanowi objętość porów \(V_p \). Znając całkowitą objętość
gruntu w pojemniku, można obliczyć współczynnik porowatości.

W tabeli 7 przedstawiono wartości współczynników porowatości wybra-
nych gruntów sypkich.

<table>
<thead>
<tr>
<th>Rodzaj gruntu</th>
<th>Współczynnik porowatości (n) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Źwir</td>
<td>0,30-0,55</td>
</tr>
<tr>
<td>Pospórkiki</td>
<td>0,20-0,40</td>
</tr>
<tr>
<td>Piaski równoziarniste</td>
<td>0,26-0,48</td>
</tr>
<tr>
<td>Piaski różnoziarniste</td>
<td>0,20-0,45</td>
</tr>
</tbody>
</table>

Zasady i wytyczne stosowane do projektowania klasycznych filtrów pia-
skowych o przepływie pionowym przedstawiono poniżej. Zasadniczo skorzysta-
no z kilku źródeł: dane amerykańskie, niemieckie, francuskie i polskie.

Wytyczne dotyczące uziarnienia warstwy filtracyjnej i wymiarów projek-
towanych filtrów piaskowych podaje Metcalf i Eddy [1991]:
- grubość warstwy filtracyjnej 0,6 – 0,9 m,
- średnica miarodajna ziaren \(d_{10} = 0,5-1,0 \) mm,
- współczynnik nierównomierności uziarnienia \(k < 4 \),
- materiał filtracyjny należy przemyc tak, aby nie zawierał więcej niż
 1% części organicznych,
- obciążenie hydrauliczne powierzchni \(q_f \leq 40 \) \(\text{dm}^3 \cdot \text{m}^{-2} \cdot \text{d}^{-1} \),
- obciążenie powierzchni złoża filtracyjnego ładunkiem zanieczyszczeń
 organicznych \(A_T \leq 5 \) g \(\text{BZT} \cdot \text{m}^{-2} \cdot \text{d}^{-1} \).

Z kolei Niemiecka norma DIN 4261 [1994] zaleca stosowanie następują-
cych zasad:
- jednostkowa długość filtru piaskowego równa długości perforowanego
 przewodu rozprowadzającego nie może być mniejsza od 6 m-M¹,
- długość filtru piaskowego nie może przekraczać 30 m,
- przewody rozprowadzające i zbierające należy z rur o średni-
 cy 100 mm,
- grubość warstwy filtracyjnej nie może być mniejsza niż 0,60 m,
Skuteczność oczyszczania ścieków...

- warstwa filtracyjna powinna być wykonana z piasku gruboziarnistego i grubego żwiru,
- odległość między przewodami rozprowadzającymi nie może być mniejsza niż 1 m.

W tabeli 8 przedstawiono podstawowe kryteria wymiarowania filtrów piaskowych o przepływie pionowym [Błażejewski 1997].

Tabela 8. Kryteria wymiarowania filtrów piaskowych o przepływie pionowym dla oczyszczania ścieków po osadniku gnilnym [Błażejewski 1997]

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Jednostka</th>
<th>Rodzaj filtru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grubość warstwy filtracyjnej</td>
<td>cm</td>
<td>60-100</td>
</tr>
<tr>
<td>Maksymalna średnica ziaren gruntu</td>
<td>mm</td>
<td>4,0</td>
</tr>
<tr>
<td>Średnica efektywna d₁₀</td>
<td>mm</td>
<td>0,7-1,0</td>
</tr>
<tr>
<td>Stosunek średnicy d₁₀:d₆₀</td>
<td>-</td>
<td><4,0</td>
</tr>
<tr>
<td>Dopuszczalne obciążenie hydrauliczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- średnie roczne</td>
<td>dm³·m⁻²·d⁻¹</td>
<td>40</td>
</tr>
<tr>
<td>- średnie sezonowe</td>
<td>dm³·m⁻²·d⁻¹</td>
<td>80</td>
</tr>
</tbody>
</table>

* - bez uwzględnienia ścieków recykulowanych; ścieki przechodzą przez filtr 3 do 5 razy

Według danych zawartych w tabeli 8 można stwierdzić, że średnica efektywna d₁₀ złoża filtracyjnego (zakrytego) powinna się mieścić w przedziale od 0,7 do 1,0 mm. W przypadku filtrów odkrytych zakres ten można poszerzyć do wartości od 0,4 do 1,0 mm. Znacznie wyższe wartości średnicy miarodajnej można stosować w przypadku wypełnienia filtrów piaskowych z recykulacją ścieków. Mieszą się one w przedziale od 1,0 do 1,5 mm. Średnica ziaren użytych do budowy filtrów piaskowych nie powinna przekraczać 4,0 mm.

W tabeli 9 przedstawiono parametry projektowe filtrów piaskowych określone zalewanych.

Wartości efektywnej średnicy (tabela 9) uzianiennia, podawane przez różnych autorów, odnoszą się głównie do badań amerykańskich [Metcalf i Eddy 1991] oraz niemieckich [DIN 4261 1994]. Wpływ średnicy uzianiennia złoża filtracyjnego na jakość ścieków oczyszczonych został szczegółowo opisany w pracy [Chmielowski i Ślizowski 2008a].
Kolejnym ważnym parametrem gruntów stosowanych do budowy filtrów piaskowych jest współczynnik filtracji. Podział na klasy przepuszczalności gruntów zaproponowali Błażejewski i Murat-Błażejewska [1995]. Podzielili oni grunty na pięć klas, od rumoszu i pospórków aż po gliny i ły (tabela 10). Jako wypełnienie filtrów piaskowych stosuje się głównie grunty z kategorii B.

Tabela 10. Podział gruntów na klasy w zależności od ich przepuszczalności

[Tabela 10. Classification of grounds according to their permeability][1]

<table>
<thead>
<tr>
<th>Klasa przepuszczalności gruntu</th>
<th>Czas wsiąkania wody</th>
<th>Współczynnik filtracji (k_f) [m·d⁻¹]</th>
<th>Rodzaj gruntu</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>do 2</td>
<td>>5,659</td>
<td>rumosze, zwiry, pospórków</td>
</tr>
<tr>
<td>B</td>
<td>od 2 do 18</td>
<td>0,628</td>
<td>piaski grube, średnie</td>
</tr>
<tr>
<td>C</td>
<td>od 18 do 180</td>
<td>0,000727</td>
<td>piaski drobne, lessy</td>
</tr>
<tr>
<td>D</td>
<td>od 180 do 780</td>
<td>0,000167</td>
<td>piaski pylaste i gliniaste</td>
</tr>
<tr>
<td>E</td>
<td>> 780 (13 h)</td>
<td>< 0,000167</td>
<td>gliny, ły, skały niespokojne</td>
</tr>
</tbody>
</table>

Według niemieckiej normy ATV-A262 [1998] współczynnik filtracji można obliczyć wg równania Hazena z następującej zależności:

\[k_f = \frac{t_0}{c_0} \]
Skuteczność oczyszczania ścieków...

\[k_f = \frac{d_{10}^2}{100} \text{ [m} \cdot \text{s}^{-1}] \] \hspace{1cm} (8)

gdzie:

- \(d_{10} \) – średnica miarodajna [mm]

Tabela 11. Charakterystyka hydrauliczna gruntu oraz zalecane obciążenia rowów i pól drenażowych ściekami po mechanicznym oczyszczeniu [Osmulska –Mróz 1995]

<table>
<thead>
<tr>
<th>Rodzaj gruntu</th>
<th>Przesiakliwość [min·cm(^{-1})]</th>
<th>Szybkość filtracji [cm·h(^{-1})]</th>
<th>Dopuszczalne obciążenie [dm(^3)·m(^{-2})·d(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwiór i gruby piasek</td>
<td><0,4</td>
<td>>150</td>
<td>grunt nieodpowiedni</td>
</tr>
<tr>
<td>Piasek gruby do średniego</td>
<td>0,4-2</td>
<td>150-30</td>
<td>48</td>
</tr>
<tr>
<td>Piasek drobny i gliniasty</td>
<td>2,5-6</td>
<td>24-10</td>
<td>32</td>
</tr>
<tr>
<td>Glina piaszczysta i glina</td>
<td>6,5-12</td>
<td>9-5</td>
<td>24</td>
</tr>
<tr>
<td>Glina i glina pylasta</td>
<td>12,5-24</td>
<td>4,5-2,5</td>
<td>18</td>
</tr>
<tr>
<td>Glina pylasta ciężka i bardzo ciężka</td>
<td>24,5-48</td>
<td>2,4-1,25</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>>48</td>
<td><1,25</td>
<td>grunt nieodpowiedni</td>
</tr>
</tbody>
</table>

Wraz ze wzrostem średnicy uziarnienia złoża filtracyjnego dopuszczalne obciążenie hydrauliczne się zwiększa. Dla piasków średnich i grubych wynosi 48 dm\(^3\)·m\(^{-2}\)·d\(^{-1}\), a dla gliny ciężkiej i bardzo ciężkiej tylko 8 dm\(^3\)·m\(^{-2}\)·d\(^{-1}\) [Osmulska –Mróz 1995].

3.3.3. Kolmatacja złoża filtracyjnego

Istotnym elementem każdego filtra piaskowego o przepływie pionowym jest błonę biologiczną tworzącą się na powierzchni ziaren materiału filtracyjnego. To dzięki błonie biologicznej, na której gromadzą się grupy mikroorganizmów następują kluczowe procesy oczyszczania ścieków. Wzrost błony biologicznej w znacznym stopniu przyczynia się do kolimacji złoża filtracyjnego. Organizmy błony biologicznej rozkładają lub przekształcają większość substancji organicznych występujących w ściekach. W skład błony biologicznej wchodzą przede wszystkim bakterie, a także inne mikroorganizmy. Poza tym błonę biologiczną tworzą często uboczne produkty metabolizmu lub wydzieliny,

Na podstawie badań różnych autorów można wyróżnić następujące czyn- niki kolmatacji [Błażejewski i Murat-Błażejewska 1997]:

- akumulacja materii, głównie zawiesiny pochodzącej ze ścieków,
- wytracanie i odkładanie pewnych substancji np. węglanu wapnia lub konkretu żelazistym,
- wzrost i rozwój mikroorganizmów wewnątrz porów gruntu,
- odkładanie ubocznych produktów metabolizmu mikroorganizmów oraz występowanie lub nawet akumulacja substancji wytwarzanych przez bakte- rie w postaci śluźu lub otoczek, a pod względem chemicznym zbudowanych często z polimerów, np. wielocukrów.

Na rysunku 18 przedstawiono pionowy rozkład materii organicznej zaku- mulowanej w gruncie.

Największa część materii organicznej akumuluje się w powierzchniowej części filtra (rysunek 18). Według Spychały [2003] materia organiczna w war- stwie gruntu 0-2,5 cm głębokości stanowiła ponad 40% całkowitej zakumulowa- nej materii organicznej. Dla zabezpieczenia filtrów piaskowych i drenaży rozsądzających przed kolmatacją należy stosować skuteczne oczyszczanie wstępne, eliminujące większość zawiesiny. Osadnik gnilny powinien również skutecznie zatrzymywać tłuszcze, gdyż duża ilość ścieków kuchennych boga- tych w tłuszcze może przyspieszyć proces kolmatacji.
Skuteczność oczyszczania ścieków...

3.3.4. Redukcja zanieczyszczeń

Filtre piaskowe o przepływie pionowym charakteryzują się filtratem o wysokiej czystości. Filtrat po przejściu przez złoże jest bezbarwny, bezwonny i klarowny. Zawartość zawiesiny i wysokość BZT₅ nie przekraczają zazwyczaj 10 mg dm⁻³. Jeżeli chodzi o redukcję związków biogennych, to związek azotu są prawie całkowicie przetwarzane w formę azotanową. Metcalf i Eddy [1991] podają, że około 45% azotu usuwane jest na skutek procesu denitrifikacji zachodzącej w anaerobowych mikrośrodowiskach złoża. Mikroorganizmy rozwijające się w złożu powodują rozbudę substancji organicznych w warunkach tlenowych oraz przemianę amoniaku w azotany. W złożu filtracyjnym może również zachodzić proces denitrifikacji w niedotlenionych częściach wypełnienia złoża [Heidrich i Tichończuk 1995].

W tabeli 12 zestawiono średnie wartości dotyczące typowego składu ścieków odpływających z pionowych filtrów piaskowych.

W dalszej kolejności przedstawiono dane dotyczące skuteczności oczyszczania ścieków w filtrach piaskowych o przepływie pionowym (tabelę 13, 14, 15).
Tabela 12. Typowy skład ścieków odpływających z pionowych filtrów piaskowych [USEPA 1992, Schuldela i Bollera 1989]

Table 12. Typical composition of sewage flowing out of vertical flow sand filters [USEPA 1992, Schuldela and Bollera 1989]

<table>
<thead>
<tr>
<th>Rodzaj filtra piaskowego</th>
<th>Stężenie zanieczyszczeń w odpływie [mg dm⁻³]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BZT₅</td>
<td>Zawiesina ogólna</td>
</tr>
<tr>
<td>Zakryty</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Odkryty</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Odkryty z recyrkulacją</td>
<td><15</td>
<td><15</td>
</tr>
</tbody>
</table>

Tabela 13. Skuteczność oczyszczania ścieków w filtrach piaskowych na podstawie badań przeprowadzonych we Francji [Asenizacja indywidualna 1982]

Table 13. The effectiveness of sewage treatment in sand filters based on research carried out in France [Asenizacja indywidualna – Individual waste removal 1982]

<table>
<thead>
<tr>
<th>Wskaźnik zanieczyszczenia</th>
<th>Ścieki surowe</th>
<th>Ścieki po filtrze piaskowym</th>
<th>Efekt oczyszczania ścieków [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zakres</td>
<td>Średnia</td>
<td>Zakres</td>
</tr>
<tr>
<td>BZT₅ [gO₂.m⁻³]</td>
<td>90-280</td>
<td>169</td>
<td>0,2-5,0</td>
</tr>
<tr>
<td>Zawiesiny ogólny [g·m⁻³]</td>
<td>187-610</td>
<td>344</td>
<td>10-88</td>
</tr>
<tr>
<td>Azot ogólny [gN₂O₅·m⁻³]</td>
<td>31-130</td>
<td>68</td>
<td>3-30</td>
</tr>
<tr>
<td>Azot amonowy [g NH₄·m⁻³]</td>
<td>45-79</td>
<td>63</td>
<td>0,4-6,5</td>
</tr>
<tr>
<td>Azot azotanowy [g NO₃·m⁻³]</td>
<td>30-70</td>
<td>49</td>
<td>0,1-6,4</td>
</tr>
<tr>
<td>Bakterie Coli [MPN/100ml]</td>
<td>8-25</td>
<td>14,2</td>
<td>4,3-15</td>
</tr>
</tbody>
</table>

Table 14. The effectiveness of sewage treatment in sand filters based on research carried out in US [Metcalf Eddy 1991]

<table>
<thead>
<tr>
<th>Wskaźnik zanieczyszczenia</th>
<th>Ścieki surowe</th>
<th>Ścieki po filtrze piaskowym</th>
<th>Ścieki po filtrze piaskowym z recyrkulacją</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZT₅ [gO₂·m⁻³]</td>
<td>210-530</td>
<td>< 10</td>
<td>< 15</td>
</tr>
<tr>
<td>Zawiesina ogólna [g·m⁻³]</td>
<td>237-600</td>
<td>< 10</td>
<td>< 15</td>
</tr>
<tr>
<td>Azot ogólny [gN₂O₅·m⁻³]</td>
<td>35-80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azot amonowy [g NH₄·m⁻³]</td>
<td>7-40</td>
<td>< 0,5</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Azot azotanowy [g NO₃·m⁻³]</td>
<td>< 1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Fosfor ogólny [gP₂O₅·m⁻³]</td>
<td>10-27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bakterie Coli [MPN/100ml]</td>
<td>10⁶-10⁹</td>
<td>10⁷-10⁸</td>
<td>10⁷-10⁸</td>
</tr>
</tbody>
</table>
Tabela 15. Skuteczność usuwania związków biogennych ze ścieków na filtrach piaskowych

<table>
<thead>
<tr>
<th>Źródło danych</th>
<th>Obciążenie hydrauliczne [m³·m⁻²·d⁻¹]</th>
<th>Stężenie obserwowane w odpływie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Azot ogólny [gN·m⁻³]</td>
</tr>
<tr>
<td>[Osmulska-Mróz 1995]</td>
<td>0,008-0,040</td>
<td>-</td>
</tr>
<tr>
<td>[Pell i Ljunggren 1990]</td>
<td>0,028-0,030</td>
<td>< 1</td>
</tr>
<tr>
<td>[Pell i inni 1990]</td>
<td>0,030</td>
<td>10-30</td>
</tr>
<tr>
<td>[Pell i inni 1990]</td>
<td>0,065</td>
<td>5-10,1</td>
</tr>
<tr>
<td>[Pell i Nyberg 1989]</td>
<td>0,067</td>
<td>-</td>
</tr>
<tr>
<td>[Metcalf i Eddy 1991]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Dane zawarte w tabelach 13, 14 i 15 świadczą o bardzo wysokiej skuteczności oczyszczania ścieków w filtrach piaskowych o przepływie pionowym. Według danych francuskich podstawowy wskaźnik zanieczyszczenia ścieków jakim jest BZT₅, redukowany jest w 98,7%. Świadczy to o bardzo dobrych warunkach tlenowych panujących w złożu filtracyjnym. Na uwagę zasługuje również znaczna redukcja azotu ogólnego wynosząca 83,8% [Asenizacja indywidualna 1982]. Wynika z tego, że w złożu filtracyjnym zachodzą zarówno procesy nitryfikacji, jak i denitryfikacji w lokalnych mikrostrefach.
4. OPIS OBIEKTÓW BADAŃ

4.1. BADANIA MODELOWE

4.1.1. Wstępny model wycinkowy „M1”

W rozdziale przedstawiono rozwiązanie konstrukcyjne modelu „M1” filtra żwirowo-piaskowego o przepływie pionowym. Model zmodyfikowanego filtra składał się z dwóch komór (rysunek 19), w których następował proces oczyszczania ścieków. Pierwsza komora „A” stanowiła warstwę zabezpieczającą przed kolmatacją właściwą warstwę filtracyjną w drugiej komorze „B”. Model wycinkowy „M1” zbudowano z rury o średnicy d=315 mm, wykonanej z PCV.

Założenia do badań modelowych:
- zastosowano cztery warianty obciążenia hydraulicznego złożo filtracyjnego: 38, 77, 100 oraz 135 dm³·m⁻²·d⁻¹,
- badania przeprowadzono dla trzech wariantów dawkowania ścieków do modelu wycinkowego: 4, 12 oraz 24 razy na dobę,
- średnicę uziarnienia w obu komorach dobrano na podstawie wcześniej przeprowadzonych badań [Chmielowski i Ślizowski 2008a],
- badania prowadzono przez 12 miesięcy + 2 miesiące rozruchu oczyszczalni,

Główne elementy (czynniki) wpływające na proces oczyszczania ścieków w zmodyfikowanym filtrze piaskowym o przepływie pionowym:
- warstwa żwirowa (50 cm) - zabezpieczająca przed kolmatacją właściwą warstwę filtracyjną złożo filtracyjnego,
- częstotliwość dawkowania ścieków w ciągu doby,
- równomiernie rozprowadzenie ścieków, pozwalające na najwyższy możliwy stopień wykorzystania warstwy filtracyjnej w procesie oczyszczania ścieków,
- dostępność powietrza do warstw złożo filtracyjnego, zapewniająca tlenowe procesy oczyszczania ścieków.

Na rysunku 19 przedstawiono schemat modelu „M1” zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym.

Model „M1” składał się z 2 komór o średnicy wewnętrznej 315 mm (odpowiednio komora „A” w górnej części, komora „B” w dolnej części). Komory były usytuowane jedna nad drugą tak, aby zapewnić pionowy przepływ ścieków.
Skuteczność oczyszczania ścieków...

przez złoże filtracyjne. Całkowita wysokość modelu „M1” wyniosła 145 cm. Model został tak zaprojektowany aby można było pobrać próbki ścieków po przesączeniu przez komorę „A” jak również po przesączeniu przez komorę „B”.

Rysunek 19. Model „M1” zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym (wymiary w cm)

Figure 19. “M1” model of the modified vertical flow gravel and sand filter

Ścieki dawkowano do komory „A” za pomocą pomp perystaltycznych typu „DoserOne” włączanych i wyłączanych przez sterownik. Bezpośrednio pod układem rozprowadzającym zaprojektowano warstwę zabezpieczającą (komora A) wykonaną z drobnego zwiwu o średnicy $d_{10}=1,66$ mm i miąższości 50 cm. Zadaniem tej warstwy było bezpośrednio przyjęcie ładunku ścieków wstępnie oczyszczonych i zatrzymanie zanieczyszczeń przed właściwą warstwą filtracyjną. Zasadniczą część modelu stanowiła właściwa warstwa filtracyjna o wysokości 60 cm wykonana z pisku o średnicy $d_{10}=0,40$ mm (komora B). Ścieki do modelu były dostarczane z osadnika gnitnego (fot. 8) zlokalizowanego w mode-}

47
Na fotografii 2 przedstawiono model „M1” zmodyfikowanego filtra żyrowo-piaskowego o przepływie pionowym. Fotografia 2a przedstawia układ modelu podczas normalnej pracy, natomiast fotografia 2b przedstawia układ z otwartą komorą „B” umożliwiającą pobór ścieków oczyszczonych z komory „A”.

Fotografia 2. Wstępny model wycinkowy „M1” a) faza zamknięta, b) faza otwarta

Photo 2. Preliminary fragmentary “M1” model a) closed phase, b) open phase

Warstwa zabezpieczająca

Z rysunku 20 wynika, że wraz ze wzrostem średnicy d_{10} złoża filtracyjnego wzrasta stężenie zawiesiny ogólnej w filtracji. Gwałtowny wzrost obserwuje się zwłaszcza dla średnicy 2,84 oraz 4,28 mm. Świadczy to o tym, że przy projektowaniu warstwy zabezpieczającej przed kolmatacją złoża należy używać średnic z przedziału od 1,29 do 1,65 mm. Mniejszej średnicy nie zaleca się stosować ze względu na ryzyko kolmatacji warstwy w komorze „A”. Zastosowanie natości średnicy większej od proponowanego przedziału spowoduje przedostanie się zbyt dużej części zawiesiny ogólnej do właściwej warstwy filtracyjnej. Wpływ średnicy uziarnienia na jakość ścieków oczyszczonych przedstawiono w pracy [Chmielowski 2008a], gdzie stwierdzono, że jest to czynnik decydujący o jakości ścieków oczyszczonych.

Ważną rolę w filtrze piaskowym o przepływie pionowym stanowi odpowiednie natlenienie złoża filtracyjnego. Procesy tlenowe usuwania zanieczyszczeń mogą zachodzić jedynie przy dostarczeniu do całego złoża filtracyjnego odpowiedniej ilości powietrza, a w szczególności tlenu, który się w nim znajduje.

4.1.2. Model „R1” – komora rozdzielcza

W celu określenia optymalnego rozdzielenia strugi ścieków wstępnie oczyszczonych na mniejsze objętości zbudowany został model „R1” przedstawiony na fotografiach 3 i 4. Składał się on z głowicy rozdzielczej z przewodami elastycznymi. Głowica zawierała 20 przewodów elastycznych i była przymocowana do specjalnej konstrukcji stalowej. Pomiaru ilości wody wypływającej

Rysunek 20. Zależność stężenia zawiesiny ogólnej w ściekach oczyszczonych w filtrze piaskowym o przepływie pionowym w zależności od średnicy uziarnienia warstwy filtracyjnej [Chmielowski i Ślizowski 2008a]

Figure 20. Relationship of the total suspended solids concentration in sewage treated in the vertical flow sand filter and the grain diameter of the filter layer [Chmielowski and Ślizowski 2008a]
z poszczególnych kanałów głowicy dokonano za pomocą wycechowanych naczyń (fot. 3).

Fotografia 3. Model „R1” - urządzenie do badania efektywności rozdziału ścieków

Photo 3. “R1” model - sewage separation efficiency - testing device

Badania przeprowadzono na trzech głowicach rozdzielczych (fot. 4), każda z nich składała się z 20 kanałów rozdzielczych. Średnice przewodów rozdzielczych w badanych głowicach były następujące: głowica A – 5 mm, głowica B -10 mm, głowica C – 15 mm.

Fotografia 4. Model „R1” wraz z pozostałymi głowicami rozdzielczymi: A - głowica 5 mm, B -10 mm, C - 15 mm

Photo 4. “R1” model with the remaining separation heads: A - 5 mm head, B -10 mm, C - 15 mm
4.1.3. Finalny model wycinkowy „M2”

Po zaprojektowaniu i wybudowaniu w terenie prototypu zmodyfikowanego filtru żwirowo-piaskowego został wykonany w laboratorium wycinkowy model pomocniczy „M2” odwzorowujący obiekt w terenie (fot. 5, 6, 7). Autor zdecydował się na wybudowanie modelu „M2” w celu określenia optymalnego obciążenia hydraulicznego. W terenie nie ma możliwości ustawienia obciążenia hydraulicznego na danym poziomie i badanie przez pewien czas jakości ścieków oczyszczonych.

Obudowę modelu "M2" stanowił zbiornik IBC z tworzywa sztucznego, podwyższony do wysokości 130 cm. Na dnie zbiornika został ułoży przewód drenażowy odprowadzający ścieki oczyszcone. Przewód zbierający ścieki oczyszczone został ułożony w warstwie żwirowej o miąższości 20 cm. W warstwie tej zostały ułożone przewody napowietrzające o średnicy 80 mm. Następnie została ułożona właściwa warstwa filtracyjna z piasku o średnicy miarodajnej \(d_{10} = 0,40 \) mm. Miąższość tej warstwy wyniosła 60 cm. Właściwą warstwę filtracyjną w obudowie modelu „M2” przedstawiono na fotografii 5.

![Fotografia 5. Model "M2" - właściwa warstwa filtracyjna](image)

Photo 5. “M2” model - proper filter layer

Następnie na właściwej warstwie filtracyjnej zostały ułożone kolejne przewody napowietrzające o średnicy 50 mm. Na tak przygotowany układ została ułożona warstwa żwirowa (zabezpieczająca) o średnicy miarodajnej \(d_{10} = 1,66 \) mm. Miąższość warstwy żwirowej wyniosła 50 cm. Ułożenie warstwy żwirowej w obudowie modelu „M2” przedstawiono na fotografii 6.
Fotografia 6. Model „M2” - warstwa zabezpieczająca i przewody napowietrzające

Na powierzchni złoża filtracyjnego ułożono przewody rozprowadzające ścieki wstępnie oczyszczone z przewodów PCV o średnicy 40 mm. Ułożono 5 sztuk przewodów długości 100 cm w rozstawie 20 cm. Nad układem przewodów została w stalowej ramie zamocowana głowica rozdzielcza. Górną część modelu „M2” z poszczególnymi układami przedstawiono na fotografii 7.

Fotografia 7. Model „M2” wraz z głowicą rozdzielczą (widoczne żółte przewody napowietrzające oraz popielate rozprowadzające ścieki wstępnie oczyszczone)

Do modelu były dawkowane ścieki z osadnika gnilnego (fotografia 8) zlokalizowanego w tym samym pomieszczeniu co model „M2”.
Osadnik gnilny został wykonany z dwóch zbiorników IBC. Ścieki surowe dopływały do komory A osadnika gnilnego z pionu kanalizacyjnego, do którego było podłączone 5 pisuarów, 15 umywalik i 10 misek ustępowych. W celu regulacji dopływu ścieków do osadnika, pod odpowiednim kątem ustawiono elastyczny przewód łączący osadnik gnilny z pionem kanalizacyjnym. Średni przepływ ścieków ukształtował się na poziomie 0,5 m3·d$^{-1}$. Osadnik gnilny składał się z dwóch komór wstępnej „A” i wtórnej „B”. Odpływ ścieków wstępnie oczyszczonych z osadnika był podłączony do kanalizacji zbiorczej. Z odpływu z komory „B” osadnika były pobierane ścieki do zasilania modelu badawczego.

4.2. BADANIA TERENOWE

4.2.1. Położenie obiektu badań

Prototyp przydomowej oczyszczalni ścieków został wybudowany w miejscowości Ujazd w gminie Trzciana w powiecie bocheńskim, w województwie małopolskim (rysunek 21). O lokalizacji obiektu zadecydowały głównie warunki terenowe umożliwiające odprowadzenie ścieków oczyszczonych oraz zamontowanie niezbędnej aparatury badawczej.
Prototyp oczyszczalni ścieków składał się z osadnika gnilnego stanowiącego pierwszy etap oczyszczania oraz z zmodyfikowanego filtra żwirowo-piaszczystego z pionowym przepływem ścieków. Ponadto pomiędzy wspomnianymi urządzeniami oczyszczalni zaprojektowana została studnia z komorą rozdzielczą.

4.2.2. Osadnik gnilny

Osadnik gnilny zastosowany w badanym obiekcie był klasycznym rozwiązaniem stosowanym w przydomowych oczyszczalniach ścieków. Zapewniał podczyszczanie ścieków surowych i ich doprowadzenie do komory rozdzielczej, a następnie do zmodyfikowanego filtra żwirowo-piaszczystego. Objętość osadnika gnilnego wynosiła 2 m³. W całości wykonany był z tworzywa sztucznego. Średnica przewodu dopływowego wynosi 150 mm, a przewodu odpływowego 100 mm. Od strony odpływu z osadnika zainstalowany był kosz doczyszczający wypełniony puzzolaną (fot. 10), której zdaniem było zatrzymywanie większych zanieczyszczeń. Osadnik gnilny został przedstawiony na fotografii 9.
Fotografia 9. Osadnik gnilny - fazy montażu
Photo 9. Septic tank - installation stages

Fotografia 10. Kosz wypełniony puzzolaną instalowany na odpływie z osadnika
Photo 10. Basket filled with pozzolan installed at the outlet from the settling tank

4.2.3. Zmodyfikowany filtr żwirowo-piaskowy „F1”

4.2.3.1 Uwagi wstępne

W oparciu o przeprowadzone badania laboratoryjne z wykorzystaniem modelu „M1” stwierdzono znaczące zmniejszenie zanieczyszczeń w warstwie żwirowej, a co za tym idzie właściwa warstwa filtracyjna była chroniona przed nadmiernym stężeniem ścieków. Na tej podstawie w prototypie filtru wybudowanym w terenie, zastosowano warstwę zabezpieczającą o miąższości 50 cm i średnicy uziarnienia d_{10} = 1,66 mm (pozostałe parametry tej warstwy przedstawiono w tabeli 16 i na rysunku 26). Jako właściwą warstwę filtracyjną zastoso-
wano piasek o miąższości 60 cm i średnicy uziarnienia $d_{10} = 0,40$ mm (pozostałe parametry tej warstwy przedstawiono w tabeli 16 i na rysunku 26).

Stwierdzono również, że warstwa zabezpieczająca jest bardzo wrażliwa na nierównomiernie rozprowadzenie ścieków, co objawiało się niewłaściwym wykorzystaniem złoża w procesie oczyszczania. W związku z powyższym zaprojektowano w prototypie filtra specjalny nowatorski układ rozprowadzający ścieki po powierzchni złoża filtracyjnego (fot. 14). Rozstaw pomiędzy drenami rozprowadzającymi ścieków przyjęto równą 20 cm, podczas gdy w klasycznych rozwiązańach wynosi od 100 do 200 cm. Prototyp zaprojektowano dla pięciosobowej rodziny. Przyjęto ilość ścieków powstających od jednego mieszkańca na poziomie 100 dm3·M$^{-1}$·d$^{-1}$. Wymiary prototypu filtra w rzucie z góry przyjęto równe 160 x 360 cm.

Rysunek 22. Prototyp zmodyfikowanego filtra żwirowo-piaskowego „F1” o przepływie pionowym w miejscowości Ujazd – widok z góry

Figure 22. “F1” prototype of the modified vertical flow gravel and sand filter in Ujazd locality – view from above
Rysunek 23. Prototyp zmodyfikowanego filtra zwirowo-piaskowego „F1” o przepływie pionowym w miejscowości Ujazd – przekrój A-A

Figure 23. “F1” prototype of the modified vertical flow gravel and sand filter in Ujazd locality – A-A section

Na podstawie badań laboratoryjnych z wykorzystaniem modelu „R1” w prototypie przyjęto głowicę rozdzielczą z kanałami o średnicy 10 mm. Przyjęto również jednorazową dawkę ścieków wprowadzanych do komory rozdzielczej równą 5,0 dm³. Do wprowadzania ścieków do komory rozdzielczej zaprojektowano koryto wywrotne (fot. 11). W oparciu o wstępne badania laboratoryjne z wykorzystaniem modelu „M1” stwierdzono wyższe efekty oczyszczania ścieków przy zastosowaniu większej częstotliwości dawkowania ścieków. W badaniach w laboratorium zastosowano maksymalną liczbę dawek równą 24 d⁻¹. Natomiast w prototypie „F1” w terenie zastosowano 100 dawek po 5 dm³ w ciągu doby (przy założeniu, że do oczyszczalnia średnio dopływa 500 dm³ d⁻¹).

Szczegóły konstrukcyjne prototypu zmodyfikowanego filtra zwirowo-piaskowego przedstawiono na rysunkach 22 i 23.

4.2.3.2. Komora rozdzielcza

Po osadniku gnilnym zaprojektowana została komara rozdzielająca ścieki (rysunek 24) do przewodów rozprowadzających ścieki wstępnie oczyszczone. Wewnętrzna średnica komory rozdzielczej wynosiła 120 cm a głębokość 200 cm. W komorze rozdzielczej umieszczono koryto wywrotne (fot. 11), które jednorazowo dawkowało ścieki w ilości 5 dm³.
Rysunek 24. Komora rozdzielcza wraz z układem dawującym ścieki wstępnie oczyszczone

Figure 24. Distribution chamber with the pre-treated sewage dosing system

Fotografia 11. Korytko wywrotne – do dozowania ścieków

Photo 11. Tipping bucket – for sewage dosage

Ścieki po przepłynięciu przez złoże filtracyjne zbierane były drenażem wykonanym z perforowanej rury z PCV (fot. 12), średnica przewodu drenażowego wynosiła 100 mm. Ścieki oczyszczone odprowadzane były do studzienki rewizyjnej a następnie do lokalnego rowu.
Badania przeprowadzone w laboratorium z wykorzystaniem modelu „M1” wykazały, że ścieki przepływały przez złoże żwirowe w niewielkiej odległości (około 5 cm) od punktu ich doprowadzenia na złoże. To świadczy o potrzebie zaprojektowania układu rozprowadzającego ścieki o zupełnie innej konstrukcji niż proponowane do tej pory. Nierównomiernie obciążone złoże filtracyjne będzie przeciadałe w jednym miejscu, a w innych w ogóle nie obciążone. Przyjęto rozstaw pomiędzy przewodami rozprowadzającymi 20 cm. Łącznie zastosowano 15 przewodów rozprowadzających. Powierzchnia zmodyfikowanego filtra w planie wyniosła 5,76 m² (długość filtra L=3,6 m a szerokość B=1,6 m).

Na rysunku 25 przedstawiono przekrój poprzeczny części układu rozprowadzającego ścieki po powierzchni złoża filtracyjnego.

Na fotografiach 13 i 14 przedstawiono wykonane przez Autora pakiety koryt rozprowadzających ścieki. Niewątpliwą zaletą innowacyjnego rozprowadzania ścieków było wykonanie zasadniczego koryta rozprowadzającego (kolor biały) w ostonie wykonanej z połowy rury kanalizacyjnej o średnicy 15 cm. Koryto rozprowadzające było wykonane z tworzywa sztucznego o przekroju kwadratowym (wymiary oczka 4x4cm).

Na fotografii 15 przedstawiono ścieki pobrane w terenie na dopływie do filtra oraz oczyszczone. Ścieki dopływające do filtra odznaczały się intensywnym zapachem i zabarwieniem. Ścieki oczyszczone były pozbawione zapachu i klarowne.
Rysunek 25. Układ rozprowadzający ścieki po powierzchni zmodyfikowanego filtru żwirowo-piaskowego „F1” (wymiary w cm)

Figure 25. System distributing sewage on the surface of the “F1” modified gravel and sand filter

Fotografia 13. Pakiety rozprowadzające a) widok od dolnej strony, b) widok z boku

Photo 13. Distributing packets a) view from the bottom, b) side view
Fotografia 14. Układ rozprowadzający ścieki po powierzchni zmodyfikowanego złoża zwirowo-piaskowego „F1”
Photo 14. System for the distribution of sewage on the surface of the “F1” modified gravel and sand bed

Fotografia 15. Ścieki dopływające do filtru (A) i ścieki oczyszczone (B)
Photo 15. Sewage flowing into the filter (A) and treated sewage (B)

4.2.3.4. Warstwy filtracyjne

W prototypie zmodyfikowanego filtru „F1” zostały zastosowane dwie warstwy filtracyjne. Pierwsza z nich to drobny żwir o średnicy miarodajnej \(d_{10} = 1.66 \) mm i miąższości 50 cm (nazywana dalej warstwą zabezpieczającą). Drugą warstwę stanowił piasek o średnicy miarodajnej \(d_{10} = 0.40 \) mm i miąższo-
ści 60 cm (nazywana dalej właściwą warstwą filtracyjną). Zadaniem warstwy zabezpieczającej było zmniejszenie stężenia zanieczyszczeń dopływających do właściwej warstwy filtracyjnej. Analizę składu granulometrycznego poszczególnych warstw filtracyjnych wykonano za pomocą wytrząsarki do gruntów sypkich (fot. 16).

Fotografia 16. Wytrząsarka do gruntów sypkich
Photo 16. Shaker for non-cohesive grounds

Na podstawie pomiarów masy ziaren zatrzymanych na poszczególnych si-
tach wytrząsarki wykonano krzywe granulometryczne warstw filtracyjnych (ry-
sunek 26). W tabeli 16 zestawiono podstawowe parametry warstw filtracyjnych
prototypu zmodyfikowanego filtra ścierno-piaskowego o przepływie piono-
ywym „F1”.

Tabela 16. Zestawienie parametrów warstw złoża filtracyjnego prototypu zmodyfikowanego filtra ścierno-piaskowego o przepływie pionowym „F1”
Table 16. Summary of parameters of filter bed layers of the modified vertical flow sand filter “F1” prototype

<table>
<thead>
<tr>
<th>Nazwa warstwy filtracyjnej</th>
<th>Masywność [cm]</th>
<th>Powierzchnia [m^2]</th>
<th>(d_{90}) [mm]</th>
<th>(d_{60}) [mm]</th>
<th>(d_{50}) [mm]</th>
<th>(d_{10}) [mm]</th>
<th>(U_1 = \frac{d_{60}}{d_{10}})</th>
<th>(U_2 = \frac{d_{90}}{d_{10}})</th>
<th>(U_3 = \frac{d_{90}}{d_{60}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warstwa ścierna</td>
<td>50</td>
<td>40</td>
<td>7,67</td>
<td>4,20</td>
<td>3,28</td>
<td>1,66</td>
<td>2,53</td>
<td>4,62</td>
<td>1,83</td>
</tr>
<tr>
<td>Warstwa piaskowa</td>
<td>60</td>
<td>35</td>
<td>0,92</td>
<td>0,53</td>
<td>0,52</td>
<td>0,40</td>
<td>1,33</td>
<td>2,30</td>
<td>1,74</td>
</tr>
</tbody>
</table>

Na rysunku 26 przedstawiono krzywe granulometryczne warstw filtracyj-
nych filtra „F1”

62
Skuteczność oczyszczania ścieków...

Rysunek 26. Krzywe granulometryczne warstw filtracyjnych (kolor czerwony warstwa żwirowa, kolor niebieski – warstwa piaskowa)

Figure 26. Granulometric curves of filter layers (red – gravel layer, blue – sand layer)

4.2.3.5. Układ napowietrzający złoże filtracyjne

W celu zapewnienia w złożu filtracyjnym odpowiedniej ilości tlenu niezbędnego do procesów biologicznego rozkładu zanieczyszczeń zaprojektowano układ przewodów perforowanych z tworzywa sztucznego. Na dnie właściwej warstwy filtracyjnej (piaskowej) zostały ulożone dwa przewody peszel o średnicy 50 mm. Przewody te zostały wyprowadzone na powierzchnię terenu. Dodatkowo do przewodu zbierającego ścieki oczyszczone został podłączony peszel o średnicy 100 mm i wyprowadzony na powierzchnię terenu. Dzięki temu przepływ powietrza był od wlotu drenu zbierającego ścieki w studziencie za filtrem „F1”. Na dnie warstwy zabezpieczającej wzdłuż ulożony został przewód peszel o średnicy 80 mm. Układ przewodów dostarczających powietrze do złoża filtracyjnego przedstawiono na fotografii 17.

4.2.3.6. Urządzenia do poboru próbek ścieków

W celu poboru próbek ścieków z poszczególnych głębokości złoża filtracyjnego zaprojektowano i wykonano specjalne urządzenia z tworzywa sztucznego (fotografia 18). Pojedyncze urządzenie składało się ze zbiornika gromadzącego ścieki pobrane z badanej warstwy złoża. Objętość części gromadzącej ścieki wynosiła 1 dm³. Ścieki pobierane były przez rozszerzoną część urządzenia (kolor czerwony na fotografii 18) wypełnioną drobnym żwirem. Nadmiar ścieków wypływał przez specjalnie wykonane otwory w górnej części zbiornika. Do zbiornika podłączone były przewody z tworzywa sztucznego i wyprowadzono na powierzchnię terenu. Próbki ścieków pobierane były przy pomocy pompy.
perystaltycznej, która zasysała odpowiednią ilość ścieków i transportowała na powierzchnię.

Fotografia 17. Układ przewodów napowietrzających złoże

Photo 17. Bed aeration pipe system

Fotografia 18. Urządzenia do poboru ścieków z zadanych głębokości złoża filtracyjnego

Photo 18. Sewage collection devices from the selected depths of the filter bed
5. METODYKA BADAŃ

5.1. UWAGI WSTĘPNE

Koncepcja rozprawy opiera się o wstępne badania modelowe (model „M1” oraz „R1”), na podstawie których wybudowano prototyp zmodyfikowanego filtra „F1” i następnie przeprowadzono badania i analizy dotyczące skuteczności jego działania. Równolegle do badań terenowych były prowadzone wtórne badania modelowe (w celu określenia maksymalnego dopuszczalnego obciążenia hydraulicznego). Uproszczony schemat metodyki badań przedstawiono na rysunku 27.

Rysunek 27. Schemat blokowy realizowanych badań
Figure 27. Block diagram of performed research

5.2. BADANIA MODELOWE

5.2.1. Wstępny model wycinkowy „M1”

Model „M1” został zaprojektowany i wybudowany w celu określenia jakości ścieków przepływających przez zadane warstwy filtryczne. Opis modelu „M1” został szczegółowo przedstawiony w rozdziale 4.1.1. Do modelu dopływaly ścieki wstępnie oczyszczone pochodzące z osadnika gnilnego zlokalizowanego w tym samym pomieszczeniu (fotografia 8). W celu określenia jakości...

Na podstawie przeprowadzonych analiz fizyko-chemicznych otrzymano wartości wskaźników w ściekach wstępnie oczyszczonych do modelu, ścieków oczyszczonych z komory „A” oraz oczyszczonych w komorze „B”. Dla uzyskanych wyników stężenia wskaźników przedstawiono podstawowe statystyki opisowe tj: wartość średnia, mediana, wartość minimalna, wartość maksymalna, rozstęp, odchylenie standardowe, współczynnik zmienności.

Następnie określono istotność różnic między średnimi wartościami wskaźników zanieczyszczenia w ściekach dopływających do modelu, odpływających z komory „A” i odpływających z komory „B”.

Dysponując wartościami stężeń badanych wskaźników w ściekach dopływających do modelu, oczyszczonych w komorze „A” oraz oczyszczonych w komorze „B” obliczono redukcję zanieczyszczeń w poszczególnych komorach filtracyjnych oraz całkowitą dla modelu „M1”. Dla uzyskanych wyników stężeń zmniejszenia badanych wskaźników przedstawiono podstawowe statystyki opisowe tj: wartość średnia, mediana, wartość minimalna, wartość maksymalna, rozstęp, odchylenie standardowe, współczynnik zmienności.

Badania na modelu „M1” przeprowadzano dla następujących wariantów dawkowania ścieków do modelu wycinkowego: 4, 12 oraz 24 razy na dobę. Dla każdego wariantu dawkowania zastosowano cztery warianty obciążenia hydraulicznego: 38, 77, 100 oraz 135 dm³-d⁻¹-m⁻².

Określono podstawowe statystyki opisowe ścieków dopływających do modelu, oczyszczonych w komorze „A” oraz komorze „B” przy zadanej liczbie dawkowań ścieków do modelu w ciągu doby oraz przy obciążeniach hydraulicznych wynoszących 38, 77, 100, 135 dm³-d⁻¹-m⁻².
5.2.2. Model „R1” – komora rozdzielcza

W celu określenia równomiernego obciążenia hydraulicznego poszczególnych kanałów głowicy rozdzielczej zbudowano model „R1”. Do konstrukcji stalowej przymocowana została głowica rozdzielcza z 20 przewodami (fot. 3 i 4). Przebadano trzy głowice różniące się średnią przepływem wody do wody rozdzielczych. Badano głowice z następującymi przepływami rozdzielczymi:

- głowica „A” – przewody rozdzielcze o średnicy 5 mm,
- głowica „B” – przewody rozdzielcze o średnicy 10 mm,
- głowica „C” – przewody rozdzielcze o średnicy 15 mm.

Do każdej z głowic rozdzielczych wlewano odpowiednią objętość wody i następnie mierzyli objętość wody w naczyniach na końcu każdego przewodu rozdzielczego. W badaniach zastosowano następujące dawki wody wlewane do komory rozdzielczej: 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0 dm³. Badania wykonano w dziesięciu powtórzeniach dla każdej dawki.

Na podstawie pomierzonych ilości wody z poszczególnych przewodów rozdzielczych określono współczynnik zmienności dla każdej głowicy. Ponadto określono współczynniki zmienności ilości wody pomierzonej z przewodów rozdzielczych przy zadanych wielkościach dawek wlewanych do głowicy.

5.2.3. Finalny model wycinkowy „M2”

Końcowy model wycinkowy „M2” zbudowano na podstawie prototypu filtra zbudowanego w terenie w miejscowości Ujazd. Został on wybudowany w celu określenia wartości badanych wskaźników w ściekach oczyszczonych przy zadanych obciążeniach hydraulicznych. Podjęto próbę określenia obciążenia hydraulicznego złożonego na jakość ścieków oczyszczonych. Do datkowo określono wpływ wymienionych wyżej czynników na redukcję zanieczyszczeń. Badania przeprowadzono w okresie od września 2011 roku do grudnia 2012 roku, dla następujących obciążen hydraulicznych: 25, 50, 75, 100, 150 i 200 dm³·m⁻²·d⁻¹. Analizę fizykochemiczną przeprowadzono dla następujących wskaźników zanieczyszczenia ścieków: BZT₅, ChZTCr, zawiesina ogólna.

5.3. BADANIA TERENOWE – PROTOTYP „F1”

Określenie ilości ścieków dopływających do prototypu oczyszczalni

Ilość ścieków dopływających do prototypu oczyszczalni w terenie określono za pomocą zestawu składającego się z wodomierza skrzydłowego wyposażonego w generator impulsów oraz rejestratora impulsów „MinilogB” (fotografia 19). Wodomierz zamontowany został w piwnicy gospodarstwa, w którym wybudowano prototyp oczyszczalni. Wodomierz został umieszczony
w takim miejscu, w którym mógł mierzyć ilość wody trafiającą wyłącznie do oczyszczalni ścieków. Z osobnego podłączenia właściciel pobierał wodę na inne cele: mycie samochodu, kostki brukowej oraz na podlewanie upraw w ogrodzie. Niemniej jednak przyjęto, że do oczyszczalni trafia 98 % wody pomierzonej przez zestaw wodomierzowy i rejestrator impulsów. Powodem tej decyzji było pewne zużycie wody, która nie trafiała do oczyszczalni, a nie była możliwa do pomierzenia (woda do mycia podłóg, przygotowanie posiłków, podlewanie kwiatków w domu). Mierzono ilość zużywanej wody z częstotliwością co 1 godzinę i dokładnością 1 dm³. Na podstawie zebranych danych określono wartość średnią dobową, minimalną, maksymalną odchylenie standardowe, mediana, współczynniki nierównomierności godzinowej, współczynnik nierównomierności dobowej.

Fotografia 19. Zestaw wodomierza (A) z rejestratorem impulsów MiniLogB (B)

Photo 19. Water meter kit (A) with MiniLogB impulse recorder (B)

Pomiar temperatury powietrza oraz ścieków dopływających i odpływających z prototypu zmodyfikowanego filtra „F1”

Temperaturę powietrza, ścieków dopływających do filtru oraz temperaturę filtratu pomierzono za pomocą zestawu termometrów „SmartButton” (fot. 20). Termometr „SmartButton” pozwala na zapis temperatury z częstotliwością do 1 min, niemniej jednak do badań zastosowano pomiar z częstotliwością co godzinę. Ze względu na małe wymiary można go umieścić w dowolnym miejscu oczyszczalni. W celu pomiaru temperatury ścieków zastosowano mosiężne nakładki zabezpieczające termometr przed wpływem ścieków. W celu odczytania pomierzonych danych termometr został podłączony do specjalistycznego gniaz-
da i skomunikowany z komputerem. Zapisane dane zostały przetworzone w programie komputerowym Microsoft Excel.

Temperatura powierzchnia była mierzona w pobliżu prototypu oczyszczalni w miejscu zacienionym na wysokości 2 m nad poziomem terenu. Temperaturę ścieków wstępnie oczyszczonych mierzono na odpływie z osadnika gnilnego w górnej części kosza z puzzolaną, a oczyszczonych w studzience odpływowej, umiejscowionej bezpośrednio za filtrem. Tak zebrane dane zostały poddane analizie, w której określono wartość: średnią, minimalną, maksymalną, rozstęp, odchylenie standardowe, medianę, współczynnik zmienności. W celu określenia wpływu temperatury powietrza na temperaturę ścieków dopływających do filtra i oczyszczonych określono współczynniki korelacji dla badanych zmiennych, a następnie za pomocą testu t-Studenta określono statystycznie jego istotność. Podobnie określono zależność temperatury filtratu od temperatury ścieków dopływających do filtra.

Fotografia 20. Termometry „SmartButton” (A) wraz z oprzyrządowaniem do transmisji danych (B)
Photo 20. “SmartButton” thermometers (A) including data transmission instrumentation (B)

Pobór próbek ścieków i określenie ich jakości z poszczególnych etapów oczyszczania
Ścieki wstępnie oczyszczone pobierane były z komory rozdzielczej po osadniku gnilnym, a oczyszczone ze studzienki za filtrem. W celu pobrania ścieków z założonych głębokości filtra zastosowano specjalnie skonstruowane do tego celu urządzenia, które zostały opisane w rozdziale 4.2.3.6 i przedstawiono na fotografii 18. Próbki ścieków pobierano z następujących głębokości złoża

ChZT$_{Cr}$ - pomiary wykonano zgodnie z normą PN-ISO 6060:2006 pt. Jakość wody - Oznaczanie chemicznego zapotrzebowania tlenu. Oznaczanie ChZT$_{Cr}$ dokonano z wykorzystaniem fotometru Aquanal Spectro 3.

Stężenie azotu azotanowego - oznaczanie azotu azotanowego z wykorzystaniem fotometru Aquanal Spectro 3. Spektrofotometryczna metoda z wykorzystaniem gotowych testów AQUANAL firmy Sigma-Aldrich Co.

Stężenie azotu azotynowego - pomiary wykonano zgodnie z normą PN-73/C-04576.06. pt. Woda i ścieki - Badania zawartości związków azotowych - Oznaczanie azotu azotynowego metodą kolorymetryczną z kwasem sulfanilowym i 1-naftyloaminą. Oznaczanie azotu azotynowego dokonano za pomocą spektrofotometru MARCEL S330.

Stężenie azotu ogólnego - oznaczanie azotu ogólnego z wykorzystaniem fotometru Aquanal Spectro 3. Spektrofotometryczna metoda z wykorzystaniem gotowych testów AQUANAL firmy Sigma-Aldrich Co.

Na podstawie wartości wskaźników w ściekach wstępnie oczyszczonych i oczyszczonych określono redukcję zanieczyszczeń w prototypie zmodyfikowanego filtru piaskowego:

\[\eta = \frac{S_s - S_o}{S_s} \times 100\% \] (9)

gdzie:

- \(S_s \) – wartość wskaźnika zanieczyszczenia w ściekach surowych [mg dm\(^{-3}\)],
- \(S_o \) – wartość wskaźnika zanieczyszczenia w ściekach oczyszczonych [mg dm\(^{-3}\)].

Określono wartości średnie, minimalne, maksymalne skuteczności zmniejszania zanieczyszczeń dla poszczególnych wskaźników. Dodatkowo określono odchylenie standardowe, współczynnik zmienności.

Analizy mikrobiologiczne

Analizy mikrobiologiczne przeprowadzone zostały w oparciu o metodę seeryjnych roztworów. Zgodnie z zasadą metody ścieki rozcieńczano w jalowym roztworze soli fizjologicznej, w przedziale od 1 do 10\(^{-6}\).

Miano bakterii grupy *coli* określano metodą fermentacyjną probówkową. W tym celu przenoszono po 1 cm\(^3\) badanego materiału do jalowych probówek z rurkami Dührmana, zanurzonymi w pożywce z bulionem laktozowym i purpurą bromokreozolową. Następnie hodowlę inkubowano w temperaturze 37\(^{\circ}\)C przez 24 godziny [PN-C-04615-07:1977].
W celu potwierdzenia obecności *Escherichia coli* w badanym materiale, po upływie 24 godzin, za pomocą wyjątkowo oazy pobierano niewielką jego ilość z wszystkich próbówek zawierających bakterie grupy *coli* i przenoszono na agar Endo. Wyniki odczytywano po 24 – godzinnej inkubacji w temperaturze 37°C [Schlegel 2005].

Miano enterokoków oznaczano metodą próbówkową w pożywce zawierającej azydek sodowy i purpur bromokrezolową. Z kolejnych rozcieńczeń badanego materiału pobierano po 1 cm³ i przenoszono do próbówek z pożywką. Następnie posiewy inkubowano w temperaturze 37°C przez 24 godziny [PN-C 04615-25:2008].

Liczność bakterii z rodzaju *Salmonella* i *Shigella*, a także *Clostridium perfringens* oznaczano stosując metodę podłoża różnicującego – wybiórcze, a następnie przeliczając ilość wyrostych kolonii na jednostki tworzące kolonie w 1 cm³ badanego ścieku, stosując wzór zamieszczony pod tabelką z odczytem wyników.

Liczność *Salmonella* sp. oraz *Shigella* sp. określano na podłożu różnicującym – wybiórczym SS. W tym celu z każdego rozcieńczenia badanych ścięków pobierano za pomocą jałowych pipet po 1 cm³ materiału i przenoszono na sterylne płytki Petriego, które następnie zalewano jałowym podłożem, schłodzonym do temperatury około 45°C. Hodowle inkubowano w temperaturze 37°C przez 24 godziny. Wyrosłe kolonie przeliczano na jednostki tworzące kolonie, zgodnie z [PN-Z-19000-1:2001].

Liczność *Clostridium perfringens* określano stosując podłoże wybiórcze Wilsona – Blaira. W tym celu, do jałowych płytek Petriego, przenoszono po 1 cm³ z kolejnych rozcieńczeń badanych ścięków. Następnie zalewano jąłowy podłożem, schłodzonym do temperatury około 45°C. Celem odciącia dółwu tlenu do hodowli, po zestaleniu podłoża, całą powierzchnię płytki zalewano około 3 mm warstwą 3% agaru. Próbki inkubowano w temperaturze 37°C przez 24 godziny. Wyrosłe na podłożu czarne kolonie *Clostridium perfringens* przeliczano na jednostki tworzące kolonie, zgodnie z [PN-Z-19000-3:2001].

\[L = \frac{\sum_{i=1}^{n} xy}{n} \] (10)

gdzie:
- \(L \) – liczba jednostek tworzących kolonie w 1 cm³ badanej próbki,
- \(x \) – liczba kolonii w danym rozcieńczeniu (w przedziale od 3 do 300),
- \(y \) – rozcieńczenie,
- \(n \) – liczba dokonanych odczytów.

Podstawowym wskaźnikiem bakteriologicznym są bakterie *Escherichia coli* typu kałowego wyrażone jako NPL (najbardziej prawdopodobna liczba zawarta w 100 ml ścieków) lub w postaci miana coli typu kałowego czyli naj-
mniejszej objętości ścieków, w której stwierdzona została obecność tych bakterii. Przeliczniki między NPL a mianem coli jest następujący:

$$\text{mianem coli} = \frac{100}{\text{NPL}}$$ (11)

Analiza statystyczna

Na podstawie uzyskanych wyników przeprowadzono analizę korelacji między temperaturą powietrza, a temperaturą ścieków dopływających do filtra „F1” oraz temperaturą ścieków odpływających z filtra. Dodatkowo określono zależność korelacyjną pomiędzy temperaturą ścieków dopływających i odpływających z filtra „F1”.

Testowano hipotezę zerową:

$$H_0 : \rho = 0$$ (12)

Równoznaczna z brakiem zależności między analizowanymi zmiennymi, wobec hipotezy alternatywnej:

$$H_A : \rho \neq 0$$ (13)

która mówi o występowaniu zależności między badanymi zmiennymi.

Zostały wyznaczone współczynniki korelacji liniowej Pearsona i następnie potwierdzono ich istotność statystyczną za pomocą testu t-Studenta na poziomie istotności $\alpha=0.05$. Wartości bezwzględne uzyskane z programu Statistica 10.0 odnoszą do wartości krytycznych odczytanych z tablic rozkładu t – Studenta. Współczynnik korelacji uznawano za statystycznie istotny, gdy uzyskane z analiz wartości testu t były większe od krytycznej wartości odczytanej z tablic.

Określono, czy średnie wartości stężeń badanych wskaźników w ściekach pobieranych z zadanym dopływem ścieków filtracyjnego w istotny sposób się od siebie różnią. Analiza ta została przeprowadzona z wykorzystaniem jednorzędowej analizy wariancji ANOVA. Jako zmienną zależną przyjęto wartości badanych wskaźników zanieczyszczenia ścieków z poszczególnych głębokości złoża filtracyjnego (BZTs, ChZTs, tlen rozpuszczony, odczyn pH, zawiesina ogólna, fosfor ogólny, azot amonowy, azot ogólny). Czynnikiem determinującym jakość ścieków w odpływie z poszczególnych poziomów złoża filtracyjnego była miąższość złoża filtracyjnego.

Wstępna analiza danych polegała także na usunięciu danych odstających, co przeprowadzono w oparciu o analizę wykresu przebiegu wartości analizowanych wskaźników w czasie. W dalszej kolejności przed przystąpieniem do analizy dokonano weryfikacji hipotezy zerowej mówiącej, że dana zmienność podlega rozkładowi normalnemu wobec hipotezy alternatywnej, dzięki czemu można ją opisać rozkładem innym niż normalny. Weryfikację tej hipotezy dokonano testem Shapiro-Wilka na poziomie istotności $\alpha=0.05$. Do dalszej analizy wykorzystano tylko te zmienne, które można było opisać rozkładem normalnym.

73
Aby rozstrzygnąć, czy odrzucić hipotezę zerową, czy też orzec o braku podstaw do jej odrzucenia, zastosowano statystykę F. Jeżeli wartość statystyki F obliczona na podstawie próby zawiera się w zbiorze krytycznym, to należy odrzucić hipotezę testowaną na korzyść hipotezy alternatywnej. Jeżeli zaś wartość statystyki F nie zawiera się w zbiorze krytycznym, to brak podstaw do odrzucenia hipotezy zerowej. Statystyka testu F w jednoczynnikowej analizie wariancji wyraża się wzorem:

\[F = \frac{\sum_{i=1}^{k} (\bar{x}_i - \bar{x})^2 n_i}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2} \]

(14)

gdzie:
- \(k \) – liczba grup (międzysiadliwości),
- \(n \) – łączna liczebność próbek we wszystkich grupach.

W obliczeniach przyjęto poziom istotności 0,05 (prawdopodobieństwo odrzucenia prawdziwej hipotezy zerowej). Jeżeli wartość prawdopodobieństwa testowego (p-value) nie przekracza poziomu istotności 0,05 (czyli wartość empiryczna testu F należy do zbioru krytycznego) to odrzucamy hipotezę zerową na rzecz hipotezy alternatywnej, czyli twierdzimy, że średnie są istotnie różne. W przeciwnym wypadku brak podstaw do odrzucenia hipotezy zerowej, (czyli wartość empiryczna testu F nie należy do zbioru krytycznego).

Formalnie dla zastosowania testu różnic wielu średnich wymagane jest istnienie istotnych różnic pomiędzy wariancjami w poszczególnych grupach. Jeżeli różnice pomiędzy wariancjami nie są istotne, to nie można stosować analizy wariancji. Jednym z testów sprawdzających, czy wariancje są istotnie różne, jest test Leven’a (test homogeniczności wariancji). Testuje on hipotezę o braku różnic między wariancjami przeciwko hipotezie alternatywnej o istnieniu takiej różnicy. Statystyka F tego testu ma rozkład Fishera. Test Leven’a odrzuca hipotezę zerową o braku różnic między wariancjami, jeśli prawdopodobieństwo testowe (p-value) jest mniejsze od 0,05 i w takiej sytuacji nie można stosować analizy wariancji ANOVA. W badaniach empirycznych, wszędzie tam, gdzie wykorzystano analizę wariancji ANOVA, test Leven’a nie odrzucił hipotezy zerowej o braku istotnych różnic pomiędzy wariancjami.

Jeżeli jednoczynnikowa analiza wariancji wykazała, że w całości zbiorowości średnie w poszczególnych grupach różnią się istotnie od siebie, to wówczas wykorzystano testy post hoc do wskazania, pomiędzy którymi grupami różnice średnich są najbardziej istotne. Zastosowano test Tukeya dla \(N \) zmiennych. Test ten sprawdza istotność różnic średnich dla wszystkich par grup. W wynikach badań empirycznych przedstawiono tablice wartości prawdopodobieństw testowych (p-value) dla każdej pary grup. Jeżeli prawdopodobieństwo testowe
Skuteczność oczyszczania ścieków...

(p-value) jest mniejsze od 0,05, to różnica średnich dla danej pary grup jest istotna.

Ponadto określono statystycznie niezawodność działania prototypu zmodyfikowanego filtra źwirowo-piaskowego „F1”. Pod pojęciem niezawodności, najczęściej określa się prawdopodobieństwo bezawaryjnej pracy danego systemu. Niezawodność określano jako zdolność do spełniania wymagań stawianych ściekom oczyszczonym według Rozporządzenia [2006] w przyjętym okresie czasu. Przy badaniach niezawodności, zwłaszcza gdy istnieje potrzeba jej prognozowania wykorzystuje się informacje o rozkładzie badanego czynnika. Użytecznym, ogólnym rozkładem prawdopodobieństwa, mającym zastosowanie w badaniu niezawodności jest rozkład Weibulla, który charakteryzuje się następującą funkcją gęstości prawdopodobieństwa (z dodatnimi parametrami b, c, i θ):

\[f(x) = \frac{c}{b} \left(\frac{x-\theta}{b}\right)^{c-1} \exp\left[-\left(\frac{x-\theta}{b}\right)^c\right] \]

(15)

\[\theta<x, b>0, c>0 \]

gdzie:
- \(x \) – zmienna oznaczająca czas,
- \(b \) – parametr skali,
- \(c \) – parametr kształtu,
- \(\theta \) – parametr położenia.

Dystrybuantę rozkładu Weibulla można wyrazić wzorem:

\[F(x) = 1 - \exp\left[-\left(\frac{x-\theta}{b}\right)^c\right] \]

(16)

Natomiast funkcję niezawodności rozkładu Weibulla określa się jako dopełnienie dystrybuanty do jedności, co wyrazić można wzorem:

\[R(x) = 1 - F(x) \]

(17)

Analiza niezawodności w przypadku prototypu zmodyfikowanego filtra źwirowo-piaskowego polegała na estymacji parametrów rozkładu Weibulla przy wykorzystaniu metody największej wiarygodności. W dalszej kolejności dokonano weryfikacji hipotezy zerowej mówiącej o tym, że zmienna analizowana może zostać opisana rozkładem Weibulla, wobec hipotezy alternatywnej, że zmienna podlega rozkładowi innemu niż Weibulla. Weryfikacji tej hipotezy dokonano testem Hollandera-Proschana. W oparciu o funkcję dystrybuanty oceńono niezawodność zmodyfikowanego filtra źwirowo-piaskowego. Analizie
poddano wyniki analiz laboratoryjnych, obejmujących: wielkości BZTs, ChZTCr i stężenia zawiesiny ogólnej w ściekach oczyszczonych. Wartości dopuszczalne, analizowanych wskaźników przyjęto na podstawie Rozporządzenia [2006] dla oczyszczalni do 2000 RLM: w przypadku BZTs – 40 mgO₂·dm⁻³, dla ChZTCr – 150 mgO₂·dm⁻³ i dla zawiesiny ogólnej – 50 mg·dm⁻³.
6. WYNIKI BADAŃ I ICH ANALIZA

6.1. ANALIZA WYNIKÓW BADAŃ LABORATORYJNYCH

6.1.1. Analiza wstępnych wyników badań laboratoryjnych – model „M1”

6.1.1.1. Uwagi wstępne

W rozdziale przedstawiono analizę wyników badań uzyskanych z wstępnego modelu wycinkowego „M1”. Celem budowy modelu było określenie skuteczności zmniejszenia zanieczyszczeń w warstwie żwirowej (komora „A”) oraz po przesączeniu ścieków przez warstwę piaskową (komora „B”). W tym celu określono stężenie poszczególnych wskaźników w ściekach dopływających do modelu, po przesączeniu przez warstwę żwirową oraz przez warstwę piasku. Ponadto podjęto próbę określenia wpływu liczby dawkowań ścieków do modelu „M1” na stężenie ścieków oczyszczonych i zmniejszenia zanieczyszczeń w ściekach po przesączeniu przez poszczególne warstwy. W pierwszej kolejności poddano analizie jakość ścieków oczyszczonych z poszczególnych warstw modelu. W tym celu przedstawiono podstawowe statystyki opisowe dotyczące jakości ścieków wstępnie oczyszczonych, oczyszczonych po komorze „A” oraz oczyszczonych po komorze „B”.

6.1.1.2. Analiza wartości stężenia oraz redukcji zanieczyszczeń

Wskaźnik BZT₅

BZT₅ jest podstawowym wskaźnikiem zanieczyszczenia ścieków, według danych literaturowych [Błażejewski 2003] może w ściekach surowych przyjmować zakres wartości od 300 do 400 mgO₂·dm⁻³. W przypadku ścieków po osadniku gnilnym Krzanowski i Wałęga [2007] zanotowali wartość BZT₅ na poziomie 145,8 mgO₂·dm⁻³. Na podstawie badań fizykochemicznych przedstawiono podstawowe statystyki opisowe wartości BZT₅ z poszczególnych etapów oczyszczania modelu „M1” oraz skuteczności zmniejszenia BZT₅ (tabela 17).

Ścieki wstępnie oczyszczone dopływające do modelu badawczego „M1” charakteryzowały się znaczną zmiennością wartości wskaźnika BZT₅ od 100 mgO₂·dm⁻³ do 480,00 mgO₂·dm⁻³. Średnia wartość BZT₅ wyniosła 210,00
mgO₂·dm⁻³. Odchylenie standardowe wyniosło 74,29 mgO₂·dm⁻³, a współczynnik zmienności 0,35. Przytoczone wartości świadczą o znacznym rozstępie jakości dopływających ścieków wynoszącym 380,00 mgO₂·dm⁻³. Dane literatowe dotyczące zmienności BZT₅ ścieków wstępnie oczyszczonych kształtują się w podobnych granicach [Asenizacja indywidualna 1982, Metcalf Eddy 1991].

Tabela 17. Zestawienie podstawowych statystyk opisowych wartości BZT₅ w ściekach wstępnie oczyszczonych, po przesączeniu przez komorę „A” oraz komorę „B” w modelu „M1”

Table 17. Summary of basic descriptive statistics of BOD₅ values in pre-treated sewage, after filtration through chamber “A” and chamber “B” in the “M1” model

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Wartość wskaźnika BZT₅ w ściekach [mgO₂·dm⁻³]</th>
<th>Redukcja BZT₅ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\overline{X})</td>
<td>210,00</td>
<td>84,31</td>
</tr>
<tr>
<td>Mediana</td>
<td>(m_k)</td>
<td>200,00</td>
<td>80,00</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>100,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>480,00</td>
<td>180,00</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>380,00</td>
<td>160,00</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>74,29</td>
<td>36,05</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>WZ</td>
<td>0,35</td>
<td>0,43</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>Xₜₜₖₜ</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Liczba przekroczeń</td>
<td>IP</td>
<td>72</td>
<td>59</td>
</tr>
</tbody>
</table>

*) – przy dawkowaniu 4 razy na dobę stwierdzono 11 przekroczeń, przy dawkowaniu 12 razy na dobę nie stwierdzono przekroczeń wartości dopuszczalnej.

Analizując wartości BZT₅ ścieków oczyszczonych w komorze „A” należy stwierdzić, że średnia wartość wyniosła 84,31 mgO₂·dm⁻³. Zaobserwowano znaczny rozstęp pomiędzy wartością maksymalną i minimalną na poziomie 160,00 mgO₂·dm⁻³. O dużej zmienności danych świadczy również współczynnik zmienności, który wyniósł 0,43. Stwierdzono, że warstwa drobnego żwiru o wysokości 50 cm pozwoliła zmniejszyć średnią wartość BZT₅ z 210,00 do 84,31 mgO₂·dm⁻³. Odchylenie standardowe ukształtowało się na poziomie 36,05 mgO₂·dm⁻³. Stwierdzono 59 przekroczeń wartości dopuszczalnej wynoszącej zgodnie z Rozporządzeniem [2006] 40 mgO₂·dm⁻³.

Poddając analizie statystycznej wartość BZT₅ ścieków oczyszczonych po komorze „B” uzyskano średnią wartość wynoszącą 29,65 mgO₂·dm⁻³ i była ona niższa od wartości BZT₅ ścieków po przesączeniu przez komorę „A” o 54,66
mgO₂·dm⁻³. Wartość minimalną zanotowano na poziomie 5,00 mgO₂·dm⁻³, a wartość maksymalna osiągnęła poziom 100,00 mgO₂·dm⁻³. Stwierdzono 13 przekroczeń wartości dopuszczalnej podanej w Rozporządzeniu [2006]. Należy jednak zaznaczyć, że przekroczenia wartości dopuszczalnej wystąpiły głównie przy dawkowaniu ścieków do modelu wynoszącym 4 razy na dobę (11 przekroczeń). Łącznie średnie zmniejszenie wartości BZT₅ w całym modelu wyniosło 180,35 mgO₂·dm⁻³. Biorąc pod uwagę wyniki badań przeprowadzonych we Francji na 70 klasycznych filtrach piaskowych o przepływie pionowym [Asenizacja indywidualna 1982] średnia wartość BZT₅ ścieków oczyszczonych była na bardzo niskim poziomie i wyniosła 1,8 mgO₂·dm⁻³. Badania przeprowadzone przez Ślisowski i Chmielowski [2007] wykazały, w klasycznych filtrach piaskowych o przepływie pionowym średnią wartość BZT₅ w ściekach oczyszczonych, również na niskim poziomie 1,78 mgO₂·dm⁻³. Jóźwiakowski [2012] analizując dane z odpływu ścieków z hydrofitowego złoża gruntowego o przepływie pionowym uzyskał średnią wartość BZT₅ na poziomie 22,3 mgO₂·dm⁻³.

W tabeli 17 przedstawiono podstawowe statystyki opisowe dotyczące skuteczności zmniejszenia BZT₅ w poszczególnych etapach oczyszczania ścieków w modelu wycinkowym „M₁”. Średnia redukcja BZT₅ po przesączeniu ścieków przez komorę „A” wyniosła 56,92%. Wartość minimalna wyniosła 12,50%, a maksymalna 90,91%. Świadczy to o znacznym zmniejszeniu wartości BZT₅ na pierwszej – zwirowej warstwie filtra. Rozstęp pomiędzy maksymalną i minimalną wartością skuteczności zmniejszenia BZT₅ wyniósł 78,41% co stanowi znaczącą wartość, na co mogła mieć wpływ zróżnicowana jakość ścieków dopływających do złoża. Współczynnik zmienności ukształtował się na poziomie 0,33.

Redukacja BZT₅ po przesączeniu przez warstwę piaskową (komora „B”) charakteryzowała się zakresem od 25,00% do 93,75%. Średnia redukcja BZT₅ po komorze „B” wyniosła 63,55 %. Należy stwierdzić wysoką redukcję BZT₅ w warstwie piasku, co świadczyć może o korzystnych warunkach tlenowych.

Całkowita redukcja BZT₅ w analizowanym modelu „M₁” wyniosła 83,99%, podczas gdy minimalna wartość ukształtowała się na poziomie 50,00%, a maksymalna 98,21%. Podsumowując należy stwierdzić wysoką redukcję BZT₅ na poszczególnych etapach oczyszczania.

Na rysunku 28 przedstawiono wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla BZT₅ ścieków dopływających do modelu „M₁” oraz ścieków oczyszczonych w komorze „A” i w komorze „B”.

Analizując dane z rysunku 28 można zauważyć, że mediana BZT₅ dla ścieków oczyszczonych w komorze „A” była znacznie niższa niż ścieków dopływających. Obserwuje się bardzo dobre działanie warstwy zwierowej w procesie oczyszczania ścieków. Do warstwy piaskowej (komora „B”) dopływały ścieki znacznie podczyszczone, co pozwala rokować na dłuższe działanie warstwy piaskowej bez jej nadmiernej kolmatacji. Podkreślę, że po przesączeniu ścieków przez warstwę piaskową medianą BZT₅ wyniosła 20 mgO₂·dm⁻³.
Rysunek 28. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla BZT5 ścieków dopływających do modelu „M1” oraz ścieków oczyszczonych w komorze „A” i w komorze „B”

Figure 28. Values of median, quantile (25% and 75%) and the range of non-deviating values for BOD₅ of sewage flowing into “M1” model and sewage treated in chamber “A” and in chamber “B”

W dalszej kolejności podjęto próbę dopasowania rozkładu teoretycznego dla zmiennej: wartość BZT₅ w ściekach dopływających i odpływających z poszczególnych warstw modelu „M1”. Należy stwierdzić, że dla ścieków dopływających do modelu oraz oczyszczonych po komorze „A” dopasowano rozkład normalny dla badanej zmiennej, a dla wartości BZT₅ w ściekach oczyszczonych w komorze „B” dopasowano rozkład lognormalny. Poprawność doboru rozkładu potwierdzono testem chi-kwadrat na poziomie istotności α=0,05.

Dla zmiennej wartość BZT₅ w ściekach wstępnie oczyszczonych dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,18). Analizując dane przedstawione na rysunku 29a, najczęściej obserwowane wartości ścieków wstępnie oczyszczonych dopływających do modelu „M1” stanowił przedział od 150 do 200 mgO₂·dm⁻³, który reprezentował ponad 27% zaobserwowanych wyników.

Nieco rzadziej wystąpiły wartości BZT₅ w sąsiednich przedziałach tj. 100-150 mgO₂·dm⁻³ (24% obserwacji) oraz 200-250 mgO₂·dm⁻³ i 250-300 mgO₂·dm⁻³, które stanowiły po 18% wszystkich obserwacji. Wartość BZT₅ ścieków wstępnie oczyszczonych powyżej 300 mgO₂·dm⁻³ występowała stosunkowo rzadko i stanowiła zaledwie 10% wszystkich obserwacji.
Rysunek 29. Histogram wraz z funkcją gęstości oraz dystrybuantą empiryczną i teoretyczną dla wartości BZT dla: a) ścieków wstępnie oczyszczonych dopływających do modelu „M1”, b) ścieków po oczyszczeniu w komorze „A”, c) ścieków po oczyszczeniu w komorze „B”

Figure 29. Histogram with the density function, empirical and theoretical distribution function for BOD₅ values for: a) pre-treated sewage flowing into “M1” model, b) sewage after treatment in chamber “A”, c) sewage after treatment in chamber “B”
Dla zmiennej BZT₅ ścieków oczyszczonych w komorze „A” dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,28). Analizując dane przedstawione na rysunku 29b, najczęściej obserwowane wartości BZT₅ ścieków oczyszczonych w komorze „A” stanowiły przedział od 67 do 89 mgO₂⋅dm⁻³ (22% obserwacji), jak również przedziały sąsiednie od 44 do 66 mgO₂⋅dm⁻³ (21% obserwacji) oraz od 90 do 111 mgO₂⋅dm⁻³ (19% obserwacji). Wartość BZT₅ ścieków oczyszczonych w komorze „A” powyżej 133 mgO₂⋅dm⁻³ występowała stosunkowo rzadko i stanowiła 10% wszystkich obserwacji.

Dla zmiennej BZT₅ w ściekach oczyszczonych w komorze „B” dopasowano rozkład lognormalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,06). Analizując dane przedstawione na rysunku 29c, najczęściej obserwowane wartości BZT₅ ścieków oczyszczonych w komorze „B” stanowiły przedział od 13,75 do 27,50 mgO₂⋅dm⁻³, który reprezentował 47,5% zaobserwowanych wyników.

Wskaźnik ChZT₉₇\textsubscript{Cr}
W dalszej kolejności w celu przedstawienia wartości ChZT₉₇\textsubscript{Cr} z poszczególnych etapów oczyszczania ścieków w modelu „M1” w tabeli 18 zestawiono podstawowe statystyki opisowe ścieków dopływających do modelu (ścieki wstępnie oczyszczone), ścieków po przesączeniu przez komorę „A” (wypełnionej drobnym wirrem) oraz ścieków po przesączeniu przez komorę „B” (wypełnionej piaskiem).

Zakres wartości ChZT₉₇\textsubscript{Cr} w ściekach wstępnie oczyszczonych dopływających do modelu „M1” mieścił się od 179,00 do 701,00 mgO₂⋅dm⁻³. Średnia wartość ChZT₉₇\textsubscript{Cr} wyniosła 394,37 mgO₂⋅dm⁻³. Odchylenie standardowe wynosiło 126,74 mgO₂⋅dm⁻³, a współczynnik zmienności 0,32. Takie wartości świadczą o znacznym rozpiętości jakości dopływających ścieków wynoszącym 522,00 mgO₂⋅dm⁻³.

Średnia wartość ChZT₉₇\textsubscript{Cr} dla ścieków oczyszczonych w komorze „A” wyniosła 162,54 mgO₂⋅dm⁻³. Analizując dane dotyczące jakości ścieków oczyszczonych w komorze „A” należy stwierdzić, że nastąpiło średnie zmniejszenie wartości ChZT₉₇\textsubscript{Cr} o 231,83 mgO₂⋅dm⁻³. Wartość maksymalna wyniosła 320,00 mgO₂⋅dm⁻³, a minimalna 81 mgO₂⋅dm⁻³. Należy stwierdzić, że warstwa świuru o wysokości 50 cm pozwoliła zmniejszyć wartość ChZT₉₇\textsubscript{Cr} z 394,37 mgO₂⋅dm⁻³ do 162,54 mgO₂⋅dm⁻³. Odchylenie standardowe ukształtowało się na poziomie 48,38 mgO₂⋅dm⁻³, a współczynnik zmienności 0,30. Stwierdzono 41 przekroczeń wartości dopuszczalnej wynoszącej zgodnie z Rozporządzeniem [2006] 150 mgO₂⋅dm⁻³, co stanowiło 56,9% wszystkich analizowanych wyników.
Tabela 18. Zestawienie podstawowych statystyk opisowych wartości \text{CODCr} w ściekach wstępnie oczyszczonych, po przesączaniu przez komorę „A” oraz komorę „B” w modelu „M1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Wartość wskaźnika \text{CODCr} w ściekach [mgO_2 \cdot dm^{-3}]</th>
<th>Redukcja \text{CODCr} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>394,37 162,54 86,63</td>
<td>55,06 44,24 75,37</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>372,50 155,50 86,50</td>
<td>56,43 43,13 75,23</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>179,00 81,00 24,00</td>
<td>7,84 4,35 48,01</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>701,00 320,00 144,00</td>
<td>83,46 81,44 96,39</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>522,00 239,00 120,00</td>
<td>75,62 77,09 48,38</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>126,74 48,38 25,96</td>
<td>17,06 17,85 10,98</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>WZ</td>
<td>0,32 0,30 0,30</td>
<td>0,31 0,40 0,15</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>72 72 72</td>
<td>72 72 72</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>X_{dop}</td>
<td>150 150 150</td>
<td>- - -</td>
</tr>
<tr>
<td>Liczba przekroczeń</td>
<td>IP</td>
<td>72 41 0</td>
<td>- - -</td>
</tr>
</tbody>
</table>

*) - Liczba przekroczeń w stosunku do wartości dopuszczalnej wg Rozporządzenia [2006] – dla \text{CODCr}, 150 mgO_2\cdot dm^{-3}

Średnia wartość \text{CODCr} ścieków oczyszczonych po komorze „B” wyniosła 86,63 mgO_2\cdot dm^{-3} i była niższa od wartości \text{CODCr} ścieków z komory „A” o 75,91 mgO_2\cdot dm^{-3}. Wartość minimalną zanotowano na poziomie 24 mgO_2\cdot dm^{-3} a wartość maksymalną osiągnęła poziom 144 mgO_2\cdot dm^{-3}. Nie stwierdzono przekroczenia wartości dopuszczalnej podanej w Rozporządzeniu [2006]. Należy zauważyć znaczne zmniejszenie wartości \text{CODCr} na poszczególnych warstwach filtra. Łącznie zmniejszenie wartości \text{CODCr} w całym modelu wyniosło 307,74 mgO_2\cdot dm^{-3}. Według Jóźwiakowskiego [2012] średnia wartość \text{CODCr} w ściekach oczyszczonych w hydrofitowym złożu gruntowym o przepływie pionowym wyniosła 52,7 mgO_2\cdot dm^{-3}, podczas gdy zakres obejmował wartości od 9 do 210 mgO_2\cdot dm^{-3}. Badania [Ślizowski i Chmielowski 2007] przeprowadzone w Moszczenicy Wyżnej koło Starego Sącza wykazały, że średnia wartość \text{CODCr} ścieków oczyszczonych w klasycznym filtrze piaskowym o przepływie pionowym wyniosła 39,40 mgO_2\cdot dm^{-3}.

Średnia redukcja \text{CODCr} po przesączaniu ścieków przez komorę „A” wyniosła 55,06 % (tabela 18). Wartość minimalna wyniosła 7,84%, a maksymalna 83,46%. Świadczy to o znacznym zmniejszeniu wartości \text{CODCr} na pierwszej –
żwirowej warstwie filtru. Rozstęp pomiędzy maksymalną i minimalną wartością skuteczności zmniejszenia \(\text{ChZT}_{\text{Cr}} \) wynosił 75,62%, co stanowi znaczącą wartość na co mogła mieć wpływ różnicywana jakość ścieków dopływających do złoża. Współczynnik zmiennosci ukrałował się na poziomie 0,31.

Średnia redukcja \(\text{ChZT}_{\text{Cr}} \) w komorze „B” wyniosła 44,24% , podczas gdy wartość minimalna wyniosła 4,35%, a maksymalna 81,44%. Jest to wynik bardzo dobrzy, świadczący o intensywnie zachodzących procesach tlenowych.

Całkowita redukcja \(\text{ChZT}_{\text{Cr}} \) w całym modelu wycinkowym wyniosła 75,37%. Zredukowana została średnia wartość \(\text{ChZT}_{\text{Cr}} \) z poziomu 394,37 mg\(\text{O}_2 \).dm\(^{-3}\) do wartości 86,37 mg\(\text{O}_2 \).dm\(^{-3}\). Redukcja \(\text{ChZT}_{\text{Cr}} \) w klasycznych filtrych piaskowych o przepływie pionowym według badań [Ślisowski i Chmielewski 2007] wyniosła od 69,3 do 98,3%.

Na rysunku 30 przedstawiono wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla \(\text{ChZT}_{\text{Cr}} \) ścieków dopływających do modelu „M1” oraz ścieków oczyszczonych w komorze „A” i w komorze „B”.

Rysunek 30. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla \(\text{ChZT}_{\text{Cr}} \) ścieków dopływających do modelu „M1” oraz ścieków oczyszczonych w komorze „A” i w komorze „B”

Figure 30. Values of median, quantile (25% and 75%) and the range of non-deviating values for \(\text{COD}_{\text{Cr}} \) of sewage flowing into “M1” model and sewage treated in chamber “A” and in chamber “B”

Poddając analizie dane z rysunku 30 daje się zauważyć, że mediana \(\text{ChZT}_{\text{Cr}} \) dla ścieków oczyszczonych w komorze „A” była znacznie niższa niż ścieków dopływających. Podobnie jak w przypadku BZT\(_3\) daje się zauważyć bardzo dobre działanie warstwy żwirowej w procesie oczyszczania ścieków. Do warstwy piaskowej (komora „B”) dopływały ścieki znacznie podczyszczone, co pozwala...
Skuteczność oczyszczania ścieków...

rokować na dłuższe działanie warstwy piaskowej, bez jej nadmiernej kolmatacji. Podkreślisić należy, że po przesaczaniu ścieków przez warstwę piaskową mediana ChZTCr wyniosła 86,50 mgO₂·dm⁻³.

W dalszej kolejności, w celu szczegółowego poznania specyfiki jakości ścieków, podjęto próbę dopasowania rozkładu teoretycznego dla zmiennej: wartość ChZTCr w ściekach:

a) wstępnie oczyszczonych dopływających do modelu „M1”;

b) po oczyszczaniu w komorze „A”;

c) po oczyszczaniu w komorze „B”.

Próba ta powiodła się we wszystkich trzech przypadkach, gdzie dopasowano rozkład normalny dla badanej zmiennej. Poprawność doboru rozkładu potwierdzono testem chi-kwadrat na poziomie istotności α=0,05.

Dla zmiennej wartość ChZTCr w ściekach wstępnie oczyszczonych dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,33). Analizują dane przedstawione na rysunku 31a, najczęściej obserwowane wartości ścieków wstępnie oczyszczonych dopływających do modelu „M1” stanowił przedział od 300 do 350 mgO₂·dm⁻³, który reprezentował ponad 16% zaobserwowanych wyników. Nieco rzadziej wystąpiły wartości ChZTCr w sąsiednich przedziałach tj. 250-300 mgO₂·dm⁻³ oraz 450-500 mgO₂·dm⁻³, które stanowiły po 15,5% wszystkich obserwacji. Wartość ChZTCr ścieków wstępnie oczyszczonych powyżej 600 mgO₂·dm⁻³ występowała stosunkowo rzadko i stanowiła zaledwie 5% wszystkich obserwacji.

Dla zmiennej wartość ChZTCr w ściekach oczyszczonych w komorze „A” dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,36). Analizują dane przedstawione na rysunku 31b, najczęściej obserwowane wartości ChZTCr ścieków oczyszczonych w komorze „A” stanowił przedział od 120 do 140 mgO₂·dm⁻³, oraz przedział od 180-200 mgO₂·dm⁻³ (po 17% zaobserwowanych wyników). Wartość ChZTCr ścieków oczyszczonych w komorze „A” powyżej 220 mgO₂·dm⁻³ występowała stosunkowo rzadko i stanowiła zaledwie 7% wszystkich obserwacji.

Dla zmiennej wartość ChZTCr w ściekach oczyszczonych w komorze „B” dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,93). Analizują dane przedstawione na rysunku 31c, najczęściej obserwowane wartości ChZTCr ścieków oczyszczonych w komorze „B” stanowił przedział od 70 do 90 mgO₂·dm⁻³, który reprezentował 34,5% zaobserwowanych wyników. Wartość ChZTCr ścieków oczyszczonych w komorze „B” powyżej 120 mgO₂·dm⁻³ występowała stosunkowo rzadko i stanowiła zaledwie 10% wszystkich obserwacji.

85
Rysunek 31. Histogram wraz z funkcją gęstości oraz dystrybuantą empiryczną i teoretyczną dla wartości ChZTCr dla: a) ścieków wstępnie oczyszczonych dopływających do modelu „M1”, b) ścieków po oczyszczeniu w komorze „A”, c) ścieków po oczyszczeniu w komorze „B”

Figure 31. Histogram with the density function, empirical and theoretical distribution function for CODCr values for: a) pre-treated sewage flowing into “M1” model, b) sewage after treatment in chamber “A”, c) sewage after treatment in chamber “B”
Wskaźnik zawiesiny ogólnej

Kolejnym wskaźnikiem podlegającym kontroli przy określaniu jakości ścieków jest zawiesina ogólna. W tabeli 19 przedstawiono zestawienie podstawowych statystyk opisowych stężenia zawiesiny ogólnej w ściekach dopływających do modelu „M1” oraz odpływających z poszczególnych warstw filtracyjnych.

Tabela 19. Zestawienie podstawowych statystyk opisowych wartości zawiesiny ogólnej w ściekach wstępnio oczyszczonych, po przeszczepieniu przez komorę „A” oraz komorę „B” w modelu „M1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>W stężeniu oczyszczonym</th>
<th>Po komorze „A”</th>
<th>Po komorze „B”</th>
<th>Po komorze „A”</th>
<th>Po komorze „B”</th>
<th>Całkowita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>121,92</td>
<td>52,90</td>
<td>27,49</td>
<td>52,21</td>
<td>45,35</td>
<td>74,75</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_d</td>
<td>105,00</td>
<td>48,20</td>
<td>25,40</td>
<td>53,32</td>
<td>45,18</td>
<td>76,35</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>40,00</td>
<td>19,00</td>
<td>8,00</td>
<td>8,74</td>
<td>7,37</td>
<td>24,76</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>272,80</td>
<td>131,00</td>
<td>71,00</td>
<td>85,11</td>
<td>83,67</td>
<td>94,60</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>232,80</td>
<td>112,00</td>
<td>63,00</td>
<td>76,37</td>
<td>76,31</td>
<td>69,84</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>53,64</td>
<td>21,99</td>
<td>11,94</td>
<td>18,13</td>
<td>18,21</td>
<td>11,85</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>WZ</td>
<td>0,44</td>
<td>0,42</td>
<td>0,43</td>
<td>0,35</td>
<td>0,40</td>
<td>0,16</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>X_{dop}</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liczba przekroczeń</td>
<td>Ip</td>
<td>72</td>
<td>33</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*) – przekroczenia wystąpiły tylko przy dawkowaniu ścieków 4 razy na dobę.

Średnie stężenie zawiesiny ogólnej w ściekach dopływających do modelu „M1” ukształtowało się na poziomie 121,92 mg dm⁻³. Zakres stężeń zawiesiny ogólnej w ściekach wstępnie oczyszczonych mieścił się w granicach od 40,00 do 272,80 mg dm⁻³. Duży rozstęp wynoszący 232,8 mg dm⁻³ świadczy o znacznej zamienności tego wskaźnika w ściekach dopływających do modelu „M1”. Analizując dane innych autorów dotyczące stężenia zawiesiny ogólnej w ściekach po osadniku gnilnym należy stwierdzić również znaczne rozpiętości tego wskaźnika [Canter i Knox 1985, Laak 1986, Kuczewski 1993]. Średnie stężenie zawiesiny ogólnej w ściekach oczyszczonych po komorze „A” wyniosło 52,90 mg dm⁻³. Analizując dane dotyczące jakości ścieków oczyszczonych w komorze „A” należy stwierdzić, że średnie zmniejszenie
wartości zawiesiny ogólnej wyniosło 69,02 mg·dm⁻³ w odniesieniu do stężenia zawiesiny ogólnej w ściekach dopływających do modelu „M1”. Wartość maksymalna wyniosła 131,00 mg·dm⁻³, a minimalna 19,00 mg·dm⁻³. Należy stwierdzić, że warstwa żwirowa o wysokości 50 cm pozwoliła zmniejszyć stężenie zawiesiny ogólnej z 121,92 mg·dm⁻³ do 52,90 mg·dm⁻³. Co dało redukcję na poziomie 56,61%. Odchylenie standardowe ukształtowało się na poziomie 21,99 mg·dm⁻³, a współczynnik zmienności 0,42. Są to znacznie mniejsze wartości niż w przypadku ścieków dopływających do modelu, co może świadczyć o zatrzymaniu zawiesiny w złożu żwirowym w komorze „A”. Stwierdzono 33 przekroczenia (46% pomiarów) wartości dopuszczalnej wynoszącej zgodnie z Rozporządzeniem [2006] 50 mg·dm⁻³.

Średnie stężenie zawiesiny ogólnej w ściekach oczyszczonych po komorze „B” wyniosło 27,49 mg·dm⁻³ i było niższe od stężenia zawiesiny ogólnej w ściekach po komorze „A” o 25,41 mg·dm⁻³. Wartość minimalna zanotowano na poziomie 8,00 mg·dm⁻³, a wartość maksymalna osiągnęła poziom 71,00 mg·dm⁻³. Stwierdzono 3 przekroczenia (4% próbek) wartości dopuszczalnej (50 mg·dm⁻³) podanej w Rozporządzeniu [2006]. Przyczyną przekroczeń mogła być mała liczba dawkowań ścieków w ciągu doby (wszystkie przekroczenia wystąpiły przy czterech dawkowaniach na dobę). Należy zauważyć znaczne zmniejszenie stężenia zawiesiny ogólnej w całym modelu „M1” wyniosło 94,43 mg·dm⁻³. Według danych literaturowych [Asenizacja indywidualna] średnie stężenie zawiesiny ogólnej po filtrze piaskowym o przepływie pionowym wyniosło 22 mg·dm⁻³. Śliszowski i Chmielowski [2007] uzyskali średnią wartość zawiesiny ogólnej na odpływie z filtru piaskowego w Moszczenicy Wyżnej na poziomie 18,29 mg·dm⁻³. Jóźwikowski [2012] w przedstawia średnie stężenie zawiesiny ogólnej na odpływie ze złoża gruntowego pośród mięśnią roślinnością na poziomie 35,0 mg·dm⁻³.

Średnia redukcja stężenia zawiesiny ogólnej po komorze „A” wyniosła 52,21%. Rozstęp pomiędzy minimalną (8,74%), a maksymalną (85,11%) skutecznością zmniejszenia zawiesiny ogólnej wyniósł 76,37%. W przypadku średniej skuteczności zmniejszenia stężenia zawiesiny ogólnej w komorze „A” stwierdzono wartość 45,35%. Całkowita redukcja stężenia zawiesiny ogólnej dla całego modelu „M1” wyniosła 74,75%.

Na rysunku 32 przedstawiono wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia zawiesiny ogólnej w ściekach dopływających do modelu „M1” oraz w ściekach oczyszczonych w komorze „A” i w komorze „B”.
Rysunek 32. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia zawiesiny ogólnej w ściekach dopływających do modelu „M1” oraz w ściekach oczyszczonych w komorze „A” i w komorze „B”

Figure 32. Values of median, quantile (25% and 75%) and the range of non-deviating values for total suspended solids concentration in sewage flowing into “M1” model and sewage treated in chamber “A” and in chamber “B”

Dokonując analizy danych przedstawionych na rysunku 32 można stwierdzić, że mediana stężenia zawiesiny ogólnej ścieków oczyszczonych w komorze „A” była znacznie niższa niż ścieków dopływających. Podobnie jak w przypadku BZT_{3} i ChZT_{2}, daje się zauważyć bardzo dobre działanie warstwy żwirowej w procesie zmniejszania zawiesiny ogólnej. Do warstwy piaskowej (komora „B”) dopływały ścieki znacznie podczyszczone, co pozwala rokować na dłuższe działanie warstwy piaskowej bez jej nadmiernego kolmatacji. Zauważyć należy, że po przeszczepieniu ścieków przez warstwę piaskową (komora „B”) mediana stężenia zawiesiny ogólnej wyniosła 25,40 mg dm^{-3}.

W celu szczegółowego określenia specyfiki jakości ścieków, podjęto próbę dopasowania rozkładu teoretycznego dla zmiennej: stężenie zawiesiny ogólnej w ściekach:

a) wstępnie oczyszczonych dopływających do modelu „M1”;
b) po oczyszczaniu w komorze „A”;
c) po oczyszczaniu w komorze „B”.

Próba ta powiodła się we wszystkich trzech przypadkach, gdzie dopasowano rozkład normalny dla badanej zmiennej. Poprawność doboru rozkładu potwierdzono testem chi-kwadrat na poziomie istotności α=0,05.
Figure 33. Histogram with the density function, empirical and theoretical distribution function for total suspended solids concentration for: a) pre-treated sewage flowing into “M1” model, b) sewage after treatment in chamber “A”, c) sewage after treatment in chamber “B”
Dla zmiennej (stężenie zawiesiny ogólnej w ściekach wstępnie oczyszczonych) dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,08). Analizując dane przedstawione na rysunku 33a, najczęściej obserwowane wartości zawiesiny w ściekach wstępnie oczyszczonych dopływających do modelu „M1” były w przedziale od 90 do 120 mg⋅dm\(^{-3}\), który reprezentował 26,5% zaobserwowanych wyników. Nieco rzadziej wystąpiły wartości zawiesiny ogólnej w przedziale 60-90 mg⋅dm\(^{-3}\), który stanowił 22% wszystkich obserwacji. Stężenie zawiesiny ogólnej w ściekach wstępnie oczyszczonych powyżej 210 mg⋅dm\(^{-3}\) występowało stosunkowo rzadko i stanowiło 10% wszystkich obserwacji.

Dla zmiennej (stężenie zawiesiny ogólnej w ściekach oczyszczonych w komorze „A”) dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,05). Analizując dane przedstawione na rysunku 33b, najczęściej obserwowane stężenia zawiesiny ogólnej w ściekach oczyszczonych w komorze „A” stanowił przedział od 40 do 50 mg⋅dm\(^{-3}\) (25% obserwacji) oraz przedziały sąsiednie od 50 do 60 mg⋅dm\(^{-3}\) (19,4% obserwacji) i przedział od 30 do 40 mg⋅dm\(^{-3}\), który reprezentowało 18% zaobserwowanych wyników. Stężenie zawiesiny ogólnej w ściekach oczyszczonych w komorze „A” powyżej 50 mg⋅dm\(^{-3}\) stanowiło 45,8% wszystkich obserwacji.

Dla zmiennej (stężenie zawiesiny ogólnej w ściekach oczyszczonych w komorze „B”) dopasowano rozkład normalny, który został statystycznie potwierdzony za pomocą testu chi-kwadrat (p=0,33). Analizując dane przedstawione na rysunku 33c, najczęściej obserwowane stężenia zawiesiny ogólnej w ściekach oczyszczonych w komorze „B” stanowił przedział od 20 do 25 mg⋅dm\(^{-3}\), który reprezentował 19,6% zaobserwowanych wyników. Stężenie zawiesiny ogólnej w ściekach oczyszczonych w komorze „B” powyżej 50 mg⋅dm\(^{-3}\) występowała stosunkowo rzadko i stanowiło zaledwie 4,1% wszystkich obserwacji (dotyczy przypadku przy dawkowaniu ścieków 4 razy na dobę).

6.1.1.3. Określenie istotności różnic między średniimi wartościami badanych wskaźników zanieczyszczeń w ściekach

W rozdziale tym zbadano statystycznie, czy różnice pomiędzy średniimi stężeniami badanych wskaźników w ściekach dopływających do modelu oraz w ściekach oczyszczonych z poszczególnych komór modelu „M1” są istotne. Przyjęto, że ścieki dopływające do modelu pobrano z zerowej głębokości złoża, ścieki po komorze „A” pobrano z głębokości 50 cm, a ścieki po komorze „B” pobrano z głębokości 110 cm. Przeprowadzono analizę jednoczynnikowej wariancji.
Analizie poddano takie wskaźniki zanieczyszczenia ścieków jak: BZT₅, ChZTCr, zawiesin ogólną.

W analizie wariancji przyjęto hipotezy badawcze postaci:

H₀: μ₁ = μ₂ = μ₃ = ... = μₛ

H₁: μ₁ ≠ μ₂ ≠ μ₃ ≠ ... ≠ μₛ

Według hipotezy zerowej średnie wartości badanego wskaźnika w ściekach oczyszczonych z poszczególnych głębokości złoża filtracyjnego są takie same /nie różnią się istotnie od siebie/.

Hipoteza alternatywna zakłada natomiast, iż istnieją istotne różnice pomiędzy średnimi wartościami badanego wskaźnika w ściekach oczyszczonych z poszczególnych głębokości złoża filtracyjnego.

Aby rozstrzygnąć, czy odrzucić hipotezę zerową, czy też orzec o braku podstaw do jej odrzucenia zastosowano statystykę F. Jeżeli wartość statystyki F obliczona na podstawie próby zawiera się w zbiorze krytycznym, to należy odrzucić hipotezę zerową na korzyść hipotezy alternatywnej. Jeśli zaś wartość statystyki F nie zawiera się w zbiorze krytycznym, to brak podstaw do odrzucenia hipotezy zerowej.

Jeśli jednoczynnikowa analiza wariancji wykazała, że w całej zbiorowości średnie w poszczególnych grupach różnią się istotnie od siebie, to wówczas wykorzystano testy post hoc do wskazania, pomiędzy którymi grupami różnice średnich są najbardziej istotne. Wybrano do tego testy Tukaya. Test ten sprawdza istotność różnic średnich dla wszystkich par grup. W wynikach badań empirycznych przedstawiono tablice wartości prawdopodobieństw testowych (p-value) dla każdej pary grup. Jeżeli prawdopodobieństwo testowe (p-value) jest mniejsze od 0,05, to różnica średnich dla danej pary grup jest istotna.

Poniżej (tabela 20) przedstawiono wyniki istotności różnic wariancji dla badanych wskaźników w ściekach pobieranych z zadanymi głębokości złoża filtracyjnego.

Tabela 20. Wyniki istotności różnic wariancji dla badanych wskaźników
Table 20. The significance of differences of variance for the examined indicators

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>SS-Effect</th>
<th>df</th>
<th>MS</th>
<th>SS-Effect error</th>
<th>df error</th>
<th>MS error</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZT₅</td>
<td>1231467</td>
<td>2</td>
<td>615734</td>
<td>516532</td>
<td>213</td>
<td>2425</td>
<td>253.908</td>
<td>0.00</td>
</tr>
<tr>
<td>ChZTCr</td>
<td>3701082</td>
<td>2</td>
<td>1850541</td>
<td>1373563</td>
<td>213</td>
<td>6449</td>
<td>286.966</td>
<td>0.00</td>
</tr>
<tr>
<td>Zawiesina ogólna</td>
<td>404697</td>
<td>2</td>
<td>202349</td>
<td>546264</td>
<td>213</td>
<td>2565</td>
<td>78.9000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Odpowiednie oznaczenia: SS-Effect – suma kwadratów (suma kwadratów odchylen od średniej), df – liczba stopni swobody, MS –średnia suma kwadratów, F- wartość empiryczna sprawdzianu testu, p – prawdopodobieństwo testowe (0,05),
Skuteczność oczyszczania ścieków...

Z tabeli 20 wynika, że istotne różnice pomiędzy variancjami występują w przypadku wszystkich analizowanych wskaźników. Wyniki te sugerują, że miąższość złoża filtracyjnego istotnie wpływa na uzyskane stężenia badanych wskaźników w ściekach oczyszczonych. Świadczą o tym wartości prawdopodobieństw testowych nieprzekraczające wartości krytycznej 0,05.

Wskaźnik BZT₅

W dalszej kolejności przeprowadzono analizę wariancji w celu określenia, czy miąższość złoża filtracyjnego jest czynnikiem istotnie różnicującym wartość BZT₅ w ściekach dopływających i odpływających z poszczególnych warstw modelu.

W tabeli 21 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości BZT₅ w ściekach.

Tabela 21. Wartości prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości BZT₅ w ściekach oczyszczonych

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>Prawdopodobieństwa testowe (Tukaya) istotności różnic pomiędzy parami wartości BZT₅ w ściekach z poszczególnych głębokości złoża filtracyjnego modelu „M1”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia wartość BZT₅₁</td>
</tr>
<tr>
<td>{0} ścieki dopływające</td>
<td>210,00 mgO₂.dm⁻³</td>
</tr>
<tr>
<td>{50} po komorze „A”</td>
<td>0,000000</td>
</tr>
<tr>
<td>{110} po komorze „B”</td>
<td>0,000000</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05.

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich wartości BZT₅ w ściekach. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości BZT₅ w ściekach.

Wskaźnik ChZTCr

W dalszej kolejności przeprowadzono analizę wariancji w celu określenia, czy miąższość złoża filtracyjnego jest czynnikiem istotnie różnicującym wartość ChZTCr, w ściekach dopływających i odpływających z poszczególnych warstw modelu.

W tabeli 22 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości ChZTCr w ściekach.

Table 21. Probability value (Tukay) of significance of differences between pairs of mean BOD₅ values in treated sewage

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>Prawdopodobieństwa testowe (Tukaya) istotności różnic pomiędzy parami wartości ChZTCr w ściekach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Średnia wartość ChZTCr₁</td>
</tr>
<tr>
<td>{0} ścieki dopływające</td>
<td>210,00 mgO₂.dm⁻³</td>
</tr>
<tr>
<td>{50} po komorze „A”</td>
<td>0,000000</td>
</tr>
<tr>
<td>{110} po komorze „B”</td>
<td>0,000000</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05.

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich wartości ChZTCr w ściekach. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości BZT₅ w ściekach.
Tabela 22. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości ChZT_{Cr} w ściekach oczyszczonych

Głębokość [cm]	Prawdopodobieństwa testowe \((\text{Tukaya})\) istotności różnic pomiędzy parami wartości ChZT_{Cr} w ściekach z poszczególnych głębokości złoża filtracyjnego modelu „M1”		
	Średnia wartość ChZT_{Cr}	Średnia wartość ChZT_{Cr}	Średnia wartość ChZT_{Cr}
[0] ścieki dopływające	0,000000	0,000000	0,000000
[50] po komorze „A”	0,000000	0,000000	0,000000
[110] po komorze „B”	0,000000	0,000000	0,000000

<table>
<thead>
<tr>
<th>Średnia wartość zawiesiny ogólnej</th>
<th>Średnia wartość zawiesiny ogólnej</th>
<th>Średnia wartość zawiesiny ogólnej</th>
</tr>
</thead>
<tbody>
<tr>
<td>129,42 mg dm<sup>-3</sup></td>
<td>53,18 mg dm<sup>-3</sup></td>
<td>27,49 mg dm<sup>-3</sup></td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05.

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich wartości ChZT_{Cr} w ściekach. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości ChZT_{Cr} w ściekach.

Wskaźnik zawiesiny ogólnej

Poniżej przeprowadzono analizę wariancji w celu określenia, czy miąższość złoża filtracyjnego jest czynnikiem istotnie różnicującym stężenie zawiesiny ogólnej w ściekach dopływających i odpływających z poszczególnych warstw modelu „M1”.

W tabeli 23 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości zawiesiny ogólnej w ściekach.

Tabela 23. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich stężeń zawiesiny ogólnej w ściekach

Głębokość [cm]	Prawdopodobieństwa testowe \((\text{Tukaya})\) istotności różnic pomiędzy parami średnich stężeń zawiesiny ogólnej w ściekach z poszczególnych głębokości złoża filtracyjnego modelu „M1”		
	Średnia wartość zawiesiny ogólnej	Średnia wartość zawiesiny ogólnej	Średnia wartość zawiesiny ogólnej
[0] ścieki dopływające	-	0,000000	0,000000
[50] po komorze „A”	0,000000	-	0,010721
[110] po komorze „B”	0,000000	0,010721	-

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05.
Skuteczność oczyszczania ścieków...

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich stężenia zawiesiny ogólnej w ściekach. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o stężeniu zawiesiny ogólnej w ściekach.

6.1.1.4. Określenie wpływu obciążenia hydraulicznego na jakość ścieków oraz na redukcję zanieczyszczeń

W rozdziale przedstawiono podstawowe statystyki opisowe wartości badanych wskaźników w ściekach wstępnie oczyszczonych oraz po przesyceniu przez komorę „A” i komorę „B” dla zadanego obciążenia hydraulicznego dla modelu „M1”. Dodatkowo przedstawiono podstawowe statystyki opisowe dotyczące skuteczności zmniejszania badanych wskaźników przy zadanym obciążeniu hydraulicznym złoża filtracyjnego.

Wskaźnik BZT₅

W tabeli 24 przedstawiono wartości BZT₅ ścieków dopływających do modelu oraz oczyszczonych na poszczególnych warstwach przy zadanym obciążeniu hydraulicznym złoża filtracyjnego.

Na podstawie przeprowadzonych analiz można stwierdzić, że średnie wartości BZT₅ po przesyceniu przez warstwę źwirową (komora „A”) wyniosły od 62,9 mgO₂·dm⁻³ przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹ do 102,0 mgO₂·dm⁻³ przy obciążeniu hydraulicznym 135 dm³·m⁻²·d⁻¹. Poddając analizie dane z tabeli 24 można zauważyć spadek skuteczności zmniejszenia BZT₅ wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego. Średnia redukcja BZT₅ po przesyceniu przez złoże źwirowe (komora „A”) kształtowała się w przedziale od 48,4% przy najwyższym zastosowanym obciążeniu hydraulicznym (135 dm³·m⁻²·d⁻¹) do 66,9 przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹.

Przeprowadzone badania dotyczące odpływu ścieków po warstwie piaszcowej (komora „B”) pozwalały na stwierdzenie, że średnie wartości BZT₅ wyniosły od 22,1 mgO₂·dm⁻³ przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹ do 38,0 mgO₂·dm⁻³ przy obciążeniu hydraulicznym 135 dm³·m⁻²·d⁻¹. Tak więc podobnie jak w przypadku ChZT₆, ze wzrostem obciążenia hydraulicznego złoża zaobserwowano wzrost wartości BZT₅ w odpływie z komory „B”.

Zaobserwowano, że średnia redukcja BZT₅ po komorce „A” uległa zmniejszeniu wraz ze wzrostem obciążenia hydraulicznego. Dla najmniejszego zastosowanego obciążenia hydraulicznego (38 dm³·m⁻²·d⁻¹) zaobserwowano średnią redukcję BZT₅ na poziomie 66,9% podczas gdy dla największego obciążenia hydraulicznego (135 dm³·m⁻²·d⁻¹) zanotowano średnie zmniejszenie tego wskaźnika wynoszące 48,4%.
Tabela 24. Zestawienie podstawowych statystyk opisowych wartości BZT₅ w ściekach wstępnie oczyszczonych, po przeszyczeniu przez komorę „A” oraz komorę „B” dla zadań obciążen hydraulicznych dla modelu „M1” wraz z skutecznością ich zmniejszania

Table 24. Summary of basic descriptive statistics of BOD₅ values in pre-treated sewage after filtration through column “A” and column “B” for the selected hydraulic loads for the “M1” model and the effectiveness of their reduction

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Rodzaj ścieków</th>
<th>Wartość BZT₅ [mgO₂.dm⁻³]</th>
<th>Redukcja BZT₅ [%]</th>
<th>Obciążenie hydrauliczne [dm³.m⁻².d⁻¹]</th>
<th>Obciążenie hydrauliczne [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>X</td>
<td>Ścieki wstępne</td>
<td>212,4 203,3 208,3 216,7</td>
<td>66,9 54,6 54,6 48,4</td>
<td>38 77 100 135</td>
<td>38 77 100 135</td>
</tr>
<tr>
<td>Mediana</td>
<td>mₑ</td>
<td>Ścieki wstępne</td>
<td>200,0 200,0 200,0 180,0</td>
<td>71,4 58,6 52,3 54,5</td>
<td>120,0 100,0 100,0 120,0</td>
<td>16,7 20,0 33,3 12,5</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>Ścieki wstępne</td>
<td>340,0 340,0 320,0 480,0</td>
<td>90,9 83,3 85,7 82,4</td>
<td>220,0 240,0 220,0 360,0</td>
<td>74,2 63,3 52,4 69,9</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>Ścieki wstępne</td>
<td>63,4 75,2 61,9 92,2</td>
<td>16,0 17,4 14,2 19,4</td>
<td>0,3 0,4 0,3 0,4</td>
<td></td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>Ścieki wstępne</td>
<td>62,9 86,7 92,2 102,0</td>
<td>65,3 64,3 64,1 59,4</td>
<td>20,0 40,0 40,0 40,0</td>
<td>25,0 25,0 40,0 33,3</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>Ścieki wstępne</td>
<td>60,0 80,0 90,0 100,0</td>
<td>66,7 66,7 66,7 60,0</td>
<td>20,0 120,0 140,0 130,0</td>
<td>16,5 62,5 50,0 54,2</td>
</tr>
<tr>
<td>Wsp. zmien. Vₑ</td>
<td>Vₑ</td>
<td>Ścieki wstępne</td>
<td>21 18 18 15</td>
<td>21 18 18 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>Ścieki wstępne</td>
<td>21 18 18 15</td>
<td>21 18 18 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>X</td>
<td>Ścieki po przes.</td>
<td>62,9 86,7 92,2 102,0</td>
<td>65,3 64,3 64,1 59,4</td>
<td>38 77 100 135</td>
<td>38 77 100 135</td>
</tr>
<tr>
<td>Mediana</td>
<td>mₑ</td>
<td>Ścieki po przes.</td>
<td>60,0 80,0 90,0 100,0</td>
<td>66,7 66,7 66,7 60,0</td>
<td>120,0 160,0 180,0 170,0</td>
<td>93,8 87,5 90,0 87,5</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>Ścieki po przes.</td>
<td>20,0 40,0 40,0 40,0</td>
<td>25,0 25,0 40,0 33,3</td>
<td>100,0 120,0 140,0 130,0</td>
<td>68,8 62,5 50,0 54,2</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>Ścieki po przes.</td>
<td>23,3 35,9 37,8 35,1</td>
<td>16,5 16,6 15,5 16,1</td>
<td>0,4 0,4 0,4 0,3</td>
<td>0,3 0,3 0,2 0,3</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>Ścieki po przes.</td>
<td>22,1 28,3 32,8 38,0</td>
<td>87,7 83,5 84,3 79,1</td>
<td>21 18 18 15</td>
<td></td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>Ścieki po przes.</td>
<td>20,0 20,0 20,0 40,0</td>
<td>91,7 87,1 87,5 81,8</td>
<td>5,0 10,0 10,0 20,0</td>
<td>50,0 50,0 66,7 62,5</td>
</tr>
<tr>
<td>Wsp. zmien. Vₑ</td>
<td>Vₑ</td>
<td>Ścieki po przes.</td>
<td>5,0 10,0 10,0 20,0</td>
<td>50,0 50,0 66,7 62,5</td>
<td>60,0 60,0 100,0 60,0</td>
<td>98,2 95,0 95,0 95,8</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>Ścieki po przes.</td>
<td>15,2 14,2 23,8 14,7</td>
<td>48,2 45,0 28,3 33,3</td>
<td>0,7 0,7 0,5 0,7</td>
<td>10,4 12,3 8,7 11,0</td>
</tr>
</tbody>
</table>

Zakres skuteczności zmniejszenia BZT₅ w zależności od obciążenia hydraulicznego nie był tak widoczny jak w przypadku skuteczności zmniejszenia BZT₅ po komorze „A” i wyniósł od 59,4% dla obciążenia hydraulicznego 135 dm⁻³.m⁻².d⁻¹ do 65,3% dla obciążenia hydraulicznego 38 dm⁻³.m⁻².d⁻¹.

Całkowita redukcja BZT₅ w modelu „M1” wyniosła od 79,1% przy obciążeniu hydraulicznym wynoszącym 135 dm⁻³.m⁻².d⁻¹ do 87,7% przy obciążeniu
Skuteczność oczyszczania ścieków...

hydraulicznym równym 38 dm3·m$^{-2}$·d$^{-1}$. Tak więc wraz ze wzrostem obciążenia hydraulicznego modelu „M1” nastąpi spadek skuteczności zmniejszenia BZT$_5$.

Wskaźnik ChZT$_{Cr}$
W dalszej kolejności przedstawiono dane dotyczące wskaźnika ChZT$_{Cr}$ w ściekach dopływających do modelu „M1” i odpływających z poszczególnych warstw filtru (tabela 25) przy zadanych obciążeniach hydraulicznych.

Tabela 25. Zestawienie podstawowych statystyk opisowych wartości ChZT$_{Cr}$ w ściekach wstępnym oczyszczonym, po przeszczepieniu przez komorę „A” oraz komorę „B” dla zadanych obciążen hydraulicznych dla modelu „M1” wraz z skutecznością ich zmniejszania

Table 25. Summary of basic descriptive statistics of COD$_{Cr}$ values in pre-treated sewage after filtration through column “A” and column “B” for the selected hydraulic loads for the “M1” model and the effectiveness of their reduction

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Rodzaj ścieków</th>
<th>Średnia ChZT$_{Cr}$ [mgO$_2$·dm$^{-3}$]</th>
<th>Redukcja ChZT$_{Cr}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia \overline{x}</td>
<td>\overline{x}</td>
<td>Ścieki wstępne oczyszczone</td>
<td>446,9</td>
<td>63,7</td>
</tr>
<tr>
<td>Mediana m_m</td>
<td>m_m</td>
<td>Ścieki wstępne oczyszczone</td>
<td>476,0</td>
<td>64,5</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td>Min</td>
<td>Ścieki wstępne oczyszczone</td>
<td>219,0</td>
<td>37,1</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td>Max</td>
<td>Ścieki wstępne oczyszczone</td>
<td>701,0</td>
<td>83,5</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td>Ro</td>
<td>Ścieki wstępne oczyszczone</td>
<td>482,0</td>
<td>46,4</td>
</tr>
<tr>
<td>Odch. stand. σ</td>
<td>σ</td>
<td>Ścieki wstępne oczyszczone</td>
<td>128,77</td>
<td>13,39</td>
</tr>
<tr>
<td>Wsp. zmien. V_zm</td>
<td>V_zm</td>
<td>Ścieki wstępne oczyszczone</td>
<td>0,29</td>
<td>0,21</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td>N</td>
<td>Ścieki wstępne oczyszczone</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Średnia \overline{x}</td>
<td>\overline{x}</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>150,5</td>
<td>48,1</td>
</tr>
<tr>
<td>Mediana m_m</td>
<td>m_m</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>148,0</td>
<td>53,7</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td>Min</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>96,0</td>
<td>6,5</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td>Max</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>214,0</td>
<td>81,4</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td>Ro</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>118,0</td>
<td>75,0</td>
</tr>
<tr>
<td>Odch. stand. σ</td>
<td>σ</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>37,61</td>
<td>16,22</td>
</tr>
<tr>
<td>Wsp. zmien. V_zm</td>
<td>V_zm</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>0,25</td>
<td>0,34</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td>N</td>
<td>Ścieki po przeszczepieniu przez komorę „A”</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Średnia \overline{x}</td>
<td>\overline{x}</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>75,1</td>
<td>80,9</td>
</tr>
<tr>
<td>Mediana m_m</td>
<td>m_m</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>88,0</td>
<td>83,4</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td>Min</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>24,0</td>
<td>49,8</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td>Max</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>110,0</td>
<td>96,4</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td>Ro</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>86,0</td>
<td>46,6</td>
</tr>
<tr>
<td>Odch. stand. σ</td>
<td>σ</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>14,50</td>
<td>9,27</td>
</tr>
<tr>
<td>Wsp. zmien. V_zm</td>
<td>V_zm</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>0,19</td>
<td>0,11</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td>N</td>
<td>Ścieki po przeszczepieniu przez komorę „B”</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>
Na podstawie przeprowadzonych analiz można stwierdzić, że średnie wartości ChZTCr po komorze „A” wyniosły od 150,50 mg O₂·dm⁻³ przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹ do 190,70 mg O₂·dm⁻³ przy obciążeniu hydraulicznym 135 dm³·m⁻²·d⁻¹. Analizując dane z tabeli 25 można zauważyć spadek skuteczności zmniejszenia ChZTCr wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego. Średnia redukcja ChZTCr po przesączaniu przez złoże wirowe (komora „A”) kształtowała się w przedziale od 44,7% przy największym zastosowanym obciążeniu hydraulicznym (135 dm³·m⁻²·d⁻¹) do 63,7% przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹.

Poddając analizie dane dotyczące odpływu ścieków po warstwie piaskowej (komora „B”) stwierdzono średnie wartości ChZTCr od 75,1 mg O₂·dm⁻³ przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹ do 101,3 mg O₂·dm⁻³ przy obciążeniu hydraulicznym 135 dm³·m⁻²·d⁻¹. Tak więc ze wzrostem obciążenia hydraulicznego złoża zaobserwowano wzrost wartości ChZTCr w odpływie z komory „B”.

Średnia redukcja ChZTCr po komorze „A” uległa zmniejszeniu wraz ze wzrostem obciążenia hydraulicznego. Dla najmniejszego zastosowanego obciążenia hydraulicznego (38 dm³·m⁻²·d⁻¹) zaobserwowano średnią redukcję ChZTCr na poziomie 63,7% podczas gdy dla największego obciążenia hydraulicznego (135 dm³·m⁻²·d⁻¹) zanotowano średnio zmniejszenie tego wskaźnika wynoszące 44,7%.

Zakres skuteczności zmniejszenia ChZTCr w zależności od obciążenia hydraulicznego nie był tak widoczny jak w przypadku skuteczności zmniejszenia ChZTCr po komorze „A” i wyniósł od 37,6% dla obciążenia hydraulicznego 100 dm³·m⁻²·d⁻¹ do 48,1% dla obciążenia hydraulicznego 38 dm³·m⁻²·d⁻¹.

Całkowita redukcja ChZTCr w modelu „M1” wyniosła od 69,7% przy obciążeniu hydraulicznym wynoszącym 135 dm³·m⁻²·d⁻¹ do 80,9% przy obciążeniu hydraulicznym równym 38 dm³·m⁻²·d⁻¹. Tak więc wraz ze wzrostem obciążenia hydraulicznego modelu „M1” nastąpił spadek skuteczności zmniejszenia ChZTCr.

Zawiesina ogólna
Zawiesina ogólna zawarta w ściekach to kolejny analizowany wskaźnik. W tabeli 26 przedstawiono stężenie zawiesiny ogólnej w ściekach dopływających do modelu „M1” oraz oczyszczonych na poszczególnych warstwach przy zadanych obciążeniach hydraulicznych złoża filtracyjnego.

Przeprowadzone badania pozwoliły na stwierdzenie, że średnie stężenie zawiesiny ogólnej po przesączaniu przez warstwę zwiru (komora „A”) wyniosło od 48,8 mg·dm⁻³ przy obciążeniu hydraulicznym 100 dm³·m⁻²·d⁻¹ do 62,9 mg·dm⁻³ przy obciążeniu hydraulicznym 135 dm³·m⁻²·d⁻¹. Poddając analizie dane z tabeli 26 można zauważyć spadek skuteczności zmniejszenia zawiesiny ogólnej wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego. Średnia
Skuteczność oczyszczania ścieków...

redukcja zawiesiny ogólnej po przesączaniu przez złóż zwierowe wyniosła od 45,4% przy najwyzszym zastosowanym obciążeniu hydraulicznym (135 dm³·m⁻²·d⁻¹) do 58,6 przy obciążeniu hydraulicznym 38 dm³·m⁻²·d⁻¹.

Tabela 26. Zestawienie podstawowych statystyk opisowych wartości zawiesiny ogólnej w ściekach wstępnie oczyszczonych, po przesączaniu przez komory „A” oraz komory „B” dla zadanych obciążeni hydraulicznych dla modelu „M1” wraz z skutecznością ich zmniejszania

Table 26. Summary of basic descriptive statistics of total suspended solids’ values in pre-treated sewage after filtration through column “A” and column “B” for the selected hydraulic loads for the “M1” model and the effectiveness of their reduction

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Wartość zawiesiny ogólnej [mg dm⁻³]</th>
<th>Redukcja zawiesiny ogólnej [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Obciążenie hydrauliczne [dm³·m⁻²·d⁻¹]</td>
<td>Obciążenie hydrauliczne [dm³·m⁻²·d⁻¹]</td>
</tr>
<tr>
<td>średnia (średnia)</td>
<td>(X)</td>
<td>145,9 132,0 112,0 124,1</td>
<td>58,6 51,7 52,3 45,4</td>
</tr>
<tr>
<td>mediana (mediana)</td>
<td>(m_m)</td>
<td>119,0 99,4 103,9 122,4</td>
<td>57,6 54,0 54,8 36,6</td>
</tr>
<tr>
<td>minimalna (minimalna)</td>
<td>Min</td>
<td>40,0 54,4 41,2 60,4</td>
<td>23,8 9,9 8,7 20,5</td>
</tr>
<tr>
<td>maksymalna (maksymalna)</td>
<td>Max</td>
<td>414,0 612,8 239,0 229,6</td>
<td>91,2 78,6 81,0 84,8</td>
</tr>
<tr>
<td>rozstęp (rozstęp)</td>
<td>(R_o)</td>
<td>374,0 558,4 197,8 169,2</td>
<td>67,4 68,7 72,3 64,3</td>
</tr>
<tr>
<td>odch. stand. (odch. stand.)</td>
<td>(\sigma)</td>
<td>49,6 121,1 45,6 45,8</td>
<td>14,8 17,3 17,5 21,5</td>
</tr>
<tr>
<td>wsp. zmien. (wsp. zmien.)</td>
<td>(V_{zm})</td>
<td>0,34 0,9 0,41 0,37</td>
<td>0,25 0,3 0,33 0,47</td>
</tr>
<tr>
<td>liczba próbek (liczba próbek)</td>
<td>(N)</td>
<td>21 18 18 15</td>
<td>21 18 18 15</td>
</tr>
</tbody>
</table>

Analizując dane z tabeli 26 należy stwierdzić, że średnia wartość stężenia zawiesiny ogólnej w ściekach po komorze „B” wahała się od 25,7 mg dm⁻³ przy obciążeniu hydraulicznym 77 dm³·m⁻²·d⁻¹ do 29,9 mg dm⁻³ przy obciążeniu hy-
draulicznym 135 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\). Nie stwierdzono znaczej różnicy pomiędzy wartościami zawiesiny ogólnej w ściekach oczyszczonych po warstwie piaskowej czego przyczyną mogło być to że zawiesina jest zatrzymywana głównie w powierzchniowych warstwach złoża filtracyjnego.

Stwierdzono na podstawie przeprowadzonych badań, że średnia redukcja zawiesiny ogólnej po komorze „A” uległa zmniejszeniu wraz ze wzrostem obciążenia hydraulicznego. Dla najmniejszego zastosowanego obciążenia hydraulicznego (38 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\)) zaobserwowano średnią redukcję zawiesiny ogólnej na poziomie 58,6%, podczas gdy dla największego obciążenia hydraulicznego (135 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\)) zanotowano średnie zmniejszenie tego wskaźnika wynoszące 45,4%.

Zakres skuteczności zmniejszenia zawiesiny ogólnej w komorze „B” w zależności od obciążenia hydraulicznego nie był tak widoczny, jak w przypadku skuteczności zmniejszenia zawiesiny ogólnej po komorze „A” i wyniósł od 36,9% dla obciążenia hydraulicznego 100 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\) do 50,8% dla obciążenia hydraulicznego 77 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\).

Całkowita redukcja zawiesiny ogólnej w modelu „M1” wyniosła od 73,2% przy obciążeniu hydraulicznym wynoszącym 135 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\) do 78,3% przy obciążeniu hydraulicznym równym 38 dm\(^3\)⋅m\(^{-2}\)⋅d\(^{-1}\). Tak więc wraz ze wzrostem obciążenia hydraulicznego modelu „M1” nastąpił spadek skuteczności zmniejszenia zawiesiny ogólnej.

6.1.1.5. Określenie wpływu liczby dawków ścieków w ciągu doby na ich jakość oraz redukcję zanieczyszczeń

W rozdziale tym przedstawiono analizę wyników badań jakości ścieków wstępnie oczyszczonych dopływających do modelu „M1” oraz oczyszczonych po warstwie żwirowej i piaskowej w zależności od przyjętej liczby dawkowań ścieków do modelu w ciągu doby. Dodatkowo przedstawiono wyniki analiz skuteczności zmniejszenia badanych zanieczyszczeń po poszczególnych etapach oczyszczania w zależności od liczby dawkowań ścieków wstępnie oczyszczonych do modelu „M1”.

Wskaźnik BZT\(_s\)

W tabeli 27 zestawiono podstawowe statystyki opisowe wartości BZT\(_s\) w ściekach dopływających do modelu oraz odpływających z poszczególnych warstw filtru w zależności od przyjętych wariantów dawkowań ścieków wstępnie oczyszczonych na powierzchnię złoża filtracyjnego.
Tabela 27. Zestawienie podstawowych statystyk opisowych wartości BZT₅ w ściekach wstępnie oczyszczonych, po przeszczepieniu przez komorę „A” oraz komorę „B” dla zadanej liczby dawkowań dla modelu „M1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Średnia X</th>
<th>Mediana mₑ</th>
<th>Minimalna Min</th>
<th>Maksymalna Max</th>
<th>Rozstęp Ro</th>
<th>Odch. stand. σ</th>
<th>Wsp. zmien. V zm</th>
<th>Liczba próbek N</th>
<th>Średnia po przeszczepieniu przez komorę „A”</th>
<th>Mediana mₑ</th>
<th>Minimalna Min</th>
<th>Maksymalna Max</th>
<th>Rozstęp Ro</th>
<th>Odch. stand. σ</th>
<th>Wsp. zmien. V zm</th>
<th>Liczba próbek N</th>
<th>Średnia po przeszczepieniu przez komorę „B”</th>
<th>Mediana mₑ</th>
<th>Minimalna Min</th>
<th>Maksymalna Max</th>
<th>Rozstęp Ro</th>
<th>Odch. stand. σ</th>
<th>Wsp. zmien. V zm</th>
<th>Liczba próbek N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość BZT₅ [mgO₂·dm⁻³]</td>
<td></td>
<td>201,2</td>
<td>180,0</td>
<td>100,00</td>
<td>340,0</td>
<td>240,0</td>
<td>0,35</td>
<td>0,35</td>
<td>26</td>
<td>105,8</td>
<td>100,0</td>
<td>40,00</td>
<td>180,0</td>
<td>140,0</td>
<td>37,23</td>
<td>0,35</td>
<td>26</td>
<td>41,5</td>
<td>40,0</td>
<td>10,00</td>
<td>100,0</td>
<td>90,00</td>
<td>21,78</td>
<td>0,52</td>
<td>26</td>
</tr>
<tr>
<td>Redukcja BZT₅ [%]</td>
<td></td>
<td>44,2</td>
<td>37,5</td>
<td>16,67</td>
<td>80,6</td>
<td>63,98</td>
<td>0,39</td>
<td>0,26</td>
<td>26</td>
<td>60,1</td>
<td>62,5</td>
<td>25,00</td>
<td>85,7</td>
<td>60,7</td>
<td>16,60</td>
<td>0,28</td>
<td>26</td>
<td>77,0</td>
<td>81,4</td>
<td>50,00</td>
<td>93,5</td>
<td>43,55</td>
<td>13,51</td>
<td>0,18</td>
<td>26</td>
</tr>
<tr>
<td>Liczba dawkowań w ciągu doby</td>
<td></td>
<td>4, 12, 24</td>
</tr>
</tbody>
</table>

Średnia wartość BZT₅ w ściekach po oczyszczeniu w komorze z wypełnieniem żwirowym (komora „A”) w zależności od liczby dawkowań ścieków wahała się od 68,7 mgO₂·dm⁻³ przy 24 dawkowaniach ścieków wstępnie oczyszczonych na dobę, do 105,8 mgO₂·dm⁻³ przy 4 dawkowaniach na dobę. Można zauważyć wzrost wartości BZT₅ ze zmniejszeniem liczby dawkowań ścieków wstępnie oczyszczonych. Wzrost wartości BZT₅ w ściekach po przeszczepieniu przez warstwę żwirową przy zmianie dawkowania z 4 d⁻¹ na 24 d⁻¹ wyniósł 37,1
mgO₂ dm⁻³, co stanowiło wzrost o 54,0% w stosunku do wartości przy 24 dawkowaniach na dobę.

Poddając analizie dane uzyskane podczas przeprowadzonych badań (tabela 27) można zauważyć, że średnie wartości BZT₅ po przesączeniu przez warstwę piaskową (komora „B”) kształtowały się od 17,8 mgO₂ dm⁻³ przy 24 dawkowaniach na dobę, do 41,5 mgO₂ dm⁻³ przy 4 dawkowaniach na dobę. Również w tym przypadku zaobserwowano wzrost wartości BZT₅ wraz ze zmniejszaniem liczby dawkowań w ciągu doby. Wzrost wartości BZT₅ w ściekach po przesączeniu przez warstwę piaskową przy zmianie dawkowania z 4 d⁻¹ na 24 d⁻¹ wyniósł 23,7 mgO₂ dm⁻³, co stanowiło wzrost o 133,1% w stosunku do wartości przy 24 dawkowaniach na dobę.

Na podstawie danych z tabeli 27 należy zauważyć, że ze zwiększeniem liczby dawkowań ścieków wstępnie oczyszczonych do modelu nastąpiło zwiększenie skuteczności zmniejszenia BZT₅ po przesączeniu się ścieków przez warstwę źwirową. Średnia redukcja BZT₅ po komorze „A” wyniosła od 44,2% przy 4 dawkowaniach na dobę, do 71,4% przy 24 dawkowaniach na dobę. Biorąc pod uwagę dane dotyczące skuteczności zmniejszenia BZT₅ ścieków po komorze „B” również można zauważyć wzrost skuteczności zmniejszenia BZT₅ przy zwiększaniu liczby dawkowań w ciągu doby. Średnia redukcja BZT₅ po komorze „B” wyniosła od 60,1% przy 4 dawkowaniach na dobę, do 69,1% przy 24 dawkowaniach na dobę. Wpływ liczby dawkowań na redukcję nie był już tak znaczy jak w przypadku komory „A”.

Analizując całkowitą redukcję BZT₅ w całym modelu można zauważyć, że średnia redukcja BZT₅ wahała się od 77,0% przy 4 dawkowaniach na dobę do 91,9% przy 24 dawkowaniach na dobę.

Wskaznik ChZT₅ Cr
W pierwszej kolejności przedstawiono w tabeli 28 podstawowe statystyki opisowe wartości ChZT₅ Cr w ściekach dopływających do modelu oraz odpływających z poszczególnych warstw filtru w zależności od przyjętych wariantów dawkowań ścieków wstępnie oczyszczonych na powierzchnię złożona filtracyjnego.

Na podstawie przeprowadzonych badań można stwierdzić, że średnia wartość ChZT₅ Cr w ściekach po oczyszczeniu w komorze z wypełnieniem źwirowym (komora „A”) wahała się od 139,7 mgO₂ dm⁻³ przy 24 dawkowaniach ścieków wstępnie oczyszczonych na dobę, do 188,2 mgO₂ dm⁻³ przy 4 dawkowaniach na dobę. Stąd można zauważyć znaczny wzrost wartości ChZT₅ Cr ze zmniejszeniem liczby dawkowań ścieków wstępnie oczyszczonych. Wzrost wartości ChZT₅ Cr w ściekach po przesączeniu przez warstwę źwirową przy zmianie dawkowania z 4 d⁻¹ na 24 d⁻¹ wyniósł 48,5 mgO₂ dm⁻³, co stanowiło wzrost o 34,7% w stosunku do wartości przy 24 dawkowaniach na dobę.
Tabela 28. Zestawienie podstawowych statystyk opisowych wartości ChZTCr w ściekach wstępie oczyszczonych, po przesączeniu przez komorę „A” oraz komorę „B” dla zadannej liczby dawkowań dla modelu „M1”

Tabela 28. Summary of basic descriptive statistics of CODCr values in pre-treated sewage after filtration through column “A” and column “B” for the selected dosages for the “M1” model

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Rodzaj ścieków</th>
<th>Wartość ChZTCr [mgO₂⋅dm⁻³]</th>
<th>Redukcja ChZTCr [%]</th>
<th>Liczba dawkowań w ciągu doby</th>
<th>Liczba dawkowań w ciągu doby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>Ścieki wstępne</td>
<td>368,0</td>
<td>45,0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_m</td>
<td>Ścieki wstępne</td>
<td>333,0</td>
<td>42,0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>Ścieki wstępne</td>
<td>179,00</td>
<td>7,84</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>Ścieki wstępne</td>
<td>620,0</td>
<td>77,3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>Ścieki wstępne</td>
<td>441,00</td>
<td>42,0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>Ścieki wstępne</td>
<td>124,06</td>
<td>16,91</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_m</td>
<td>Ścieki wstępne</td>
<td>0,34, 0,32, 0,28</td>
<td>0,38, 0,26, 0,18</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>Ścieki wstępne</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>188,2</td>
<td>41,8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_m</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>191,1</td>
<td>44,0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>108,00</td>
<td>6,48</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>320,0</td>
<td>68,1</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>212,00</td>
<td>61,60</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>53,41</td>
<td>16,38</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_m</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>0,28, 0,16, 0,33</td>
<td>0,39, 0,34, 0,47</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>Ścieki po przesz. przez komorę „A”</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>103,7</td>
<td>69,2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_m</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>102,5</td>
<td>70,2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>60,00</td>
<td>48,01</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>144,0</td>
<td>85,4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>84,00</td>
<td>37,41</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>22,18</td>
<td>10,09</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_m</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>0,21, 0,28, 0,30</td>
<td>0,15, 0,15, 0,09</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Liczba przecrocz</td>
<td>Ip</td>
<td>Ścieki po przesz. przez komorę „B”</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Analizując dane uzyskane podczas przeprowadzonych badań należy zauważyć, że średnio wartości ChZTCr po przesączeniu przez warstwę piaskową (komora „B”) kształtowały się od 72,2 mgO₂⋅dm⁻³ przy 24 dawkowaniach na dobę, do 130,7 mgO₂⋅dm⁻³ przy 4 dawkowaniach na dobę. Również w tym przypadku zaobserwowano wzrost wartości ChZTCr wraz ze zmniejszaniem liczby dawkowań w ciągu doby. Wzrost wartości ChZTCr w ściekach po przesączeniu przez warstwę piaskową przy zmianie dawkowania z 4 d⁻¹ na 24 d⁻¹ wyniósł 31,5
mgO$_2$·dm$^{-3}$, co stanowiło wzrost o 43,6% w stosunku do wartości przy 24 dawkowaniach na dobę.

Na podstawie danych z tabeli 28 można stwierdzić, że ze zwiększeniem liczby dawkowań ścieków wstępnie oczyszczonych do modelu nastąpiło zwiększenie skuteczności zmniejszenia ChZT$_{Cr}$ po przeszkaniu się ścieków przez warstwę żwirową. Średnia redukcja ChZT$_{Cr}$ po komorze „A” wynosiła od 45,0% przy 4 dawkowaniach na dobę do 66,2% przy 24 dawkowaniach na dobę.

Poddając analizie redukcję ChZT$_{Cr}$ ścieków po komorze „B” również można zauważyć wzrost skuteczności zmniejszenia ChZT$_{Cr}$ przy zwiększeniu liczby dawkowań w ciągu doby. Średnia redukcja ChZT$_{Cr}$ po komorze „B” wynosiła od 41,8% przy 4 dawkowaniach na dobę do 46,6% przy 12 dawkowaniach na dobę. Wpływ liczby dawkowań na redukcję nie był już tak znaczny jak w przypadku komory „A”.

Analizując całkowitą redukcję ChZT$_{Cr}$ w modelu można zauważyć, że średnia redukcja ChZT$_{Cr}$ wahała się od 69,2% przy 4 dawkowaniach na dobę do 82,1% przy 24 dawkowaniach na dobę.

Zawiesina ogólna

Kolejnym analizowanym wskaźnikiem była zawiesina ogólna w ściekach wstępnie oczyszczonych i oczyszczonych po komorze żwirowej i piaskowej w zależności od zadanej liczby dawkowań ścieków na złożu filtracyjnym. W tabeli 29 przedstawiono stężenia zawiesiny ogólnej w ściekach dopływających do modelu oraz oczyszczonych w poszczególnych warstwach przy zadanym obciążeniu hydraulicznym złoża filtracyjnego.

Poddając analizie dane z tabeli 29 można stwierdzić, że średnie stężenie zawiesiny ogólnej w ściekach po oczyszczeniu w komorze z wypełnieniem żwirowym (komora „A”) wahało się od 43,3 mg·dm$^{-3}$ przy 24 dawkowaniach ścieków wstępnie oczyszczonych na dobę, do 61,3 mg·dm$^{-3}$ przy 4 dawkowaniach na dobę. Można zauważyć wzrost wartości zawiesiny ogólnej ze zmniejszeniem liczby dawkowań ścieków wstępnie oczyszczonych. Wzrost wartości zawiesiny ogólnej w ściekach po przeszkaniu przez warstwę żwirową przy zmianie dawkowania z 4 d$^{-1}$ na 24 d$^{-1}$ wyniósł 18,0 mg·dm$^{-3}$, co stanowiło wzrost o 41,6% w stosunku do wartości przy 24 dawkowaniach na dobę.

Analizując dane uzyskane podczas przeprowadzonych badań należy zauważyć, że średnie wartości zawiesiny ogólnej po przeszkaniu przez warstwę piaskową (komora „B”) kształtowały się od 23,5 mg·dm$^{-3}$ przy 24 dawkowaniach na dobę, do 32,6 mg·dm$^{-3}$ przy 4 dawkowaniach na dobę. Podobnie w tym przypadku zaobserwowano wzrost wartości zawiesiny ogólnej wraz ze zmniejszaniem liczby dawkowań w ciągu doby. Wzrost wartości zawiesiny ogólnej w ściekach po przeszkaniu przez warstwę piaskową przy zmianie dawkowania z 4 d$^{-1}$ na 24 d$^{-1}$ wyniósł 9,1 mg·dm$^{-3}$, co stanowiło wzrost o 38,7% w stosunku do wartości przy 24 dawkowaniach na dobę.
Tabela 29. Zestawienie podstawowych statystyk opisowych wartości zawiesiny ogólnej w ściekach wstępnie oczyszczonych, po przeszczepieniu przez komorę „A” oraz komorę „B” dla zadanej liczby dawkowań dla modelu „M1”

Table 29. Summary of basic descriptive statistics of total suspended solids’ values in pre-treated sewage after filtration through column “A” and column “B” for the selected dosages for the “M1” model

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Wartość zawiesiny ogólnej [mg dm(^{-3})]</th>
<th>Redukcja zawiesiny ogólnej [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia (\bar{X})</td>
<td></td>
<td>Liczba dawkowań w ciągu doby</td>
<td>Liczba dawkowań w ciągu doby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 12 24</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_\text{d})</td>
<td></td>
<td>125,9 112,8 150,1</td>
<td>43,8 48,6 66,4</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>100,1 99,0 124,0</td>
<td>45,4 50,9 70,2</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>41,20 40,00 73,6</td>
<td>8,74 21,85 38,0</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td></td>
<td>612,8 226,0 414,0</td>
<td>78,6 76,0 91,2</td>
</tr>
<tr>
<td>Odch. stand. (\sigma)</td>
<td></td>
<td>571,60 186,00 340,4</td>
<td>69,88 54,16 53,1</td>
</tr>
<tr>
<td>Wsp. zmien. (V_{\text{zm}})</td>
<td></td>
<td>105,54 47,69 77,93</td>
<td>17,18 16,77 13,82</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>0,84 0,42 0,52</td>
<td>0,39 0,35 0,21</td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td></td>
<td>26 23 23</td>
<td>26 23 23</td>
</tr>
<tr>
<td>Mediana (m_\text{d})</td>
<td></td>
<td>61,3 53,9 43,3</td>
<td>45,3 48,9 42,2</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>52,2 53,8 41,5</td>
<td>45,9 49,3 38,3</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>22,80 27,60 19,0</td>
<td>12,28 25,30 7,4</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td></td>
<td>140,0 100,8 76,5</td>
<td>83,7 78,9 77,9</td>
</tr>
<tr>
<td>Odch. stand. (\sigma)</td>
<td></td>
<td>117,20 73,20 57,5</td>
<td>71,39 53,59 70,6</td>
</tr>
<tr>
<td>Wsp. zmien. (V_{\text{zm}})</td>
<td></td>
<td>27,23 21,61 13,01</td>
<td>16,91 15,61 21,17</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>0,44 0,40 0,30</td>
<td>0,37 0,32 0,50</td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td></td>
<td>26 23 23</td>
<td>26 23 23</td>
</tr>
<tr>
<td>Mediana (m_\text{d})</td>
<td></td>
<td>32,6 25,7 23,5</td>
<td>69,6 75,2 80,9</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>31,0 24,8 23,6</td>
<td>72,3 76,0 81,6</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>8,00 8,40 11,2</td>
<td>24,76 57,93 54,3</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td></td>
<td>71,0 44,8 42,4</td>
<td>89,6 87,1 95,2</td>
</tr>
<tr>
<td>Odch. stand. (\sigma)</td>
<td></td>
<td>63,00 36,40 31,2</td>
<td>64,86 29,19 40,8</td>
</tr>
<tr>
<td>Wsp. zmien. (V_{\text{zm}})</td>
<td></td>
<td>14,88 8,76 8,43</td>
<td>13,62 8,38 10,36</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>0,46 0,34 0,36</td>
<td>0,20 0,11 0,13</td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td></td>
<td>26 23 23</td>
<td>26 23 23</td>
</tr>
<tr>
<td>Mediana (m_\text{d})</td>
<td></td>
<td>3 0 0</td>
<td>- - -</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Rozstęp Ro</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Odch. stand. (\sigma)</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Wsp. zmien. (V_{\text{zm}})</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Liczba przekroczń (I_p)</td>
<td></td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

Na podstawie danych z tabeli 29 można stwierdzić, że ze zwiększeniem liczby dawkowań ścieków wstępnie oczyszczonych do modelu nastąpiło zwiększenie redukcji zawiesiny ogólnej po przeszczepieniu się ścieków przez warstwę żwirową. Średnia redukcja zawiesiny ogólnej po komorze „A” wyniosła od 43,8% przy 4 dawkowaniach na dobę, do 66,4% przy 24 dawkowaniach na dobę.

Poddając analizie redukcję zanieczyszczeń ścieków po komorze „B” można zauważyć, że wzrost skuteczności usuwania zawiesiny ogólnej nie zależała
od liczby dawkowań w ciągu doby. Średnia redukcja zawiesiny ogólnej po komorze „B” wyniosła od 42,2% przy 24 dawkowaniach na dobę do 48,9% przy 12 dawkowaniach na dobę.

Analizując całkowitą redukcję zawiesiny ogólnej w modelu „M1” należy zwrócić uwagę na fakt, że średnia redukcja zawiesiny ogólnej wahała się od 69,6% przy 4 dawkowaniach na dobę do 80,9% przy 24 dawkowaniach na dobę.

6.1.2. Analiza wyników badań uzyskanych z modelu „R1”

Na podstawie badań przeprowadzonych z wykorzystaniem modelu „R1” autor uzyskał objętość wody jaka została rozdzielona do poszczególnych kanałów przez badane głowice. Mając objętość wody jaka odpływała z poszczególnych kanałów głowicy rozdzielczej określono współczynniki zmienności objętości wody. Im niższy współczynnik zmienności, tym woda była równomierniej rozdzielana za pomocą głowicy. Na rysunkach 34, 35, 36, przedstawiono wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla współczynnika zmienności objętości wody z poszczególnych kanałów rozdzielczych przy zadanych dawkach wlewanej wody.

![Rysunek 34. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla współczynnika zmienności objętości wody z poszczególnych kanałów rozdzielczych o średnicy 5 mm przy zadanych dawkach wlewanej wody.](image)

Figure 34. Values of median, quantile (25% and 75%) and the range of non-deviating values for coefficient of variation of water volume from individual distribution channels with diameter of 5 mm with the selected doses of supplied water
Skuteczność oczyszczania ścieków...

Na podstawie danych przedstawionych na rysunku 34 można zauważyć, że największe wartości współczynnika zmienności objętości pomierzonej wody z poszczególnych kanałów rozdzielczych uzyskano dla dawki 0,5 dm³ (mediana wyniosła 0,13). Już od dawki 2,0 dm³ obserwuje się stabilizację współczynnika zmienności (mediana wyniosła 0,07). Świadczy to o tym, że można stosować jednorazową dawkę dla głowicy z przewodami o średnicy 5 mm na poziomie od 2 do 10 dm³. Nie zaleca się stosowania mniejszych dawek.

Rysunek 35. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla współczynnika zmienności objętości wody z poszczególnych kanałów rozdzielczych o średnicy 10 mm przy zadanych dawkach wlewanej wody

Figure 35. Values of median, quantile (25% and 75%) and the range of non-deviating values for coefficient of variation of water volume from individual distribution channels with diameter of 10 mm with the selected doses of supplied water

Analizując dane przedstawione na rysunku 35 można zauważyć, że największe wartości współczynnika zmienności objętości pomierzonej wody z poszczególnych kanałów rozdzielczych (o średnicy 10 mm) uzyskano dla dawki 0,5 dm³ (mediana wyniosła 0,46). Najniższą wartość mediany uzyskano dla największej dwaki (10 dm³). Proponuje się stosowanie dawek od 3,0 do 10,0 dm³.

Poddając analizie dane przedstawione na rysunku 36 można zauważyć, że największe wartości współczynnika zmienności objętości pomierzonej wody z poszczególnych kanałów rozdzielczych (o średnicy 15 mm) uzyskano dla dawki 1,0 dm³ (mediana wyniosła 0,97). Najniższą wartość mediany uzyskano dla największej dwaki (10 dm³). Proponuje się stosowanie dawek od 2,0 do 10,0 dm³.
W dalszej kolejności przedstawiono (rysunek 37) wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstajających dla współczynnika zmienności objętości wody z poszczególnych kanałów rozdzielczych w zależności od średnicy przewodów rozdzielczych.

Na podstawie danych przedstawionych na rysunku 37 można zauważyć, że najmniejsze wartości współczynnika zmienności objętości pomierzonych wody z poszczególnych kanałów rozdzielczych uzyskano dla głowicy z przewodami o średnicy 5 mm (mediana wynosiła 0,06). Największe wartości współczynnika zmienności uzyskano dla głowicy z przewodami o średnicy 15 mm (mediana wynosiła 0,64). Współczynnik zmienności dla głowicy z przewodami o średnicy 10 mm ukształtował się na poziomie, dla którego mediana wyniosła 0,29. Biorąc powyższe należy zauważyć, że średnica przewodów w komorze rozdzielczej wpływa na rozdzielenie wody przez komore. Przy małej średnicy przewodów (5 mm) zaobserwowano bardziej równomierne rozdzielenie wody, niż miało to miejsce w przypadku głowic z większymi średnicami przewodów rozdzielczych. Niemniej jednak mała średnica przewodów będzie wymagała częstszego czyszczenia lub zabezpieczenia sitkiem przed wynoszonymi zanieczyszczeniami z osadnika gnilnego. Na podstawie przeprowadzonych badań w terenie na ściekach zaleca się stosowanie głowic z przewodami o średnicy 10 lub 15 mm (są one bardziej odporne na zatkanie).
6.1.3. Analiza wyników badań z modelu „M2”

W rozdziale przedstawiono wyniki badań fizyko-chemicznych ścieków dopływających i oczyszczonych w modelu wycinkowym odwzorowującym prototyp zmodyfikowanego filtru żwirowo-piaskowego „F1” z terenu. Głównym celem budowy modelu „M2” było określenie wpływu obciążenia hydraulicznego na jakość ścieków oczyszczonych. W tabelach 30, 31 i 32 przedstawiono podstawowe statystyki opisowe wartości badanych wskaźników w ściekach wstępnie oczyszczonych dopływających do modelu „M2” oraz ścieków oczyszczonych przy zadanych obciążeniach hydraulicznych złoża.

Wskaźnik BZT_5

Model „M2” poddano sześciu różnym obciążeniom hydraulicznym. Dla każdego obciążenia wykonano po 5 serii pomiarowych. W tabeli 30 przedstawiono podstawowe statystyki opisowe wartości BZT_5 w ściekach wstępnie oczyszczonych, oczyszczonych oraz skuteczności zmniejszenia dla badanych obciążeń hydraulicznych dla modelu „M2”.

Figure 37. Values of median, quantile (25% and 75%) and the range of non-deviating values for coefficient of variation of water volume from individual distribution channels depending on the distribution pipe diameter.

Figure 37. Wartości mediany, kwantyl (25% i 75%) oraz zakresu wartości nieodstających dla współczynnika zmiennosci objętości wody z poszczególnych kanałów rozdzielczych w zależności od ich średnicy.

Rysunek 37. Wartości mediany, kwantyl (25% i 75%) oraz zakresu wartości nieodstających dla współczynnika zmiennosci objętości wody z poszczególnych kanałów rozdzielczych w zależności od ich średnicy.
Table 30. Basic descriptive statistics of BOD\textsubscript{5} values in pre-treated and treated sewage together with the reduction effectiveness for the examined hydraulic loads for the “M2” model

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Obciążenie hydrauliczne złoża ([\text{dm}^3 \cdot \text{m}^2 \cdot \text{d}^{-1}])</th>
<th>Wartość wskaźnika BZT\textsubscript{5} ([\text{mgO}_2 \cdot \text{dm}^{-3}])</th>
<th>Redukcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia (\bar{X})</td>
<td>(\bar{m})</td>
<td>200,00</td>
<td>15,00</td>
<td>88,25%</td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>180,00</td>
<td>10,00</td>
<td>93,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>100,00</td>
<td>10,00</td>
<td>70,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>340,00</td>
<td>30,00</td>
<td>97,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>120,00</td>
<td>10,00</td>
<td>12,55%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,67</td>
<td>0,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td>224,00</td>
<td>23,00</td>
<td>83,80%</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>200,00</td>
<td>20,00</td>
<td>91,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>80,00</td>
<td>5,00</td>
<td>50,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>420,00</td>
<td>40,00</td>
<td>98,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>122,80</td>
<td>13,04</td>
<td>19,51%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,57</td>
<td>0,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td>162,00</td>
<td>18,00</td>
<td>88,80%</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>160,00</td>
<td>20,00</td>
<td>88,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>100,00</td>
<td>10,00</td>
<td>83,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>210,00</td>
<td>30,00</td>
<td>95,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>40,25</td>
<td>8,37</td>
<td>4,32%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,50</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td>308,00</td>
<td>26,00</td>
<td>90,20%</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>240,00</td>
<td>30,00</td>
<td>89,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>120,00</td>
<td>10,00</td>
<td>86,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>680,00</td>
<td>40,00</td>
<td>96,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>228,74</td>
<td>11,40</td>
<td>3,90%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,74</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td>260,00</td>
<td>34,00</td>
<td>86,40%</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>220,00</td>
<td>30,00</td>
<td>88,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>160,00</td>
<td>20,00</td>
<td>82,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>400,00</td>
<td>50,00</td>
<td>91,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>104,88</td>
<td>11,40</td>
<td>3,78%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,40</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Średnia (\bar{X})</td>
<td>305,00</td>
<td>60,00</td>
<td>79,8%</td>
<td></td>
</tr>
<tr>
<td>Mediana (m_n)</td>
<td>280,00</td>
<td>50,00</td>
<td>84,0%</td>
<td></td>
</tr>
<tr>
<td>Minimalna (\text{Min})</td>
<td>200,00</td>
<td>10,00</td>
<td>55,0%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna (\text{Max})</td>
<td>460,00</td>
<td>130,00</td>
<td>96,0%</td>
<td></td>
</tr>
<tr>
<td>Odchylone stand. (\sigma)</td>
<td>95,26</td>
<td>51,96</td>
<td>17,3%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności (V_{\text{zm}})</td>
<td>0,31</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analizując dane zawarte w tabeli 30 można stwierdzić, że średnie wartości BZT₅ ścieków oczyszczonych dla obciążeń hydraulicznych od 25 do 125 dm³·m⁻²·d⁻¹ były nieznacznie zróżnicowane i wyniosły od 15 do 26 mgO₂·dm⁻³, przy czym obserwowano stosunkowo niewielki wzrost wraz ze zwiększeniem obciążenia hydraulicznego złoża filtracyjnego. Dopiero przy najwyższym obciążeniu hydraulicznym (200 dm³·m⁻²·d⁻¹) zaobserwowano wyższą wartość BZT₅ na odpływie ze złoża, wynoszącą 60 mgO₂·dm⁻³. Niemniej jednak przy obciążeniu hydraulicznym wynoszącym 125 dm³·m⁻²·d⁻¹ uzyskano średnią wartość BZT₅ w ściekach oczyszczonych na poziomie 26 mgO₂·dm⁻³ i nie stwierdzono przekroczeń wartości dopuszczalnej. Dla obciążenia hydraulicznego 150 dm³·m⁻²·d⁻¹ uzyskano średnią wartość BZT₅ ścieków oczyszczonych na poziomie 34,0 mgO₂·dm⁻³, co było również wartością poniżej dopuszczalnej (40 mgO₂·dm⁻³) przedstawionej w Rozporządzeniu [2006]. Ze względu na wskaźnik BZT₅ bezpieczne obciążenie hydrauliczne złoża filtracyjnego można przyjąć na poziomie nie wyższym od 125 dm³·m⁻²·d⁻¹. Analizując redukcja wskaźnika BZT₅ daje się zauważyć mniejszą jego wartość, przy największych badanych obciążeniach. Dla obciążenia hydraulicznego 200 dm³·m⁻²·d⁻¹ uzyskano średnią redukcję BZT₅ na poziomie 79,8% podczas gdy dla obciążenia 25 dm³·m⁻²·d⁻¹ skuteczność była wyższa o blisko 10%.

Rysunek 38. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla wartości BZT₅ w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych

Figure 38. Values of median, quantile (25% and 75%) and the range of non-deviating values for BOD₅ in sewage treated in “M2” model with the selected hydraulic loads
Krzysztof Chmielowski

Na rysunku 38 przedstawiono wartości mediany kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla wartości BZT₅ w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych. Daje się zauważyć niewielki wzrost mediany dla wartości BZT₅ ścieków oczyszczonych wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego. Dopiero przy obciążeniu 150 i 200 dm³·m⁻²·d⁻¹ obserwuje się wyraźny wzrost mediany (dla obciążenia hydraulicznego 200 dm³·m⁻²·d⁻¹ mediana wartości BZT₅ ścieków oczyszczonych wyniosła 50 mgO₂·dm⁻³).

Wskaźnik ChZT₃₉₅

Kolejnym analizowanym wskaźnikiem było ChZT₃₉₅. W tabeli 31 przedstawiono podstawowe statystyki opisowe wartości ChZT₃₉₅, w ściekach wstępnie oczyszczonych, oczyszczonych oraz skuteczności zmniejszenia dla badanych obciążen hydraulicznych dla modelu „M2”.

Poddając analizie dane zawarte w tabeli 31 można zauważyć, że średnia wartość ChZT₃₉₅ ścieków oczyszczonych zwiększa się wraz ze wzrostem obciążenia hydraulicznego. Dla 25 dm³·m⁻²·d⁻¹ średnia wartość ChZT₃₉₅ wyniosła 57,50 mgO₂·dm⁻³ natomiast dla maksymalnego obciążenia hydraulicznego złoża filtracyjnego (200 dm³·m⁻²·d⁻¹) średnia wartość ChZT₃₉₅ ścieków oczyszczonych wyniosła 183,75 mgO₂·dm⁻³. Niemniej jednak przy obciążeniu hydraulicznym wynoszącym 125 dm³·m⁻²·d⁻¹ uzyskano średnią wartość ChZT₃₉₅ w ściekach oczyszczonych na poziomie 126 mgO₂·dm⁻³ i nie stwierdzono przekroczeń wartości dopuszczalnej. Dla obciążenia hydraulicznego 150 dm³·m⁻²·d⁻¹ uzyskano średnią wartość ChZT₃₉₅ ścieków oczyszczonych na poziomie 136,2 mgO₂·dm⁻³, co było również wartością poniżej dopuszczalnej (150 mgO₂·dm⁻³) przedstawionej w Rozporządzeniu [2006]. Niemniej jednak wartość maksymalna wyniosła 161,00 mgO₂·dm⁻³. Biorąc powyższe pod uwagę, ze względu na wskaźnik ChZT₃₉₅ dopuszczalne obciążenie hydrauliczne złoża filtracyjnego można przyjąć na poziomie 125 dm³·m⁻²·d⁻¹. Analizując redukcję wskaźnika ChZT₃₉₅ daje się zauważyć mniejszą jej wartość przy obciążeniu 150 dm³·m⁻²·d⁻¹ (67,00%). Dla obciążenia hydraulicznego 200 dm³·m⁻²·d⁻¹ uzyskano średnią redukcję ChZT₃₉₅ na poziomie 75%. Powodem stosunkowo dużej redukcji była znaczna wartość ChZT₃₉₅ ścieków dopływających do modelu dla tego obciążenia (798,75 mgO₂·dm⁻³). Przy obciążeniach hydraulicznych od 25 do 125 dm³·m⁻²·d⁻¹ zaobserwowano średnią redukcję w zakresie od 73,00% do 85,60%.
Table 31. Basic descriptive statistics of COD$_{Cr}$ values in pre-treated and treated sewage together with the reduction effectiveness for the examined hydraulic loads for the “M2” model.

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Obciążenie hydrauliczne złoża [dm3 m$^{-2}$ d$^{-1}$]</th>
<th>Wartość wskaźnika ChZT$_{Cr}$ [mgO$_2$ dm$^{-3}$]</th>
<th>Redukcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>25</td>
<td>324,50 57,50 81,25%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>309,50 58,50 81,50%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>231,00 53,00 75,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>448,00 60,00 87,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>96,13 3,11 5,68%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,30 0,05 0,07</td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>50</td>
<td>642,95 68,00 85,60%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>484,00 69,00 84,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>221,00 51,00 77,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>1505,76 91,00 95,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>499,11 16,31 7,33%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,78 0,24 0,09</td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>75</td>
<td>409,00 107,40 73,60%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>401,00 98,00 73,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>345,00 91,00 67,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>450,00 131,00 80,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>43,65 17,90 4,83%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,11 0,17 0,07</td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>125</td>
<td>569,20 126,00 73,00%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>535,00 129,00 76,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>234,00 102,00 56,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>909,00 141,00 86,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>275,65 14,46 12,73%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,48 0,11 0,17</td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>150</td>
<td>411,20 136,20 67,00%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>423,00 137,00 66,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>375,00 112,00 64,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>447,00 161,00 71,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>30,86 18,59 2,65%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,08 0,14 0,04</td>
<td></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>200</td>
<td>798,75 183,75 75,00%</td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_r</td>
<td></td>
<td>881,00 179,00 78,00%</td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td></td>
<td>521,00 128,00 58,00%</td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td></td>
<td>912,00 249,00 86,00%</td>
<td></td>
</tr>
<tr>
<td>Odchylenie stand.</td>
<td>σ</td>
<td></td>
<td>162,34 51,90 11,47%</td>
<td></td>
</tr>
<tr>
<td>Wsp. zmienności</td>
<td>V_{zm}</td>
<td></td>
<td>0,20 0,28 0,15</td>
<td></td>
</tr>
</tbody>
</table>
Rysunek 39 przedstawia wartości mediany kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla wartości ChZT_cr w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych. Wyraźnie widać wzrost mediany dla wartości ChZT_cr ścieków oczyszczonych wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego. Zwłaszcza przy obciążeniu 200 dm3·m$^{-2}$·d$^{-1}$ obserwuje się wyraźny wzrost mediany (dla obciążenia hydraulicznego 200 dm3·m$^{-2}$·d$^{-1}$ mediana wartości ChZT_cr w ściekach oczyszczonych wyniosła 179 mgO$_2$·dm$^{-3}$).

Rysunek 39. Wartości mediany, kwantyl (25% i 75%) oraz zakresu wartości nieodstających dla wartości ChZT_cr w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych

Figure 39. Values of median, quantile (25% and 75%) and the range of non-deviating values for COD$_{Cr}$ in sewage treated in “M2” model with the selected hydraulic loads

Zawiesina ogólna

Ostatnim analizowanym wskaźnikiem była zawiesina ogólna. W tabeli 32 przedstawiono podstawowe statystyki opisowe stężenia zawiesiny ogólnej w ściekach wstępnie oczyszczonych, oczyszczonych oraz skuteczności zmniejszenia dla badanych obciążen hydraulicznych dla modelu „M2”.

Biorąc pod uwagę dane zawarte w tabeli 32 można zauważyć, że średnie stężenie zawiesiny ogólnej w ściekach oczyszczonych zwiększało się wraz ze wzrostem obciążenia hydraulicznego. Dla 25 dm3·m$^{-2}$·d$^{-1}$ średnie stężenie zawiesiny ogólnej wynosiło 19,70 mg·dm$^{-3}$ natomiast dla maksymalnego obciążenia hydraulicznego złoża filtracyjnego (200 dm3·m$^{-2}$·d$^{-1}$) 46,30 mg·dm$^{-3}$.

114
Tabela 32. Podstawowe statystyki opisowe stężenia zawiesiny ogólnej w ściekach wstępnie oczyszczonych, oczyszczonych oraz skuteczności zmniejszenia dla badanych obciążen hydraulicznych dla modelu „M2”

Table 32. Basic descriptive statistics of total suspended solids’ values in pre-treated and treated sewage together with the reduction effectiveness for the examined hydraulic loads for the “M2” model

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Obciążenie hydrauliczne złoża [dm3·m$^{-2}$·d$^{-1}$]</th>
<th>Stężenie zawiesiny ogólnej [mg·dm$^{-3}$]</th>
<th>Redukcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>25</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>50</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>75</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>125</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>150</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>200</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>25</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>50</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>75</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>125</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>150</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>200</td>
<td>Ścieki wstępnie oczyszczone</td>
<td>Ścieki oczyszczone</td>
</tr>
</tbody>
</table>
Tak więc analizując średnie wartości przy wszystkich obciążeniach hydraulicznych nie nastąpiło przekroczenie wartości dopuszczalnej (50 mgO₂⋅dm⁻³) wymaganej przez Rozporządzenie [2006]. Niemniej jednak przy obciążeniu hydraulicznym wynoszącym 150 dm³⋅m⁻²⋅d⁻¹ maksymalne stężenie zawiesiny ogólnej w ściekach oczyszczonych wyniosło 91,60 mg⋅dm⁻³. Również dla obciążenia hydraulicznego 200 dm³⋅m⁻²⋅d⁻¹ maksymalna wartość przekroczyła dopuszczalną i wyniosła 68,00 mg⋅dm⁻³. Biorąc powyższe pod uwagę, że względem na wskaźnik zawiesiny ogólnej dopuszczalne obciążenie hydrauliczne można przyjąć na poziomie 125 dm³⋅m⁻²⋅d⁻¹. Poddając analizie redukcję zawiesiny ogólnej można zauważyć, że średnie jej wartości mieściły się w wąskim przedziale od 84,50% przy obciążeniu 200 dm³⋅m⁻²⋅d⁻¹ do 91,60% przy obciążeniu 125 dm³⋅m⁻²⋅d⁻¹.

Rysunek 40 przedstawia wartości mediany kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia zawiesiny ogólnej w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych. Znajdowano wzrost mediany stężenia zawisiny ogólnej w ściekach oczyszczonych wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego.

Rysunek 40. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia zawiesiny ogólnej w ściekach oczyszczonych w modelu „M2” przy zadanych obciążeniach hydraulicznych

Figure 40. Values of median, quantile (25% and 75%) and the range of non-deviating values for total suspended solids’ concentrations in sewage treated in “M2” model with the selected hydraulic loads
6.2. ANALIZA WYNIKÓW BADAŃ TERENOWYCH – PROTotyp „F1”

6.2.1. Analiza temperatury ścieków

Rysunek 41. Zestawienie temperatury ścieków dopływających i odpływających z prototypu „F1” zmodyfikowanego filtru żwirowo-piaskowego o przepływie pionowym

Figure 41. Summary of temperature of sewage flowing into and out of the “F1” prototype of the modified vertical flow gravel and sand filter
Z rysunku 41 daje się zauważyć znaczne wahania temperatury powietrza lw badanym okresie. Temperatura ścieków dopływających do zmodyfikowanego filtru źwirowo-piaskowego była zależna od temperatury powietrza w ograniczonym zakresie. W okresie ekstremalnie niskich temperatur powietrza na przełomie lutego i marca 2012 roku zaobserwowano najniższe temperatury zarówno ścieków dopływających do filtry jak i ścieków oczyszczonych odpływających z filtry „F1”. Tak więc temperatura ścieków dopływających do filtru osiągnęła najniższą wartość na poziomie 8,50°C, podczas gdy temperatura ścieków na odpływie z filtru nie spadła poniżej 6,42°C.

W tabeli 33 przedstawiono podstawowe statystyki opisowe temperatury powietrza, ścieków wstępnie oczyszczonych i ścieków oczyszczonych w prototypie przydomowej oczyszczalni w miejscowości Ujazd. Średnia dobowa temperatura powietrza wahała się od -19,4°C do 26,50°C. Rozstęp zatem wyniósł 43,10°C, a współczynnik zmienności wyniósł 1,82. Według Heidricha [1998] temperatura ścieków bytowych jedynie w niewielkim stopniu zależy od temperatury powietrza, przy czym stwierdzenie to dotyczy urządzeń lokalnych. Podwyższona temperatura ścieków przyspiesza procesy rozkładu związków organicznych i powoduje oddalenie ścieków przyspieszając tym samym ich zagniwalność [praca zbiorowa 1997]. Zbyt niska temperatura może być przyczyną zahamowania nitryfikacji w procesie usuwania azotu. Przy spadku temperatury poniżej 11°C obserwuje się zahamowanie drugiej fazy nitryfikacji i nagromadzenie się w odpływie azotynów [Praca zbiorowa 2000].

Tabela 33. Statystki opisowe temperatury powietrza ścieków wstępnie oczyszczonych i oczyszczonych w prototypie przydomowej oczyszczalni Table 33. Descriptive statistics of air temperature of pre-treated and treated sewage in the prototype of the domestic sewage treatment plant

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Symbol</th>
<th>Temperatura powietrza</th>
<th>Temperatura ścieków dopływających do filtry „F1”</th>
<th>Temperatura ścieków odpływających do filtry „F1”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia (X)</td>
<td>9,24</td>
<td>15,76</td>
<td>11,62</td>
<td></td>
</tr>
<tr>
<td>Mediana (m)</td>
<td>10,44</td>
<td>15,96</td>
<td>11,59</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>-19,40</td>
<td>8,50</td>
<td>6,42</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>26,50</td>
<td>22,10</td>
<td>17,06</td>
<td></td>
</tr>
<tr>
<td>Odch. st. (σ)</td>
<td>9,63</td>
<td>4,27</td>
<td>3,42</td>
<td></td>
</tr>
<tr>
<td>Wsp. Zm. (Vzm)</td>
<td>1,04</td>
<td>0,27</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>Rozstęp (R)</td>
<td>45,90</td>
<td>13,60</td>
<td>10,65</td>
<td></td>
</tr>
<tr>
<td>Liczba pomiarów (IP)</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td></td>
</tr>
</tbody>
</table>

Temperatura ścieków wstępnie oczyszczonych dopływających do zmodyfikowanego filtry źwirowo-piaskowego średnio wyniosła 15,76 °C, podczas gdy wartość maksymalna wyniosła 22,10 °C a minimalna 8,50 °C. Wyniki innych badań [Chmielowski i inni 2009a] mówią, że średnia temperatura ścieków
wstępnie oczyszczonych w osadniku „DUOFILTER” wyniosła 9,79 °C. Znacznie niższe niż w przypadku temperatury powietrza obliczono wartości odchyleń standardowego na poziomie 4,27 °C również niższy był współczynnik zmienności, który przyjął wartość 0,27.

Średnia dobowa temperatura ścieków oczyszczonych ukształtowała się na poziomie 11,62°C i była niższa od średniej dobowej temperatury ścieków dolpływających do filtra o 4,14°C. Heidrich i Stańko [2007] podają, że w przydomowych oczyszczalniach temperatura ścieków utrzymuje się powyżej 10°C. Natomiast według wyników badań [Chmielowski i inni 2009a] przeprowadzonych na klasycznych filtrach piaskowych o przepływie pionowym średnia temperatura ścieków oczyszczonych ukształtowała się na poziomie 7,07°C.

W dalszej kolejności określono wpływ temperatury powietrza na temperaturę ścieków wstępnie oczyszczonych i oczyszczonych. Zestawienie korelacji tych zmiennych przedstawiono w tabeli 34 oraz na rysunku 42.

Tabela 34. Zestawienie wyników analizy korelacji wpływu temperatury powietrza na temperaturę ścieków wstępnie oczyszczonych i oczyszczonych w prototypie przydomowej oczyszczalni

<table>
<thead>
<tr>
<th>Wskaźniki (zmienne)</th>
<th>Liczebność grupy</th>
<th>Współczynnik korelacji Pearsona</th>
<th>Średnia (μ)</th>
<th>Odchylenie standardowe (σ)</th>
<th>Wartość statystyki t dla © = 0,05</th>
<th>Prawdopodobieństwo testowe P</th>
<th>Wartość krytyczna testu t na poziomie © = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura powietrza</td>
<td>355</td>
<td>0,639</td>
<td>0,409</td>
<td>9,54</td>
<td>9,63</td>
<td>15,64</td>
<td>0,00</td>
</tr>
<tr>
<td>Temperatura ścieków wstępnie oczyszczonych</td>
<td>355</td>
<td>0,582</td>
<td>0,339</td>
<td>9,54</td>
<td>9,63</td>
<td>13,45</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Obliczona wartość współczynnika korelacji Pearsona wskazują, że temperatura powietrza ma wysoki wpływ (korelace wysoka, 0,7≥rxy≥0,5) na temperaturę ścieków wstępnie oczyszczonych. Obliczona wartość statystyki t-studenta wyniosła 15,64. Dla
Krzysztof Chmielowski

N=355, przy poziomie istotności \(\alpha=0.05 \) wartość krytyczna \(t \) wynosi 1.96. Zatem można stwierdzić, że wyliczony współczynnik korelacji jest statystycznie istotny na poziomie istotności \(\alpha=0.05 \).

Współczynnik korelacji zmiennych: temperatura powietrza, temperatura ścieków oczyszczonych był według skali Stanisza [1998] wysoki (\(r_{xy}=0.582 \)), niemniej jednak niższy niż w przypadku wpływu temperatury powietrza na temperaturę ścieków dopływających do złoża filtracyjnego. Obliczona wartość statystyki t-studenta wyniosła 13.45. Dla \(N=355 \), przy poziomie istotności \(\alpha=0.05 \) wartość krytyczna \(t \) wynosiła 1.96. Zatem również w tym przypadku można stwierdzić, że wyliczony współczynnik korelacji jest statystycznie istotny na poziomie istotności \(\alpha=0.05 \).

W analizie statystycznej przyjęto skalę współczynnika korelacji wg Stanisza [1998]:

\[
\begin{align*}
r_{xy} = 0 &
\quad \text{zmienne nie są skorelowane}, \\
0 < r_{xy} < 0.1 &
\quad \text{korelacja nikła}, \\
0.1 \leq r_{xy} < 0.3 &
\quad \text{korelacja słaba}, \\
0.3 \leq r_{xy} < 0.5 &
\quad \text{korelacja przeciętna}, \\
0.5 \leq r_{xy} < 0.7 &
\quad \text{korelacja wysoka}, \\
0.7 \leq r_{xy} < 0.9 &
\quad \text{korelacja bardzo wysoka}, \\
0.9 \leq r_{xy} < 1 &
\quad \text{korelacja prawie pewna}, \\
r_{xy} = 1 &
\quad \text{korelacja pewna}.
\end{align*}
\]

Na rysunku 42 przedstawiono zależność temperatury ścieków wstępnie oczyszczonych od temperatury powietrza.

Figure 42. Relationship between temperature of pre-treated sewage and air temperature
Z rysunku 42 wynika, że występuje zależność temperatury ścieków wstępnie oczyszczonych od temperatury powietrza. Współczynnik determinacji $r_{xy}^2=0,409$ informuje, że przedstawiony model regresji opisuje 40,9% obserwacji. Z przebiegu prostej regresji można odczytać, że ze zwiększeniem temperatury powietrza o 1 °C następuje średnie zwiększenie temperatury ścieków surowych o 0,28 °C. Współczynnik korelacji wyniósł $r_{xy}=0,64$ i według skali zaproponowanej przez Stanisza [1998] jest to korelacja wysoka.

Zależność temperatury ścieków wstępnie oczyszczonych dopływających do filtra od temperatury powietrza można wyrazić za pomocą równania:

$$ T_{sd} = 13,137 + 0,28387 \cdot T_p \; [^\circ C] $$ (18)

gdzie:

T_{sd} – temperatura ścieków dopływających do filtra [°C],

T_p – temperatura powietrza [°C].

Na rysunku 43 przedstawiono korelację pomiędzy temperaturą powietrza, a temperaturą ścieków odpływających z filtra „F1”.

Rysunek 43. Zależność temperatury ścieków oczyszczonych od temperatury powietrza
Figure 43. Relationship between temperature of treated sewage and air temperature

Z rysunku 43 wynika, że występuje zależność temperatury ścieków wstępnie oczyszczonych od temperatury powietrza. Współczynnik determinacji $r^2=0,339$ informuje, że przedstawiony model regresji opisuje 33,9% obserwacji. Z przebiegu prostej regresji można odczytać, że ze zwiększeniem temperatury powietrza o 1 °C następuje średnie zwiększenie temperatury ścieków surowych...
Krzysztof Chmielowski

o 0,21°C. Współczynnik korelacji wyniósł \(r_{xy} = 0,58 \) i według skali zaproponowanej przez Stanisza [1998] jest to korelacja wysoka.

Zależność temperatury ścieków oczyszczonych odpływających z filtra od temperatury powietrza można wyrazić za pomocą równania:

\[
T_{so} = 9,7097 + 0,20672 \cdot T_p \ [°C]
\]

(19)

gdzie:
- \(T_{so} \) – temperatura ścieków odpływających z filtra [°C],
- \(T_p \) – temperatura powietrza [°C].

W dalszej kolejności podjęto próbę określenia zależności temperatury ścieków odpływających z filtra od temperatury ścieków dopływających do filtra. W tabeli 35 przedstawiono wyniki analizy korelacji wpływu temperatury ścieków wstępnie oczyszczonych na temperaturę ścieków oczyszczonych w prototypie zmodyfikowanego filtra żwirowo-piaskowego „F1”.

Tabela 35. Zestawienie wyników analizy korelacji wpływu temperatury ścieków wstępnie oczyszczonych na temperaturę ścieków oczyszczonych w zmodyfikowanym filtrze żwirowo-piaskowym o przepływie pionowym

<table>
<thead>
<tr>
<th>Wskaźniki (zmienne)</th>
<th>Liczebność grupy</th>
<th>Współczynnik korelacji Pearsona</th>
<th>Współczynnik determinacji</th>
<th>Średnia arytmetyczna</th>
<th>Odchylenie standardowe</th>
<th>Wartość statystyki t-badającej</th>
<th>Wartość krytyczna t-studenta na poziomie α=0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korelacja</td>
<td>N (r_{xy})</td>
<td>(r_{xy}^2)</td>
<td>(\bar{X})</td>
<td>(\sigma)</td>
<td>t</td>
<td>(t_{\alpha})</td>
<td></td>
</tr>
<tr>
<td>Temperatura ścieków wstępnie oczyszczonych</td>
<td>355</td>
<td>0,974</td>
<td>0,948</td>
<td>15,76</td>
<td>4,27</td>
<td>80,53</td>
<td>1,96</td>
</tr>
<tr>
<td>Temperatura ścieków oczyszczonych</td>
<td></td>
<td></td>
<td></td>
<td>11,62</td>
<td>3,42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obliczone wartości współczynnika korelacji Pearsona wskazują, że temperatura ścieków dopływających do filtra „F1” ma prawie pewny wpływ (korelacja prawie pewna, \(0,9 \geq r_{xy} \geq 1,0 \)) na temperaturę ścieków oczyszczonych odpływających z filtra. Obliczona wartość statystyki t-studenta była bardzo wysoka i wy-
Skuteczność oczyszczania ścieków...

niosła 80,53. Dla N=355, przy poziomie istotności α=0,05 wartość krytyczna \(t_{k} = 1,96 \). Zatem można stwierdzić, że wyliczony współczynnik korelacji jest statystycznie istotny na poziomie istotności α=0,05.

Na rysunku 44 przedstawiono korelację pomiędzy zmienną temperaturą ścieków dopływających do filtra „F1” a zmienną temperaturę ścieków oczyszczonych odpływających z filtra „F1”.

Rysunek 44. Zależność temperatury ścieków oczyszczonych od temperatury ścieków wstępnie oczyszczonych

Figure 44. Relationship between temperature of treated sewage and pre-treated sewage

Interpretując dane zawarte na rysunku 44 należy stwierdzić, że wystąpiła prawie pewna korelacja temperatury ścieków oczyszczonych odpływających z filtra zwirowo-piaskowego od temperatury ścieków dopływających z osadnika gnilnego. Współczynnik regresji wynosił 0,948 co świadczy o tym, że przedstawiony model regresji opisuje ponad 94,8% obserwacji.

Zależność temperatury ścieków oczyszczonych odpływających z filtra od temperatury ścieków dopływających do filtra można wyrazić za pomocą równania:

\[
T_{so} = -0,6669 + 0,7796 \cdot T_{sd} \quad [\degree C]
\]

gdzie:
\(T_{so} \) – temperatura ścieków odpływających z filtra [\degree C],
\(T_{sd} \) – temperatura ścieków dopływających do filtra [\degree C].

Podjęto próbę określenia wpływ temperatury ścieków dopływających na redukcję wybranych zanieczyszczeń. Jednak nie stwierdzono statystycznej istot-
ności pomiędzy temperaturą ścieków dopływających do filtra a skutecznością zmniejszenia badanych wskaźników zanieczyszczenia ścieków.

6.2.2. Analiza ilości ścieków dopływających do prototypu „F1”

W rozdziale tym przedstawiono ilość ścieków dopływających do prototypu filtra zwirowo piaskowego „F1”. Badania trwały od września 2011 r. do grudnia 2012. Do oczyszczalni dopływały wyłącznie ścieki bytowe od 5 osób zamieszkałych stałą. Objętość dopływu ścieków oraz współczynniki nierównomierności dopływu obliczono w oparciu o niżej przedstawione wzory [Sikorski 1988].

Dobowy dopływ ścieków – suma dopływów w godzinach 000 – 2400.

\[
(Q_d)_0 = \sum_{i=0}^{i=24} (Q_i h)_0 \quad [dm^3 \cdot d^{-1}]
\]

(21)

gdzie:

\((Q_i h)_0 \) – godzinowy dopływ ścieków \([dm^3 \cdot d^{-1}] \).

Średni godzinowy dopływ ścieków w ciągu doby:

\[
(Q_{h,\bar{r}})_0 = \frac{(Q_d)_0}{24} \quad [dm^3 \cdot h^{-1}]
\]

(22)

gdzie:

\((Q_d)_0 \) – dobowy dopływ ścieków \([dm^3 \cdot d^{-1}] \).

Maksymalny godzinowy dopływ ścieków w ciągu doby:

\[
(Q_{h,\max})_0 = (Q_{h,\bar{r}})_0 \cdot N_{h,\max} = \frac{(Q_d)_0}{24} \cdot N_{h,\max} \quad [dm^3 \cdot h^{-1}]
\]

(23)

gdzie:

\(N_{h,\max} \) – współczynnik nierównomierności maksymalnego godzinowego dopływu ścieków [-].

Minimalny godzinowy dopływ ścieków w ciągu doby:

\[
(Q_{h,\min})_0 = (Q_{h,\bar{r}})_0 \cdot N_{h,\min} = \frac{(Q_d)_0}{24} \cdot N_{h,\min} \quad [dm^3 \cdot h^{-1}]
\]

(24)

gdzie:

\(N_{h,\min} \) – współczynnik nierównomierności minimalnego godzinowego dopływu ścieków [-].

Określenie dopływów ścieków bytowych w ciągu roku:

Średni dobowy dopływ ścieków – przeciętny z dobowych dopływów ścieków w ciągu j-atego roku:
Skuteczność oczyszczania ścieków...

\[Q_{d,fr} = \frac{\sum_{i=1}^{n} (Q_{d,i})_o}{n} = \frac{Q_{d,j}}{n} \left[dm^3 \cdot d^{-1} \right] \]

(25)

gdzie:

\((Q_{d})_o \) – dobowy dopływ ścieków \([m^3 \cdot d^{-1}]\),
\(Q_{d,j} \) – dopływ ścieków w ciągu j-tego roku w okresie n dób,
\(n \) – liczba całodobowych obserwacji w ciągu j-tego roku.

Maksymalny dobowy dopływ ścieków w ciągu roku:

\[Q_{d,max} = Q_{d,fr} \cdot N_{d,max} \left[dm^3 \cdot d^{-1} \right] \]

(26)

gdzie:

\(N_{d,max} \) – współczynnik nierównomierności maksymalnego dobowego dopływu ścieków [-].

W związku z tym, że Autor dysponował danymi dopływu ścieków bytowych z poszczególnych dób badanego okresu, określono \(Q_{d,max} \) na podstawie bezpośredniej analizy wyników. Znając wartość maksymalnego dopływu ścieków bytowych w ciągu roku oraz średni dobowy dopływ ścieków, określono współczynnik nierównomierności maksymalnego dobowego dopływu ścieków.

\[N_{d,max} = \frac{Q_{d,max}}{Q_{d,fr}} \]

(27)

Minimalny dobowy dopływ ścieków w ciągu roku:

\[Q_{d,min} = Q_{d,fr} \cdot N_{d,min} \ [dm^3 \cdot d^{-1}] \]

(28)

gdzie:

\(N_{d,min} \) – współczynnik nierównomierności minimalnego dobowego dopływu ścieków [-].

W związku z tym, że autor dysponował danymi dopływu ścieków bytowych z poszczególnych dób badanego okresu, określono \(Q_{d,min} \) na podstawie bezpośredniej analizy wyników. Znając wartość minimalnego dopływu ścieków bytowych w ciągu roku oraz średni dobowy dopływ ścieków, określono współczynnik nierównomierności minimalnego dobowego dopływu ścieków.

\[N_{d,min} = \frac{Q_{d,min}}{Q_{d,fr}} \]

(29)

Do pomiaru ilości ścieków dopływających do oczyszczalni użyto wodomierza sprzężonego z rejestratorem impulsów MiniLogB, co przedstawiono w rozdziale (metodyka badań). Zamontowano zestaw pomiarowy w miejscu
umo

įliwiająć cym pomiar wody, która dopływa jako ścieki do oczyszczalni. Zużycie wody na mycie samochodu, czy podlewanie ogródka realizowane było z przyłącza nieujmującego ilość wody mierzonej przez wodomierz. Jest to ważne ponieważ woda zużywana na mycie samochodu może stanowić znaczący procent całkowitego zużycia wody w gospodarstwie, a to z kolei mogło by wpłynąć niekorzystnie na wyniki badań. Według Pawelka i Tylka [1989] woda przeznaczona na mycie samochodów stanowi coraz większy procent całkowitej jej ilości zużywanej w gospodarstwie.

Z wywiadu przeprowadzonego z gospodarzem posesji stwierdzono pewną ilość wody, która nie trafia do oczyszczalni, a przepływa przez wodomierz. Na tej podstawie autor założył, że do oczyszczalni trafia 98% wody ze wskazaną wartością jednostkowego dopływu. Mając do dyspozycji dokładne dane z poszczególnych godzin doby, dokona analizy objętości powstających ścieków bytowych w różnych okresach, począwszy od doby, a na całym okresie badawczym kończąc (14 miesięcy).

W pierwszej kolejności określono jednostkowy dopływ ścieków do oczyszczalni (rysunek 45). Na podstawie danych zawartych na rysunku 45 można stwierdzić, że średni jednostkowy dopływ ścieków do prototypu oczyszczalni wyniósł 102,62 dm³·d⁻¹·M⁻¹. Podobne wyniki do uzyskanych w przeprowadzonych badaniach przedstawia Bergel [2005] gdzie wykazuje, że ilość wody zużywanej na cele bytowe nie przekracza 100 dm³·d⁻¹·M⁻¹. Według badań [Chmielowski i in 2009c] przeprowadzonych w latach 2001-2007 w Mszanie Dolnej, jednostkowe średnie dobowe zużycie wody wyniosło 78,79 dm³·d⁻¹·M⁻¹ w budynkach jednorodzinnych oraz 83,80 dm³·d⁻¹·M⁻¹ w budynkach wielorodzinnych. Również badania wykonane w latach 2003-2005 na czterech przydomowych oczyszczalniach ścieków wykazały, że średni dopływ ścieków do oczyszczalni wyniósł od 93,8 dm³·d⁻¹·M⁻¹ do 109,5 dm³·d⁻¹·M⁻¹. Podobne wyniki można znaleźć w innej literaturze [Pawelek, Bergel 2003, Pawełek i Kaczor 2006]. Widać więc, że średnie wartości dopływu jednostkowego z pojedynczego gospodarstwa oscylują w granicach 100 dm³·d⁻¹·M⁻¹. Analizując dane literaturowe można stwierdzić również znaczne wahania ilości ścieków powstających w gospodarstwach domowych. Według Romana [1993] średnia ilość ścieków powstających w gospodarstwach domowych waha się w szerokim przedziale od 50 do 250 dm³·M⁻¹·d⁻¹. Według Jóźwiakowskiego [2012] średni dopływ ścieków do trzech badanych oczyszczalni wyniósł od 140 dm³·d⁻¹·M⁻¹ do 220 dm³·d⁻¹·M⁻¹. Klaczyński [2003] na
podstawie przeprowadzonych badań podaje, że ilość ścieków przypadająca na jednego mieszkańca wynosi od 33 dm3·d$^{-1}$·M$^{-1}$ do 107 dm3·d$^{-1}$·M$^{-1}$. Tak różne wartości dopływów ścieków do oczyszczalni mogą być niejednokrotnie przyczyną niedociążenia lub przeciążenia hydraulicznego oczyszczalni. Przykładowo Bugajski i Bergel [2009] wykazali, że przydomowe oczyszczalnie ścieków często pracują przy niedociążeniu hydraulicznym na poziomie 14-47%.

Rysunek 45. Jednostkowy dobowy dopływ ścieków bytowych do prototypu oczyszczalni „F1” w badanym okresie [dm3·d$^{-1}$·M$^{-1}$]

Figure 45. Unit daily inflow of domestic sewage to the “F1” prototype of the treatment plant during the considered period [dm3·d$^{-1}$·M$^{-1}$]

Badania dotyczące większej liczby krajów na świecie (24 państwa) wykazują, że średnia roczna jednostkowa objętość ścieków odprowadzanych z gospodarstw domowych wynosi 165 dm3·d$^{-1}$·M$^{-1}$ [Henze i in. 1995]. Analizując dane ze Stanów Zjednoczonych Ameryki [Metcalf and Eddy 1995] należy zauważyć bardzo duże jednostkowe zużycie wody w granicach 300-400 dm3·d$^{-1}$·M$^{-1}$. Tak duże różnice wynikają z przyzwyczajień danych społeczeństw oraz z aspektów ekonomicznych danego kraju. Wpływ na to ma również źródło pochodzenia zużywanej wody (studnia indywidualna, wodociąg zbiorczy), a co za tym idzie opłaty za zużytą wodę.

W dalszej kolejności zostawiono podstawowe charakterystyki dopływu ścieków do oczyszczalni oraz współczynniki nierównomierności dopływu w okresie od września 2011 roku do listopada 2012 roku.
Tabela 36. Zestawienie ilości ścieków dopływających do prototypu oczyszczalni w badanym okresie

Table 36. Summary of the amount of sewage flowing into the prototype treatment plant in years of the study

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Symbol</th>
<th>Dofłyn ścieków do prototypu oczyszczalni z filtrem zwirowowo-piaskowym „F1”</th>
<th>Obciążenie hydrauliczne filtru „F1”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>dm³ d⁻¹</td>
<td>dm³ d⁻¹ M⁻¹</td>
</tr>
<tr>
<td>Dofłyn średni dobowy</td>
<td>Qₐ⁻</td>
<td>513,12</td>
<td>102,62</td>
</tr>
<tr>
<td>Dofłyn dobowy minimalny</td>
<td>Qₐmin</td>
<td>168,00</td>
<td>33,60</td>
</tr>
<tr>
<td>Dofłyn dobowy maksymalny</td>
<td>Qₐmax</td>
<td>1172,00</td>
<td>234,40</td>
</tr>
<tr>
<td>Mediana</td>
<td>mₑ</td>
<td>502,00</td>
<td>100,40</td>
</tr>
<tr>
<td>Odchylenie standardowe</td>
<td>σ</td>
<td>137,89</td>
<td>27,58</td>
</tr>
<tr>
<td>Współczynnik zmienności</td>
<td>Vₑ⁻</td>
<td>0,27 [-]</td>
<td></td>
</tr>
<tr>
<td>Liczba pomiarów</td>
<td>N</td>
<td>457 [szt.]</td>
<td></td>
</tr>
<tr>
<td>Dofłyn maksymalny współczynnik zmienności</td>
<td>Nᵤₐmax</td>
<td>2,28 [-]</td>
<td></td>
</tr>
<tr>
<td>Dofłyn minimalny współczynnik zmienności</td>
<td>Nᵤₐmin</td>
<td>0,33 [-]</td>
<td></td>
</tr>
</tbody>
</table>

W dalszej części na rysunku 46 przedstawiono średnie jednostkowe dopływy ścieków do prototypu oczyszczalni w poszczególnych miesiącach badanego okresu.
Skuteczność oczyszczania ścieków...

Rysunek 46. Średni jednostkowy dopływ ścieków bytowych w poszczególnych miesiącach do prototypu oczyszczalni „F1” w badanym okresie [dm³ d⁻¹ M⁻¹]

Figure 46. Mean unit daily inflow of domestic sewage in each month to the “F1” prototype of the treatment plant during the considered period [dm³ d⁻¹ M⁻¹]

Na podstawie rysunku 46 można stwierdzić, że średnie jednostkowe dopływy w poszczególnych miesiącach były wyrównane. Najniższą średnią wartość jednostkowego zanotowano w miesiącu marcu 2012 roku, która wyniosła 81,9 dm³ d⁻¹ M⁻¹. Najwyższa wartość wystąpiła w miesiącu wrześniu 2011 roku i wyniosła 118,0 dm³ d⁻¹ M⁻¹. Powodem tego stanu może być fakt, że mieszkańcy nie wyjezdzali w badanym okresie na dłuższy czas poza miejsce zamieszkania i zużycie wody, a co za tym idzie objętość dopływających ścieków była wyrównana. Nie bez znaczenia pozostaje również fakt, że woda zużywana do podlewania ogródka, mycia samochodów oraz splukiwania kostki brukowej była pobierana z osobnego zaworu wodociągowego i rejestratora impulsów.

W celu szczegółowego poznania specyfiki dopływu ścieków bytowych do prototypu przydomowej oczyszczalni, podjęto próbę dopasowania rozkładu teoretycznego dla zmiennej: jednostkowy dopływ ścieków bytowych do przydomowej oczyszczalni. Próba ta powiodła się, gdzie dopasowano rozkład lognormalny dla badanej zmiennej. Poprawność doboru rozkładu potwierdzono testem chi-kwadrat na poziomie istotności α=0,05.
Rysunek 47. Histogram wraz z funkcją gęstości oraz dystrybuantą empiryczną i teoretyczną dla zmiennej: jednostkowy dopływ ścieków bytowych do prototypu oczyszczalni „F1”

Figure 47. Histogram with the density function, empirical and theoretical distribution function for the variable: unit daily inflow of domestic sewage to the “F1” prototype of the treatment plant
Analizując dane przedstawione na rysunku 47, najczęściej obserwowany jednostkowy dobowy dopływ ścieków do oczyszczalni mieścił się w przedziale od 80 do 100 dm3·d$^{-1}$·M$^{-1}$, który reprezentował 32% zaobserwowanych wyników. Ponad 28% wyników stanowił jednostkowy dopływ ścieków w przedziale od 100 do 120 dm3·d$^{-1}$·M$^{-1}$. Rzadziej wystąpiły dopływy ścieków w sąsiednich przedziałach tj. 60-80 dm3·d$^{-1}$·M$^{-1}$ 14,0% oraz 120-140 dm3·d$^{-1}$·M$^{-1}$, który stanowił 13,0% wszystkich obserwacji. Jednostkowy dopływ ścieków powyżej 140 dm3·d$^{-1}$·M$^{-1}$ wystąpił stosunkowo rzadko i stanowił zaledwie 8,5% wszystkich obserwacji.

Na rysunku 48 przedstawiono rozkład średniego jednostkowego dopływu ścieków w poszczególnych dniach tygodnia.

Rysunek 48. Średni jednostkowy dopływ ścieków bytowych do oczyszczalni w poszczególnych dniach tygodniach w badanym okresie [dm3·d$^{-1}$·M$^{-1}$]

Figure 48. Mean unit daily inflow of domestic sewage to the treatment plant in each day of the week during the considered period [dm3·d$^{-1}$·M$^{-1}$]

W ciągu tygodnia od poniedziałku do piątku obserwuje się względnie zbliżone wartości. Najwyższe wartości dopływu ścieków wystąpiły w sobotę (125,29 dm3·d$^{-1}$·M$^{-1}$), a najniższe w niedzielę (77,97 dm3·d$^{-1}$·M$^{-1}$). Zróżnicowanie dopływu w ciągu poszczególnych dni tygodnia związane jest ścisłe z przyzwyczajeniami i trybem życia mieszkańców. Najwyższa wartość dopływu ścieków przypadająca na sobotę jest wynikiem kąpieli, praniem oraz sprzątaniem gospodarstwa. Natomiast niedziela jest dniem świątecznym w związku z tym nie praktykuje się czynności wykonywanych w ciągu tygodnia, głównie prania i sprzątania.
Tabela 37. Podstawowe statystyki opisowe jednostkowego dopływu ścieków do prototypu zmodyfikowanego filtru żwirowo-piaskowego „F1” w poszczególnych dniach tygodnia

Table 37. Basic descriptive statistics of unit sewage inflow to the “F1” prototype of the modified gravel and sand filter in each day of the week

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Poniedziałek</th>
<th>Wtorek</th>
<th>Środa</th>
<th>Czwartek</th>
<th>Piątek</th>
<th>Sobota</th>
<th>Niedziela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia X</td>
<td></td>
<td>100,89</td>
<td>99,83</td>
<td>105,98</td>
<td>105,78</td>
<td>102,58</td>
<td>125,29</td>
<td>77,97</td>
</tr>
<tr>
<td>Mediana m_e</td>
<td></td>
<td>98,80</td>
<td>100,80</td>
<td>104,20</td>
<td>104,10</td>
<td>98,20</td>
<td>128,00</td>
<td>75,20</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>54,80</td>
<td>45,00</td>
<td>51,40</td>
<td>59,60</td>
<td>33,60</td>
<td>51,20</td>
<td>40,60</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>156,80</td>
<td>172,40</td>
<td>234,40</td>
<td>162,20</td>
<td>176,40</td>
<td>217,80</td>
<td>161,00</td>
</tr>
<tr>
<td>Odch. stand. σ</td>
<td></td>
<td>20,49</td>
<td>20,59</td>
<td>30,05</td>
<td>20,10</td>
<td>30,54</td>
<td>31,27</td>
<td>19,90</td>
</tr>
<tr>
<td>Wsp. zmien. V zm</td>
<td></td>
<td>0,20</td>
<td>0,21</td>
<td>0,28</td>
<td>0,19</td>
<td>0,25</td>
<td>0,25</td>
<td>0,26</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>66</td>
<td>66</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

W tabeli 37 przedstawiono podstawowe statystyki opisowe dopływu ścieków do oczyszczalni w poszczególnych dniach tygodnia. Mediana jednostkowego dopływu ścieków do oczyszczalni w dniach od poniedziałku do piątku były zbliżone i mieściły się w przedziale od 98,20 do 104,20 dm³⋅d⁻¹⋅M⁻¹. Największą wartość mediany zaobserwowano w sobotę (128,00 dm³⋅d⁻¹⋅M⁻¹) a najmniejszą w niedzielę (75,20 dm³⋅d⁻¹⋅M⁻¹).

Dysponując zapisem danych co godzinę w dalszej kolejności określono średni jednostkowy dopływ ścieków bytowych w poszczególnych godzinach doby (rysunek 49).

Na podstawie analizy rysunku 49 można zauważyć dużą nierównomierność dopływu ścieków w ciągu doby do oczyszczalni. Wyraźnie widać okres siedmiu godzin o dopływie ścieków poniżej 5 dm³⋅d⁻¹⋅M⁻¹. Były to godziny od 23:00 do 6:00, kiedy domownicy wykazują znacznie mniejszą aktywność w gospodarstwie. Obserwowane są dwa wyraźne szczyty dopływu ścieków, w godzinach porannych od 7:00 do 9:00 oraz w godzinach wieczornych od 19:00 do 20:00. Pojedyncze gospodarstwo charakteryzuje znaczne zróżnicowanie zużycia wody na cele bytowe, a co za tym idzie dopływu ścieków do oczyszczalni [Sikorski 1998]. Badania [Chmielowski, Śliszowski 2008b] przeprowadzone w miejscowości Moszczenica Wyżna na czterech przydomowych oczyszczalniach potwierdzają podobny okres minimalnego dopływu ścieków do oczyszczalni, który wyniósł 6 godzin.
6.2.3. Analiza wartości badanych wskaźników w ściekach
dopływaicych i odpływaicych z prototypu „F1”

W rozdziale przedstawiono podstawowe statystyki opisowe wartości wybranych wskaźników w ściekach wstępnie oczyszczonych dopływaicych do filtru „F1” oraz pobranych z zadanych głębokości złoża filtracyjnego (0, 10, 30, 50, 90 i 110 cm). Ścieki oczyszczone w osadniku gnilnym dopływaicych do filtru potraktowano jako ścieki po przepływuzerowej głębokości złoża filtracyjnego, natomiast ścieki oczyszczone po filtrze jako po przesączeniu przez 110 cm warstwy filtra. Analizie fizyko-chemicznej poddano następujące wskaźniki zanieczyszczenia ścieków: BZT₅, ChZT₃, tlen rozpuszczony, zawiesina ogólna, odczyn pH, fosfor ogólny, azot amonowy N-NH₄, azot organiczny, azot całkowity Kjeldahla, azot azotynowy N-NO₂, azot azotanowy N-NO₃ oraz azot ogólny. Dla badanych wskaźników przedstawiono ponadto zestawienie graficzne mediany wraz z kwantylami 25% i 75% oraz zakres wartości nieodstających. Dodatkowo przedstawiono wartości zmniejszenia badanych wskaźników w prototypie filtru źwirowo-piaskowego „F1” na zadanych głębokościach.
Biologiczne zapotrzebowanie na tlen BZT₅

Na podstawie uzyskanych wyników wartości badanych wskaźników zanieczyszczenia ścieków wstępnie oczyszczonych oraz z poszczególnych głębokości zmodyfikowanego filtru zwiroowo-piaskowego przedstawiono podstawowe statystyki opisowe. W pierwszej kolejności przedstawiono statystyki opisowe dla BZT₅ (tabela 38).

Tabela 38. Podstawowe statystyki opisowe wartości BZT₅ ścieków z poszczególnych głębokości zmodyfikowanego filtru zwiroowo-piaskowego „F1”
Table 38. Basic descriptive statistics of BOD₅ values from individual treatment stages in the “F1” prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Wartość BZT₅ ścieków na zadanych głębokościach filtru zwirowo-piaskowego „F1” [mgO₂⋅dm⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>X</td>
<td>709,86 297,32 130,04 91,52 43,46 18,40</td>
</tr>
<tr>
<td>Mediana</td>
<td>mₑ</td>
<td>700,00 300,00 120,00 90,00 40,00 20,00</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>400,00 100,00 60,00 40,00 10,00 10,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1100,00 550,00 240,00 170,00 80,00 30,00</td>
</tr>
<tr>
<td>Odcz. stand.</td>
<td>σ</td>
<td>203,53 118,23 50,07 32,99 15,73 7,91</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>Vₓₘ</td>
<td>0,29 0,40 0,39 0,36 0,36 0,43</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>35 28 28 33 26 35</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>Xₓₜₘ</td>
<td>40,00 40,00 40,00 40,00 40,00 40,00</td>
</tr>
</tbody>
</table>

= głębokość mierzone były narastające od 0 cm (ścieki dopływające do filtru) do 110 cm (ścieki oczyszczonie odpływające z filtru)

Na podstawie przeprowadzonych badań można stwierdzić, że średnia wartość BZT₅ ścieków wstępnie oczyszczonych dopływających do filtru wyniosła 709,86 mgO₂⋅dm⁻³, co jest wartością wysoką biorąc pod uwagę wyniki badań innych autorów [US EPA 1980, Francuskie Ministerstwo Ochrony Środowiska 1993]. Nie mniej jednak w pracy [Grygorczuk 2011], gdzie autor przebadział 6 osadników gnilnych jednokomorowych podano wartości BZT₅ w przedziale od 680-1200 mgO₂⋅dm⁻³, a średnia wartość BZT₅ była na poziomie 903 mgO₂⋅dm⁻³. Biorąc powyższe pod uwagę należy podkreślić, że ścieki z osadnika gnilnego odznaczają się wyższymi wartościami BZT₅ w stosunku do ścieków surowych dopływających ze zbiorczych systemów kanalizacyjnych. Przyczyną tego stanu może być gromadzenie się zanieczyszczeń stałych i ich rozkładanie w osadniku gnilnym. Nie bez znaczenia pozostaje fakt, że w badaniach użyto osadnik jednokomorowy. Wartości wskaźników zanieczyszczenia ścieków z odpływu z tego typu urządzenia są wyższe niż z urządzeń wielokomorowych czego dowodzą inne badania [Grygorczuk 2011]. Również Kuczewski [1995] podaje, że redukcja BZT₅ ścieków po dwóch komorach osadnika wyniosła 30%,
a po trzech komorach wzrosła do 50%. Tak więc ilość komór w osadniku w znaczny sposób wpływa na redukcję BZT₅. Według badań przeprowadzonych przez Hu i in. [2007] skuteczność zmniejszenia BZT₅ w osadniku gnilnym wyniosła 18%. Na podstawie badań [Chmielowski, Bugajski 2008] na czterech osadnikach gnilnych przeprowadzonych w latach 2003-2005 stwierdzono BZT₅ w odpływie z osadnika gnilnego w przedziale od 59,8 do 478,4 mgO₂⋅dm⁻³.

Z tabeli 38 i rysunku 50 można odczytać wyraźny spadek wartości BZT₅ na poszczególnych głębokościach zmodyfikowanego filtra żwirowo-piaszczystego. Po przeszzyceniu ścieków przez warstwę żwirową zaobserwowano znaczną zmniejszenie wartości wskaźnika (blisko 8 krotnie). Przy głębokości 10 cm średnia wartość BZT₅ wyniosła 297,32 mgO₂⋅dm⁻³, a dla głębokości 50 cm średnia wartość BZT₅ wyniosła 91,52 mgO₂⋅dm⁻³. Można zatem stwierdzić, że średnio na warstwie żwirowej BZT₅ zostało zmniejszone o 618,34 mgO₂⋅dm⁻³. Do właściwej warstwy filtracyjnej dopływały ścieki o znacznie obniżonej średniej wartości BZT₅ (91,52 mgO₂⋅dm⁻³). Wiąże to z dużą intensywnością zachodzących procesów oczyszczania ścieków jak również o dostępności tlenu, dzięki któremu zachodzą procesy rozkładu związków w gląb. Analizując działanie warstwy piaskowej stwierdzono trzykrotne zmniejszenie wartości BZT₅ z wartości 91,52 mgO₂⋅dm⁻³ do 18,40 mgO₂⋅dm⁻³. Biorąc pod uwagę wartość dopuszczalną (40 mgO₂⋅dm⁻³) określoną w Rozporządzeniu [2006] nie stwierdzono przekroczeń tej wartości. Badania przeprowadzone przez Metcalf i Eddy [1991] na klasycznych filtrach piaskowych o przepływie pionowym potwierdzają niskie wartości BZT₅ ścieków oczyszczonych (poniżej 10 mgO₂⋅dm⁻³).

Podobne wyniki uzyskali Schudel i Boller [1989]. Pell i Ljunggren [1990] twierdzą, że wartość BZT₅ w ściekach po filtrze piaskowym kształtuje się w granicach od 15,0 do 34,0 mgO₂⋅dm⁻³. Natomiast Osmulska-Mróz [1995] podaje przedział wartości BZT₅ ścieków w ściekach oczyszczonych przez filtry piaskowe w granicach od 1,8 do 4,7 mgO₂⋅dm⁻³.

Na podstawie wartości przedstawionych na rysunku 50 można zauważyć wyraźnie zmniejszające się wartości mediany BZT₅ w ściekach przy zadanym niskiej średnicy złoża filtracyjnego. Mediana ścieków dopływających do złoża wyniosła 700,00 mgO₂⋅dm⁻³, podczas gdy po przeszyceniu ścieków przez warstwę żwirową (po 50 cm) wyniosła jedynie 90 mgO₂⋅dm⁻³. Natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediany wyniosła...
20 mgO₂⋅dm⁻³. Należy zauważyć znacznie większy zakres wartości nieodstających w początkowych warstwach filtru. Świadczy to o tym, że ze wzrostem głębokości złoża filtracyjnego następuje wyraźna stabilizacja wartości BZT₅.

Rysunek 50. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla BZT₅ z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru żwirowo piaskowego „F1”

Figure 50. Values of median, quantile (25% and 75%) and the range of non-deviating values for BOD₅ from each depth of the filter bed of the “F1” prototype of the modified gravel and sand filter

W dalszej kolejności przedstawiono (rysunek 51) wartości zmniejszenia BZT₅ na założonych głębokościach prototypu filtru żwirowo-piaskowego „F1”.

Analizując dane z rysunku 51 można zauważyć, że szybkość zmniejszania BZT₅ była największa w pierwszych warstwach złoża żwirowego. Na głębokości 10 cm BZT₅ zostało zmniejszone o 412,54 mgO₂⋅dm⁻³, co procentowo wynosi aż 59,7% całkowitego obniżenia BZT₅ na złożu filtracyjnym. Na większych głębokościach złoża nastąpił wyraźnie mniejszy spadek BZT₅ gdzie zaobserwowano po kolejnych 20 cm zmniejszenie BZT₅ o 167,29 mgO₂⋅dm⁻³, co przekłada się na 24,2% całkowitego obniżenia BZT₅. Na głębokości od 30 do 50 cm zostało zmniejszone BZT₅ już tylko o 38,52 mgO₂⋅dm⁻³ (5,6% całkowitej redukcji BZT₅). Łącznie na warstwie zabezpieczającej (żwirowej) BZT₅ zostało zmniejszone o 618,35 mgO₂⋅dm⁻³, co daje 89,5% całkowitej redukcji BZT₅. Znacznie wolniej zmniejszana była wartość BZT₅ w warstwie piaskowej, gdzie łączne na całej warstwie zostało BZT₅ zmniejszone o 73,11 mgO₂⋅dm⁻³ (co daje 10,5% obniżonego BZT₅ w całym filtrze żwirowo-piaskowym). Zatem jednoznacznie należy stwierdzić, że procesy tlenowe powodujące zmniejszanie BZT₅ zachodzą...
Skuteczność oczyszczania ścieków...

najintensywniej w górnych warstwach filtry. Warstwa żwirowa spełnia bardzo dobrze swoją funkcję i zabezpiecza właściwą warstwę filtracyjną przed wysokimi wartościami wskaźnika BZT₅. Dzięki temu można znacznie wydłużyć czas eksploatacji właściwej warstwy filtracyjnej.

Rysunek 51. Zmniejszenie wskaźnika BZT₅ na założonych głębokościach złoża filtru żwirowo-piaskowego „F1”

Figure 51. Values of BOD₅ reduction at the assumed depths of the “F1” gravel and sand filter bed

Chemiczne zapotrzebowanie na tlen ChZTCr

Kolejnym analizowanym wskaźnikiem było ChZTCr w ściekach wstępnie oczyszczonych oraz oczyszczonych pobranych z zadanych poziomów złoża filtracyjnego (tabela 39). Nie stwierdzono w badanym okresie w ściekach oczyszczonych (po 110 cm) przekroczenia wartości dopuszczalnej określonej przez Rozporządzenie [2006]. Maksymalna zarejestrowana wartość ChZTCr ścieków oczyszczonych wyniosła 110 mgO₂·dm⁻³. Średnia wartość ChZTCr dla ścieków oczyszczonych dała wyniki 51,57 mgO₂·dm⁻³, co jest blisko trzykrotnie niższa wartość od dopuszczalnej (150 mgO₂·dm⁻³).

Na podstawie przeprowadzonych badań można stwierdzić, że średnia wartość ChZTCr ścieków wstępnie oczyszczonych dopływających do filtru wyniosła 1014,71 mgO₂·dm⁻³, co jest wartością wysoką biorąc pod uwagę wyniki badań prezentowanych przez innych autorów [Siemieniec 2003, Sikorski 1998]. Nie mniej jednak, Grygorczuk [2011] przebadala 6 osadników gnilnych jednokomorowych i uzyskała średnie wartości ChZTCr na poziomie 1200 mgO₂·dm⁻³.
Tabela 39. Podstawowe statystyki opisowe wartości ChZTCr ścieków z poszczególnych głębokości zmodyfikowanego filtra źwirowo-piaskowego „F1”
Table 39. Basic descriptive statistics of COD Cr values from individual treatment stages in the prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczane</th>
<th>Warstwa źwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\bar{x})</td>
<td>1014,71</td>
<td>464,46</td>
<td>203,51</td>
</tr>
<tr>
<td>Mediana</td>
<td>(m_\text{e})</td>
<td>976,50</td>
<td>185,00</td>
<td>71,00</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>637,00</td>
<td>180,00</td>
<td>68,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1530,72</td>
<td>316,00</td>
<td>128,00</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>203,16</td>
<td>162,04</td>
<td>49,34</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(V_\text{zm})</td>
<td>0,20</td>
<td>0,36</td>
<td>0,31</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>34</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>(X_\text{dop})</td>
<td>150,00</td>
<td>150,00</td>
<td>150,00</td>
</tr>
</tbody>
</table>

1– głębokości mierzone były narastając od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczoné odpływające z filtra)

Przyczyną wysokich wartości tego wskaźnika może być gromadzenie się zanieczyszczeń stałych i ich rozkładanie w osadniku gnilnym. Użycie osadnika gnilnego jednomorowego też mogło wpłynąć na wysokie wartości ChZTCr z odpływu, co potwierdzają badania Grygorczuk [2011]. Analizując wartości z tabeli 39 i rysunku 52 można odczytać wyraźny spadek wartości ChZTCr na poszczególnych głębokościach filtra. Po przeszczepieniu ścieków przez warstwę źwirową zaobserwowano znaczne zmniejszenie wartość tego wskaźnika (ponad 6 krotnie). Przy głębokości 10 cm średnia wartość ChZTCr wyniosła 464,46 mgO₂⋅dm⁻³, a dla głębokości 50 cm średnia wartość ChZTCr wyniosła 157,33 mgO₂⋅dm⁻³. Należy zatem podkreślić, że średnio w warstwie źwirowej ChZTCr zostało zmniejszone o 857,38 mgO₂⋅dm⁻³. Do właściwej warstwy filtracyjnej (warstwa piasku) dopływały ścieki o znacznie obniżonej średniej wartości ChZTCr (157,33 mgO₂⋅dm⁻³). Można zatem sugerować dużą intensywność zachodzących procesów oczyszczania ścieków jak również dostępność tlenu, dzięki któremu zachodzą procesy redukcji zawiązków węgla. Poddając analizie działanie warstwy piaskowej stwierdzono blisko trzykrotne zmniejszenie wskaźnika ChZTCr z wartości 157,33 mgO₂⋅dm⁻³ do 53,81 mgO₂⋅dm⁻³. Wartość dopuszczalna wynosi 150 mgO₂⋅dm⁻³ i jest określona przez Rozporządzenie [2006]. Nie stwierdzono przekroczeń wartości dopuszczalnej. Badania [Ślizow-
Ocena skuteczności oczyszczania ścieków...

Jóźwiakowski [2012] podaje, że średnia wartość ChZTₘᵢₓ w ściekach odpływających z złoża gruntowego o przepływie pionowym wyniosła 61,8 mgO₂·dm⁻³. Kunst Kayser [2000] podaje, że wartość ChZTₘᵢₓ w ściekach oczyszczonych po filtrach wg systemu Rennera wyniosła średnio 46 mgO₂·dm⁻³. Analizując wyniki badań nie stwierdzono istotnych zmian wartości ChZTₘᵢₓ w czasie eksploatacji prototypu „F1”.

Na rysunku 52 przedstawiono wartości mediany ChZTₘᵢₓ ścieków po przeszczepieniu przez zadane poziomy filtru.

Obserwuje się (rysunek 52) wyraźny spadek mediany dla ChZTₘᵢₓ wraz z głębokością złoża filtracyjnego. Mediana ścieków dopływających do złoża wyniosła 976,50 mgO₂·dm⁻³, podczas gdy po przeszczepieniu ścieków przez warstwę żwirową (po 50 cm) wyniosła jedynie 152,00 mgO₂·dm⁻³, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 55 mgO₂·dm⁻³. Można zauważyć znacznie większy zakres wartości nieodstających w początkowych warstwach filtru. Świadczy to o tym, że ze wzrostem głębokości złoża filtracyjnego następuje wyraźna stabilizacja wartości ChZTₘᵢₓ.

Rysunek 52. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla ChZTₘᵢₓ z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra „F1”

Figure 52. Values of median, quantile (25% and 75%) and the range of non-deviating values for CODₘᵢₓ from each depth of the filter bed of the “F1” prototype of the modified filter
W dalszej kolejności przedstawiono (rysunek 53) wartości zmniejszenia ChZT$_{Cr}$ na założonych głębokościach filtru.

![Diagram showing CODCr reduction at assumed depths of the "F1" gravel and sand filter bed](image)

Rysunek 53. Zmniejszenie wskaźnika ChZT$_{Cr}$ na założonych głębokościach złoża filtru źwirowo-piaskowego „F1”

Figure 53. Values of COD$_{Cr}$ reduction at the assumed depths of the “F1” gravel and sand filter bed

Poddając analizie dane z rysunku 53 można zauważyć, że zmniejszanie ChZT$_{Cr}$ podobnie jak w przypadku BZT$_{3}$ było największe w pierwszych warstwach złoża źwirowego. Po przeseczeniu ścieków przez warstwę 10 cm, ChZT$_{Cr}$ zostało zmniejszone o 550,24 mgO$_2$·dm$^{-3}$ co procentowo daje 57,3% całkowitego zredukowanego ChZT$_{Cr}$. Intensywność zmniejszania ChZT$_{Cr}$ na większych głębokościach spadała i wyniosła odpowiednio 260,96 mgO$_2$·dm$^{-3}$ na 20 cm grubości warstwy filtracyjnej. Na głębokości od 30 do 50 cm zostało zmniejszone ChZT$_{Cr}$ o 46,17 mgO$_2$·dm$^{-3}$, co odpowiada 4,8% całkowitego ChZT$_{Cr}$ zredukowanego. Łącznie na warstwie zabezpieczającej (źwirowej) ChZT$_{Cr}$ zostało zmniejszone o 857,37 mgO$_2$·dm$^{-3}$, co daje 89,3% całkowitego zredukowanego ChZT$_{Cr}$. Również w tym przypadku znacznie wolniej zmniejszana była wartość ChZT$_{Cr}$ w warstwie piaskowej, gdzie łącznie w całej warstwie ChZT$_{Cr}$ zmniejszone o 103,51 mgO$_2$·dm$^{-3}$ (co daje 10,7% zredukowanego ChZT$_{Cr}$ w całym filtrze źwirowo-piaskowym). Potwierdza to, że procesy tlenowe powodujące zmniejszanie ChZT$_{Cr}$ zachodzą najintensywniej w górnych warstwach filtru.
Skuteczność oczyszczania ścieków...

Tlen rozpuszczony

Wartość tlenu rozpuszczonego w wodzie zależy od temperatury. Tlen rozpuszczony w ściekach jest istotnym wskaźnikiem i informującym o warunkach, jakie panują w złożu filtracyjnym, a co za tym idzie o procesach jakie mogą zachodzić. W tabeli 40 przedstawiono podstawowe statystyki opisowe stężenia tlenu rozpuszczonego w ściekach dopływających do filtru oraz pobranych z badanych głębokości złoża filtracyjnego „F1”.

Tabela 40. Podstawowe statystyki opisowe wartości tlenu rozpuszczonego w ściekach z poszczególnych głębokości zmodyfikowanego filtra żwirowo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa żwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cm(^{-3})</td>
<td>10 cm(^{-3})</td>
<td>30 cm(^{-3})</td>
<td>50 cm(^{-3})</td>
</tr>
<tr>
<td>Średnia</td>
<td>&bar;X &bar;</td>
<td>0,12</td>
<td>0,50</td>
<td>1,06</td>
</tr>
<tr>
<td>Mediana</td>
<td>m(_{\text{med}})</td>
<td>0,10</td>
<td>0,18</td>
<td>0,90</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>0,06</td>
<td>0,05</td>
<td>0,10</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>0,23</td>
<td>1,75</td>
<td>2,44</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>0,05</td>
<td>0,52</td>
<td>0,64</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V(_{\text{zm}})</td>
<td>0,38</td>
<td>1,05</td>
<td>0,61</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>31,00</td>
<td>28,00</td>
<td>28,00</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>X(_{\text{dop}})</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

\footnote{Przypomina miózny miernie były narastające od 0 cm (ścieki dopływające do filtru) do 110 cm (ścieki oczyszczone odpływające z filtru)}

Wartość tlenu rozpuszczonego w ściekach wstępnie oczyszczonych dopływających do filtra „F1” była niska i wyniosła 0,12 mgO\(_2\)\cdot dm\(^{-3}\), co jest wartością typową biorąc pod uwagę wyniki badań innych autorów. Według Palucha i in. [2006] stężenie tlenu rozpuszczonego w ściekach po osadniku gnilnym było w zakresie od 0,3 do 0,6 mgO\(_2\)\cdot dm\(^{-3}\). Niskie wartości tlenu rozpuszczonego w ściekach świadczą o procesach beztlennych jakie zachodzą w osadniku gnilnym. Analizując dane z tabeli 40 można zaobserwować wzrastającą wartość tlenu rozpuszczonego w ściekach przy zwiększaniu się miąższości złoża filtracyjnego. Dla głębokości złoża 10 cm uzyskano średnią wartość tlenu rozpuszczonego równą 0,50 mgO\(_2\)\cdot dm\(^{-3}\), podczas gdy po przeszczepieniu przez warstwę żwirową poziom tlenu rozpuszczonego w ściekach wzrósł do 1,35 mgO\(_2\)\cdot dm\(^{-3}\), a po przeszczenia przez warstwę piasku wzrósł do średniej wartości 1,87 mgO\(_2\)\cdot dm\(^{-3}\). Można zatem stwierdzić wzrost średniego stężenia tlenu rozpuszczonego w ściekach o 1,70 mgO\(_2\)\cdot dm\(^{-3}\), co potwierdza korzystne warunki tlenowe panujące w złożu filtracyjnym. Na taki stan mogły mieć wpływ prze-
wody zamontowane na głębokości posadowienia każdej z warstw filtracyjnych (peszle o średnicy 50 i 100 mm) oraz dodatkowe doprowadzenie powietrza do układu rozprowadzającego ściek (trzy przewody o średnicy 110 mm).

W dalszej kolejności na rysunku 54 przedstawiono wykres „ramka – wąs” z zaznaczeniem wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla tlenu rozpuszczonego w ściekach na zadanym odcinku głębokości złoża filtracyjnego.

Rysunek 54. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia tlenu rozpuszczonego w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru

Figure 54. Values of median, quantile (25% and 75%) and the range of non-deviating values for concentration of dissolved oxygen in sewage from individual depths of filter bed of the modified filter prototype

Z rysunku 54 wynika, że nastąpił wyraźny wzrost mediany dla stężenia tlenu rozpuszczonego w ściekach wraz z głębokością złoża filtracyjnego. Mediana stężenia tlenu rozpuszczonego w ściekach dopływających do złoża wyniosła 0,10 mgO₂⋅dm⁻³, podczas gdy po przeszczepieniu ścieków przez warstwę zwięrową (po 50 cm) wyniosła 1,35 mgO₂⋅dm⁻³, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 1,87 mgO₂⋅dm⁻³.

Zawiesina ogólna

Kolejnym badanym wskaźnikiem była zawiesina ogólna. Jest to wskaźnik należący do grupy podstawowej i jego wartość dopuszczalna w ściekach oczyszczonych jest regulowana w rozporządzeniu z 2006 roku. Zawiesina ogólna jest wskaźnikiem, który wpływa na kolmatację złoża filtracyjnego. W tabeli 41 przedstawiono podstawowe statystyki opisowe wartości zawiesiny ogólnej
z poszczególnych etapów oczyszczania prototypu zmodyfikowanego filtra wirowo-piaskowego. Według innych autorów [Asenizacja indywidualna 1982] stężenie zawiesiny ogólnej w ściekach wstępnie oczyszczonych po osadniku gnilnym waha się w szerokim przedziale od 187,0 mg·dm\(^{-3}\) do 610,0 mg·dm\(^{-3}\). Badania przeprowadzone przez Śliszowski i Chmielowski [2007] również przedstawiają szeroki zakres wartości od 51,6 mg·dm\(^{-3}\) do 258,0 mg·dm\(^{-3}\).

Tabela 41. Podstawowe statystyki opisowe wartości zawiesiny ogólnej w ściekach z poszczególnych głębokości zmodyfikowanego filtra wirowo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa wirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 cm(^{(*)})</td>
<td>10 cm(^{(*)})</td>
<td>30 cm(^{(*)})</td>
</tr>
<tr>
<td>Średnia</td>
<td>(\bar{X})</td>
<td>314,93</td>
<td>177,26</td>
<td>82,43</td>
</tr>
<tr>
<td>Mediana</td>
<td>(m)</td>
<td>321,40</td>
<td>169,20</td>
<td>79,60</td>
</tr>
<tr>
<td>Minimalna</td>
<td>(\text{Min})</td>
<td>115,00</td>
<td>35,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>(\text{Max})</td>
<td>477,00</td>
<td>406,00</td>
<td>165,00</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>86,29</td>
<td>105,10</td>
<td>30,74</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(V_{zm})</td>
<td>0,27</td>
<td>0,59</td>
<td>0,37</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>(N)</td>
<td>29</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Dopuszczalna</td>
<td>(X_{dop})</td>
<td>50,00</td>
<td>50,00</td>
<td>50,00</td>
</tr>
</tbody>
</table>

(*) – głębokości mierzone były narastając od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczone odpływające z osadnika)

Należy zauważyć (tabela 41) znaczne wartości stężenia zawiesiny ogólnej w ściekach odpływających z osadnika gnilnego. Przyczyną tego stanu może być zastosowany jednokomorowy osadnik gnilny. Liczba komór wpływa bowiem na ilość zawiesiny w ściekach odpływających z osadnika gnilnego [Kuczewski 1995]. Nie bez znaczenia pozostaje objętość osadnika wynosząca 2 m\(^{3}\). Na odpływie z osadnika gnilnego zastosowano filtr z puzzolany, którego zadaniem było zabezpieczenie przed przedostawaniem się większych zanieczyszczeń z osadnika. Według badań przeprowadzonych przez Boundsa [1997] zastosowanie odpowiednich filtrów może skutecznie zmniejszyć zawiesinę ogólną na poziomie 91%. Analizując zebrane dane średnie stężenie zawiesiny ogólnej w ściekach odpływających do filtra wyniosło 314,93 mg·dm\(^{-3}\). Zaoberwano znaczny spadek stężenia zawiesiny ogólnej już na głębokości 10 cm, gdzie średnie stężenie zawiesiny ogólnej wyniosło 177,26 mg·dm\(^{-3}\), a co za tym idzie zmniejszenie tego wskaźnika wyniosło 137,67 mg·dm\(^{-3}\), co odpowiada 43,7%
redukci. Na większych głębokościach złoja filtracyjnego zaobserwowano kolejne zmniejszenia stężenia zawiesiny ogólnej w ściekach. Warstwa żwirowa prototypu filtra o miąższości 50 cm zmniejszyła średnie stężenie zawiesiny ogólnej do poziomu 43,17 mg·dm⁻³. Tak więc do właściwej warstwy filtracyjnej dopływały ścieki o niskim stężeniu zawiesiny ogólnej. Zatem można stwierdzić, że warstwa żwiru spełnia swoją funkcję i przejmuje znaczną (średnio 271,76 mg·dm⁻³) część stężenia zawiesiny ogólnej w ściekach. Poddając analizie działanie warstwy piaskowej prototypu zmodyfikowanego filtra można zauważyć dalsze zmniejszanie stężenia zawiesiny ogólnej w ściekach. Po przeszczepieniu ścieków przez warstwę piaskową zanotowano średnie stężenie zawiesiny ogólnej równe 27,11 mg·dm⁻³. Biorąc pod uwagę wartość dopuszczalną (50 mg·dm⁻³) [Rozporządzenie 2006], należy stwierdzić, że prototyp zmodyfikowanego filtra „F1” dział poprawnie pozwalając na zachowanie ze znacznym marginesem wartości stężenia zawiesiny w ściekach oczyszczonych.

Na podstawie wartości przedstawionych na rysunku 55 daje się zauważyć wyraźny spadek mediany stężenia zawiesiny ogólnej w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra

Rysunek 55. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia zawiesiny ogólnej w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra

Figure 55. Values of median, quantile (25% and 75%) and the range of non-deviating values for concentration of total suspended solids in sewage from individual depths of filter bed of the modified filter prototype

Na podstawie wartości przedstawionych na rysunku 55 daje się zauważyć wyraźny spadek mediany stężenia zawiesiny ogólnej w ściekach z głębokością złoża filtracyjnego. Mediana stężenia zawiesiny ogólnej w ściekach dopływających do
złoża wyniosła 321,40 mg·dm⁻³, podczas gdy po przeszczepieniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 42,30 mg·dm⁻³, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 27,20 mg·dm⁻³. Można zauważyć znacznie większy zakres wartości nieodstających w początkowych warstwach filtru. Świadczy to o tym, że ze wzrostem głębokości złoża filtracyjnego następuje wyraźna stabilizacja wartości zawiesiny ogólnej.

Na rysunku 56 przedstawiono wartości zmniejszenia zawiesiny ogólnej w ściekach na założonych głębokościach prototypu filtra żwirowo-piaskowego „F1”.

![Rysunek 56. Wartości zmniejszenia stężenia zawiesiny ogólnej w ściekach na założonych głębokościach złoża filtra żwirowo-piaskowego „F1”](image)

Figure 56. Values of total suspended solids concentration reduction in sewage at the assumed depths of the “F1” gravel and sand filter bed

Poddając analizie dane z rysunku 56 można zauważyć, że największe zmniejszenie stężenia zawiesiny ogólnej nastąpiło w pierwszych warstwach złoża żwirowego. Po przeszczepieniu ścieków przez warstwę 10 cm, stężenie zawiesiny ogólnej zostało zmniejszone o 137,67 mg·dm⁻³, co procentowo daje 47,8% całkowitego zredukowanego stężenia zawiesiny ogólnej. Intensywność zmniejszania zawiesiny ogólnej na większych głębokościach spadała i wynosiła odpowiednio 94,83 mg·dm⁻³ na 20 cm głębokości warstwy filtracyjnej. Na głębokości od 30 do 50 cm zostało zmniejszone stężenie zawiesiny ogólnej o 39,26 mg·dm⁻³, co odpowiada 13,6% całkowitego zredukowanego stężenia zawiesiny ogólnej. Łącznie na warstwie zabezpieczającej (żwirowej) stężenie zawiesiny ogólnej zostało zmniejszone o 271,76 mg·dm⁻³, co daje 94,3% całkowitego zredukowanego stężenia zawiesiny ogólnej. Znacznie wolniej zmniejszane było stężenie zawiesiny ogólnej w warstwie piaskowej, gdzie łącznie w całej war-
stwie zostało zmniejszone o 16,06 mgO₂⋅dm⁻³, (co daje 5,7% zredukowanego stężenia zawiesiny ogólnej w całym filtrze żwirowo-piaskowym). Świadczy to o tym, że zatrzymywanie zawiesin ogólnych następuje w wierzchnich warstwach złoża. Taki układ warstw filtracyjnych pozwala zabezpieczyć właściwą warstwę filtracyjną przed zanieczyszczeniami, które mogłyby przyczynić się do kolmatacji tej warstwy.

Odczyn pH

W dalszej kolejności na rysunku 57 przedstawiono wartości mediany, kwartyli 25% i 75% wraz z zakresem wartości nieodstających dla odczynu pH w ściekach na zadanych głębokościach złoża filtracyjnego.

Rysunek 57. Wartości mediany, kwartyli (25% i 75%) oraz zakresu wartości nieodstających dla wartości odczynu pH ścieków z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra żwirowo-piaskowego „F1”

Figure 57. Values of median, quantile (25% and 75%) and the range of non-deviating values for pH of sewage from individual depths of filter bed of “F1” prototype of the modified gravel and sand filter

Na podstawie wartości z rysunku 57 można zauważyć spadek mediany dla wartości odczynu pH w ściekach wraz z głębokością złoża filtracyjnego (licząc od głębokości złoża 10 cm). Mediana wartości odczynu pH w ściekach dopływających do złoża wyniosła 7,51, podczas gdy po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 7,21 natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 7,06.
Skuteczność oczyszczania ścieków...

Fosfor ogólny

W tabeli 42 przedstawiono podstawowe statystyki opisowe stężenia fosforu ogólnego w ściekach dopływających do filtra oraz oczyszczonych z badanych głębokości złoża filtracyjnego „F1”.

Tabela 42. Podstawowe statystyki opisowe stężenia fosforu ogólnego w ściekach z poszczególnych głębokości zmodyfikowanego filtra ziwo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa ziwoowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>¯x</td>
<td>0 cm<sup>1</sup></td>
<td>10 cm<sup>1</sup></td>
<td>30 cm<sup>1</sup></td>
</tr>
<tr>
<td>Mediana</td>
<td>m<sub>ę</sub></td>
<td>11,65</td>
<td>9,65</td>
<td>6,21</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>7,16</td>
<td>2,35</td>
<td>3,28</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>17,95</td>
<td>14,96</td>
<td>12,81</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>2,49</td>
<td>3,24</td>
<td>2,40</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V<sub>zm</sub></td>
<td>0,21</td>
<td>0,35</td>
<td>0,35</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>32</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

*) – głębokości mierzone były narastając od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczone odpływające z filtra)

Analizując dane (tabela 42) można zauważyć, że średnie stężenie fosforu ogólnego w ściekach dopływających do filtra „F1” wyniosło 11,94 mgP_{og}·dm⁻³. Zaobserwowano spadek stężenia fosforu ogólnego już na głębokości 10 cm, gdzie średnie stężenie fosforu ogólnego wyniosło 9,28 mgP_{og}·dm⁻³. Na większych głębokościach złoża filtracyjnego zaobserwowano kolejne zmniejszenia stężenia fosforu ogólnego w ściekach. Warstwa ziwoowa prototypu filtra o mniej-

147
5,08 mgPog⋅dm⁻³. Tak więc do właściwej warstwy filtracyjnej dopływały ścieki o niskim stężeniu fosforu ogólnego. Zatem można stwierdzić, że warstwa żwiru spełnia swoją funkcję i przejmuje znaczną część stężenia fosforu ogólnego w ściekach. Poddając analizie działanie warstwy piaskowej prototypu zmodyfikowanego filtru można zauważyć dalsze zmniejszanie stężenia fosforu ogólnego w ściekach. Po przesączeniu ścieków przez warstwę piaskową zanotowano średnie stężenie fosforu ogólnego równe 4,20 mgPog⋅dm⁻³. Na warstwie piaskowej zaobserwowano stosunkowo niewielki spadek stężenia fosforu ogólnego (średnio 0,88 mgPog⋅dm⁻³).

Na rysunku 58 przedstawiono graficzny obraz wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia fosforu ogólnego w ściekach na zadanych głębokościach złoża filtracyjnego.

Rysunek 58. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia fosforu ogólnego w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru

Figure 58. Values of median, quantile (25% and 75%) and the range of non-deviating values for total phosphorus concentration in sewage from individual depths of filter bed of the modified filter prototype

Analizując wartości przedstawionych na rysunku 58 daje się zauważyć wyraźny spadek mediany stężenia fosforu ogólnego wraz z głębokością złoża filtracyjnego. Mediana stężenia fosforu ogólnego w ściekach dopływających do złoża wyniosła 11,65 mgPog⋅dm⁻³, podczas gdy po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 5,00 mgPog⋅dm⁻³ natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 4,07 mgPog⋅dm⁻³.

Na rysunku 59 przedstawiono wartości zmniejszenia fosforu ogólnego w ściekach na założonych głębokościach prototypu filtru.
Skuteczność oczyszczania ścieków...

Rysunek 59. Wartości zmniejszenia stężenia fosforu ogólnego w ściekach na założonych głębokościach złoża filtra

Figure 59. Values of total phosphorus concentration reduction in sewage at the assumed depths of the filter bed

Na podstawie danych z rysunku 59 można zauważyć, że największe zmniejszenie fosforu ogólnego nastąpiło w pierwszych warstwach złoża żwirowego. Po przeszczepieniu ścieków przez warstwę 10 cm warstwę stężenie fosforu ogólnego zostało zmniejszone o 2,66 mgP$_{og}$ dm$^{-3}$, co procentowo daje 34,4% całkowitego zredukowanego stężenia fosforu ogólnego. Redukcja stężenia fosforu ogólnego w większych głębokościach spadała i wyniosła odpowiednio 2,39 mgP$_{og}$ dm$^{-3}$ na 20 cm grubości warstwy filtracyjnej. Na głębokości od 30 do 50 cm zostało zmniejszone stężenie fosforu ogólnego o 1,80 mgP$_{og}$ dm$^{-3}$, co odpowiada 23,3% całkowitego zredukowanego stężenia fosforu ogólnego. Łącznie na warstwie zabezpieczającej (żwirowej) stężenie fosforu ogólnego zostało zmniejszone o 6,86 mgP$_{og}$ dm$^{-3}$, co daje 88,6% całkowitego zredukowanego stężenia fosforu ogólnego. W warstwie piaskowej łącznie w całej warstwie stężenie fosforu ogólnego zostało zmniejszone o 0,88 mgP$_{og}$ dm$^{-3}$, (co daje 11,4% zredukowanego stężenia fosforu ogólnego w całym filtre żwirowo-piaskowym). Fosfor ogólny mógł być zatrzymany razem z zawiesiną ogólną w powierzchniowych warstwach złoża filtracyjnego. Taki układ warstw filtracyjnych pozwala zabezpieczyć właściwą warstwę filtracyjną przed zanieczyszczeniami, które mogłyby przyczynić się do kolmatacji tej warstwy. Według Józwiakowskiego [2012] średnie stężenie fosforu ogólnego w ściekach oczyszczonych z oczyszczalni hydrobotanicznej o przepływie pionowym wyniosło 4,8 mgP$_{og}$ dm$^{-3}$. Jest to wartość porównywalna do uzyskanej w prototypie „F1”.

W dalszej kolejności przedstawiono (rysunek 60) stężenie fosforu ogólnego w ściekach oczyszczonych w ciągu badanego okresu.

149
Rysunek 60. Trend zmian stężenia fosforu ogólnego w ściekach oczyszczonych (po 110 cm) w czasie eksploatacji prototypu filtra „F1”

Figure 60. The change trend of total phosphorus concentration in sewage treated (after 110 cm) during the exploitation of the “F1” filter prototype

Na podstawie danych zawartych na rysunku 60 można zaobserwować wzrost stężenia fosforu ogólnego w ściekach oczyszczonych w filtry „F1” wraz z upływem czasu eksploatacji. Na początku eksploatacji stężenie fosforu kształtowało się poniżej 2 mgP og \(\cdot \) dm\(^{-3}\), podczas gdy na końcu eksperymentu stężenie fosforu ogólnego wyniosło powyżej 5 mgP og \(\cdot \) dm\(^{-3}\). Przyczyną tego stanu może być zmniejszanie się kompleksu sorpcyjnego złoża filtracyjnego w miarę upływu czasu eksploatacji zmodyfikowanego filtra żwirowo-piaskowego „F1”.

Azot amonowy N-NH\(_4\)

Tabela 43. Podstawowe statystyki opisowe stężenia azotu amonowego w ściekach z poszczególnych głębokości zmodyfikowanego filtra źwirowo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Stężenie azotu amonowego w ściekach na zadanych głębokościach filtra źwirowo-piaskowego „F1” [mgN-NH$_4$⋅dm$^{-3}$]</th>
<th>Warstwa źwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>0 cm$^{-1}$ 10 cm$^{-1}$ 30 cm$^{-1}$ 50 cm$^{-1}$ 90 cm$^{-1}$ 110 cm$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>m_m</td>
<td>111,60 98,63 28,93 16,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>52,40 34,80 2,65 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>156,60 138,45 92,90 33,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>25,73 29,04 21,64 10,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,24 0,31 0,65 0,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>35,00 28,00 28,00 34,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* – głębokości mierzone były narastając od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczone odpływające z filtra)

Analizując dane z tabeli 43 można zauważyć, że średnie stężenie azotu amonowego w ściekach dopływających do filtra „F1” wyniosło 109,30 mgN-NH$_4$⋅dm$^{-3}$. Stwierdzono spadek stężenia azotu amonowego już na głębokości 10 cm, gdzie średnie stężenie azotu amonowego wyniosło 95,13 mgN-NH$_4$⋅dm$^{-3}$. Przy większych głębokościach złoża filtracyjnego zaobserwowano kolejne zmniejszenia stężenia azotu amonowego w ściekach. Warstwa źwirowa prototypu filtra o miąższości 50 cm zmniejszyła średnie stężenie azotu amonowego do poziomu 16,77 mgN-NH$_4$⋅dm$^{-3}$. Do właściwej warstwy filtracyjnej dopływały ścieki o stosunkowo niskim stężeniu azotu amonowego. Zatem można stwierdzić, że warstwa źwirowa spełnia swoją funkcję i usuwa znaczną część stężenia azotu amonowego w ściekach. Analizując działanie warstwy piaskowej prototypu zmodyfikowanego filtra można zauważyć dalsze zmniejszanie stężenia azotu amonowego w ściekach. Po przesłanianiu ścieków przez warstwę piaskową określono średnie stężenie azotu amonowego na poziomie 7,86 mgN-NH$_4$⋅dm$^{-3}$. Na warstwie piaskowej zaobserwowano stosunkowo niewielki spadek stężenia azotu amonowego (średnio 8,91 mgN-NH$_4$⋅dm$^{-3}$).

Na rysunku 61 przedstawiono graficzny obraz wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia azotu amonowego w ściekach na zadanych głębokościach złoża filtracyjnego. Na podstawie wartości przedstawionych na rysunku 61 można zauważyć wyraźnie zmniejszające się wartości mediany stężenia azotu amonowego w ściekach przy zadanych głębokościach złoża filtracyjnego. Mediana stężenia azotu amonowego w ściekach dopływających do złoża wynosiła 111,60 mgN-NH$_4$⋅dm$^{-3}$.
podczas gdy po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła jedynie 16,60 mgN-NH₄·dm⁻³, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 6,85 mgN-NH₄·dm⁻³. Należy zauważyć znacznie większy zakres wartości nieodstających w początkowych warstwach filtry. Świadczy to o tym, że ze wzrostem głębokości złoża filtracyjnego następuje wyraźna stabilizacja wartości azotu amonowego.

Rysunek 61. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia azotu amonowego N-NH₄ w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra

Figure 61. Values of median, quantile (25% and 75%) and the range of non-deviating values for ammonium nitrogen N-NH₄ concentration in sewage from individual depths of filter bed of the modified filter prototype

W dalszej kolejności przedstawiono (rysunek 62) zmniejszenie stężenia azotu amonowego na założonych głębokościach prototypu filtra „F1”.

Podając analizie dane z rysunku 62 można zauważyć, że w warstwie od 10 cm do 30 cm złoża żwirowego występowała największa redukcja stężenia azotu amonowego (62,06 mgN-NH₄·dm⁻³). Na głębokości 10 cm stężenie azotu amonowego zostało zmniejszone o 14,17 mgN-NH₄·dm⁻³, co procentowo daje 14,7% całkowitego zredukowanego azotu amonowego. Na głębszych głębokościach złoża nastąpił wyraźnie mniejszy spadek stężenia azotu amonowego. Na głębokości od 30 do 50 cm stężenie azotu amonowego zostało zmniejszone już tylko 16,30 mgN-NH₄·dm⁻³ (16,1% całkowitego zredukowanego azotu amonowego). Łącznie na warstwie zabezpieczającej (żwirowej) stężenie azotu amonowego zostało zmniejszone o 92,53 mgN-NH₄·dm⁻³, co daje 91,3% całkowitego zredukowanego azotu amonowego. W warstwie piaskowej stężenie azotu amonowego zostało zmniejszone o 8,91 mgN-NH₄·dm⁻³ (co daje 8,7% zredukowanego azotu amonowego w całym filtrze żwirowo-piaskowym).
Skuteczność oczyszczania ścieków...

Rysunek 62. Zmniejszenie stężenia azotu amonowego na założonych głębokościach złoża filtu zwirowo-piaskowego „F1”

Figure 62. Values of ammonium nitrogen concentration reduction at the assumed depths of the “F1” gravel and sand filter bed

Azot organiczny \(N_{org} \)

Kolejnym badanym wskaźnikiem był azot organiczny. Łącznie z azotem amonowym stanowił całkowity azot Kjeldaha. W tabeli 44 przedstawiono podstawowe statystyki opisowe stężenia azotu organicznego z poszczególnych etapów oczyszczania prototypu zmodyfikowanego filtu zwirowo-piaskowego.

Analizując zebrane dane (tabela 44) należy stwierdzić, że średnie stężenie azotu organicznego w ściekach dopływających do filtru wyniosło 45,49 mgN\(_{org}\)⋅dm\(^{-3}\). Zaobserwowano znaczny spadek stężenia azotu organicznego już na głębokości 10 cm, gdzie średnie stężenie wyniosło 19,15 mgN\(_{org}\)⋅dm\(^{-3}\), co odpowiada 57,9% redukcji. Na większych głębokościach złoża filtracyjnego zaobserwowano kolejne zmniejszenia stężenia azotu organicznego w ściekach, ale już w znacznie mniejszym stopniu. Warstwa zwirowa prototypu filtru o miąższości 50 cm zmniejszyła średnie stężenie azotu organicznego do poziomu 13,78 mgN\(_{org}\)⋅dm\(^{-3}\). Do właściwej warstwy filtracyjnej dopływały ścieki o stosunkowo niskim stężeniu azotu organicznego. Zatem można stwierdzić, że warstwa zwirowa spełniła swoją funkcję i przejęła znaczną (średnio 31,71 mgN\(_{org}\)⋅dm\(^{-3}\)) część stężenia azotu organicznego. Poddając analizie działanie warstwy piaskowej prototypu zmodyfikowanego filtu można zauważyć dalsze zmniejszanie stężenia azotu organicznego w ściekach. Po przesączeniu ścieków przez warstwę piaskową zanotowano średnie stężenie azotu organicznego równie 5,19 mgN\(_{org}\)⋅dm\(^{-3}\). Na rysunku 63 przedstawiono wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia azotu organicznego w ściekach na zadanych głębokościach złoża filtracyjnego.
Tabela 44. Podstawowe statystyki opisowe stężenia azotu organicznego w ściekach z poszczególnych głębokości zmodyfikowanego filtru źwirowo-piaskowego „F1”

Table 44. Basic descriptive statistics of organic nitrogen concentrations from individual treatment stages in the prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa źwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>45.49</td>
<td>19.15</td>
<td>17.16</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>39.83</td>
<td>18.92</td>
<td>13.09</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>8.04</td>
<td>2.21</td>
<td>4.12</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>96.15</td>
<td>35.54</td>
<td>42.95</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>24.06</td>
<td>7.69</td>
<td>11.20</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0.53</td>
<td>0.40</td>
<td>0.65</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>34.00</td>
<td>28.00</td>
<td>28.00</td>
</tr>
</tbody>
</table>

– głębokości mierzone były narastającco od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczone odpływające z filtra)

Rysunek 63. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia azotu organicznego w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru źwirowo-piaskowego „F1”

Figure 63. Values of median, quantile (25% and 75%) and the range of non-deviating values for organic nitrogen concentration in sewage from individual depths of filter bed of the “F1” prototype of the modified gravel and sand filter

Biorąc pod uwagę wartości przedstawione na rysunku 63 daje się zauważyć spadek mediany stężenia azotu organicznego wraz z głębokością złoża filtracyjnego. Sytuacja ta dotyczy zwłaszcza pierwszych 10 cm głębokości złoża.
Mediana stężenia azotu organicznego w ściekach dopływających do złoża wyniosła 39,83 mgN_{org} \cdot dm^{-3}, podczas gdy po przesączaniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 11,71 mgN_{org} \cdot dm^{-3}, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) medianę wyniosła 4,84 mgN_{org} \cdot dm^{-3}.

Na rysunku 64 przedstawiono zmniejszenie fosforu ogólnego w ściekach na założonych głębokościach prototypu filtru żwirowo-piaskowego „F1”.

Rysunek 64. Zmniejszenie stężenia azotu organicznego w ściekach na założonych głębokościach złoża filtru żwirowo-piaskowego „F1”

Figure 64. Values of organic nitrogen concentration reduction in sewage at the assumed depths of the “F1” gravel and sand filter bed

Na podstawie danych z rysunku 64 można zauważyć, że największe zmniejszenie azotu organicznego nastąpiło w pierwszych 10 cm złoża żwirowego. Po przesączaniu ścieków przez warstwę 10 cm stężenie azotu organicznego zostało zmniejszone o 26,34 mgN_{org} \cdot dm^{-3}, co procentowo daje 65,4% całkowitego zredukowanego azotu organicznego. Intensywność zmniejszania stężenia azotu organicznego na większych głębokościach była znacznie mniejsza. Na głębokości od 30 do 50 cm zostało zmniejszone stężenie azotu organicznego o 1,99 mgN_{org} \cdot dm^{-3}, odpowiada to 4,9% całkowitego zredukowanego azotu organicznego. Łącznie na warstwie zabezpieczającej (żwirowej) stężenie azotu organicznego zostało zmniejszone o 31,71 mgN_{org} \cdot dm^{-3}, co dało 88,6% całkowitego zredukowanego azotu organicznego. W warstwie piaskowej stężenie azotu organicznego łącznie zostało zmniejszone o 8,58 mgN_{org} \cdot dm^{-3} (co daje 21,3% zredukowanego azotu organicznego w całym filtrze żwirowo-piaskowym).
Azot całkowity Kjeldahla \(N_{Kj} \)

Azot całkowity Kjeldahla to azot wchodzący w skład związków amonowych oraz azotowych związków organicznych, które stosunkowo łatwo jest przekształcić w związki amonowe. W tabeli 45 przedstawiono podstawowe statystyki opisowe stężenia azotu całkowitego Kjeldahla z poszczególnych etapów oczyszczania prototypu zmodyfikowanego filtru zwirowo-piaskowego.

Tabela 45. Podstawowe statystyki opisowe wartości azotu całkowitego Kjeldahla \(N_{Kj} \) w ściekach z poszczególnych głębokości zmodyfikowanego filtra zwirowo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa zwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\bar{X})</td>
<td>153,49</td>
<td>114,28</td>
<td>45,33</td>
</tr>
<tr>
<td>Medianna</td>
<td>(m_m)</td>
<td>149,57</td>
<td>115,15</td>
<td>41,68</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>94,44</td>
<td>51,50</td>
<td>21,12</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>200,60</td>
<td>165,90</td>
<td>72,70</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>25,53</td>
<td>30,49</td>
<td>13,68</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(V zm)</td>
<td>0,17</td>
<td>0,27</td>
<td>0,30</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>35</td>
<td>28</td>
<td>26</td>
</tr>
</tbody>
</table>

Poddając analizie dane zebrane w tabeli 45 można zauważyć, że średnie stężenie azotu Kjeldahla w ściekach dopływających do filtra „F1” wynosiło 153,49 mg\(N_{Kj} \)⋅dm\(^{-3}\). Można zaobserwować spadek stężenia azotu Kjeldahla już na głębokości 10 cm, gdzie średnie stężenie wynosiło 114,28 mg\(N_{Kj} \)⋅dm\(^{-3}\), co odpowiada 25,5% redukcji. Na kolejnej badanej głębokości (30 cm) zaobserwowano obniżenie średniej wartości azotu Kjeldahla do poziomu 50,23 mg\(N_{Kj} \)⋅dm\(^{-3}\). Na większych głębokościach złoża filtracyjnego zaobserwowano kolejne zmniejszenia stężenia azotu Kjeldahla w ściekach, ale już w znacznie mniejszym stopniu. Warstwa zwirowa prototypu filtra o miąższości 50 cm zmniejszyła średnie stężenie azotu Kjeldahla do poziomu 30,55 mg\(N_{Kj} \)⋅dm\(^{-3}\). Do właściwej warstwy filtracyjnej dopływały ścieki o stosunkowo niskim stężeniu azotu Kjeldahla. Stwierdzić można, że warstwa zwirowa spełniła swoją funkcję i przejęła znaczną (średnio 122,94 mg\(N_{Kj} \)⋅dm\(^{-3}\)) część stężenia azotu Kjeldahla. Poddając analizie działanie warstwy piaskowej prototypu zmodyfikowanego filtra można zauważyć dalsze zmniejszanie stężenia azotu Kjeldahla w ściekach. Po przeszczepieniu ścieków przez warstwę piaskową zanotowano średnie stężenie azotu Kjeldahla na poziomie 13,29 mg\(N_{Kj} \)⋅dm\(^{-3}\).
Na rysunku 65 przedstawiono wykres przedstawiający graficzny obraz wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia azotu Kjeldahla w ściekach na zadanych głębokościach złoża filtracyjnego.

Rysunek 65. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia azotu Kjeldahla w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra ziwo-ro-piaskowego „F1”

Figure 65. Values of median, quantile (25% and 75%) and the range of non-deviating values for Kjeldahl nitrogen concentration in sewage from individual depths of filter bed of the “F1” prototype of the modified gravel and sand filter

Analizując wartości przedstawione na rysunku 65 daje się zauważyć spadek mediany stężenia azotu Kjeldahla wraz z głębokością złoża filtracyjnego. Sytuacja ta dotyczy zwłaszcza pierwszych 30 cm głębokości złoża. Mediana stężenia azotu Kjeldahla w ściekach dopływających do złoża wyniosła 149,57 mgN\text{KJ}\cdot\text{dm}^{-3}, podczas gdy po przeszczepieniu ścieków przez warstwę ziwo new (po 50 cm) wyniosła 31,47 mgN\text{KJ}\cdot\text{dm}^{-3} a dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 12,10 mgN\text{KJ}\cdot\text{dm}^{-3}.

Na rysunku 66 przedstawiono zmniejszenie azotu Kjeldahla w ściekach na założonych głębokościach prototypu filtra ziwo-ro-piaskowego „F1”.

Analizując dane z rysunku 66 można zauważyć, że największe zmniejszenie azotu Kjeldahla nastąpiło w pierwszych 30 cm złoża ziwoowego. Po przeszczerzeniu ścieków przez 10 cm warstwę stężenie azotu Kjeldahla zostało zmniejszone o 39,21 mgN\text{KJ}\cdot\text{dm}^{-3} co procentowo daje 28,0% całkowitego zredukowanego azotu Kjeldahla. Na głębokości od 30 do 50 cm zostało zmniejszone stężenie azotu Kjeldahla o 68,95 mgN\text{KJ}\cdot\text{dm}^{-3}, odpowiada to 49,2% całkowitego zredukowanego azotu Kjeldahla. Łącznie na warstwie zabezpieczającej (ziwoowej)
stężenie azotu Kjeldahla zostało zmniejszone o 122,94 mgN$_{KJ}$·dm$^{-3}$, co dało 87,7% całkowitego zredukowanego azotu Kjeldahla. W warstwie piaskowej stężenie azotu Kjeldahla łącznie zostało zmniejszone o 17,26 mgN$_{KJ}$·dm$^{-3}$ (co daje 12,3% zredukowanego azotu Kjeldahla w całym filtrze żwirowo-piaskowym).

![Rysunek 66. Zmniejszenie stężenia azotu Kjeldahla w ściekach na założonych głębokościach złoża filtra żwirowo-piaskowego „F1”](image)

Figure 66. Values of Kjeldahl nitrogen concentration reduction in sewage at the assumed depths of the “F1” gravel and sand filter bed

Azot azotynowy N-NO$_2$

Azot azotynowy N-NO$_2$ jest to krótkotrwała forma azotu występującą w ściekach w niewielkich stężeniach. Łącznie z azotem azotynowym stanowią tlenowe formy azotu. Według innych autorów [Józwiakowski 2012] stężenie azotu azotynowego w ściekach wstępnie oczyszczenych po osadniku gnilnym jest niskie i nie przekracza 1,0 mgN-NO$_2$·dm$^{-3}$. Pawęska i Kuczewski [2008] podają, że łączne stężenie N-NO$_2$ i N-NO$_3$ wyniosło 0,62 mg·dm$^{-3}$. Według badań Niżyńskiej [2004] eksploatacja nieszczelnych szamb może być przyczyną podwyższonego stężenia azotanów w wodach podziemnych. W tabeli 46 przedstawiono podstawowe statystyki opisowe stężenia azotu azotynowego z poszczególnych etapów oczyszczania prototypu zmodyfikowanego filtra żwirowo-piaskowego.
Tabela 46. Podstawowe statystyki opisowe wartości azotu azotynowego N-NO₂ w ściekach z poszczególnych głębokości zmodyfikowanego filtra żwirowo-piaskowego „F1”

Table 46. Basic descriptive statistics of nitrite nitrogen N-NO₂ concentrations from individual treatment stages in the prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępné oczyszczone</th>
<th>Warstwa żwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\bar{x})</td>
<td>0,01 0,10 0,66 0,58 0,53 0,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediana</td>
<td>(m_a)</td>
<td>0,01 0,06 0,57 0,51 0,46 0,36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimalna</td>
<td>(\text{Min})</td>
<td>0,01 0,00 0,10 0,01 0,09 0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksymalna</td>
<td>(\text{Max})</td>
<td>0,01 0,31 1,50 1,66 1,58 0,98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>0,00 0,11 0,44 0,45 0,38 0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(V_{zm})</td>
<td>0,00 1,10 0,66 0,77 0,72 0,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>(N)</td>
<td>35 28 28 34 27 35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(1\) – głębokości mierzone były narastające od 0 cm (ścieki dopływające do filtra) do 110 cm (ścieki oczyszczone odpływające z filtra)

Biorąc pod uwagę zebrane dane (tabela 46) można stwierdzić, że średnie stężenie azotu azotynowego w ściekach dopływających do filtra było bardzo niskie i wyniosło 0,01 mgN-NO₂⋅dm⁻³. Na kolejnych głębokościach złoża filtracyjnego zaobserwowano większe wartości stężenia azotu azotynowego w ściekach. Po przesączeniu ścieków przez warstwę żwirową o miąższości 50 cm stwierdzono średnią wartość azotu azotynowego wynoszącą 0,58 mgN-NO₂⋅dm⁻³. Po przesączeniu ścieków przez warstwę piaskową zanotowano średnie stężenie azotu azotynowego równe 0,37 mgN-NO₂⋅dm⁻³.

Na rysunku 67 przedstawiono wykres ramka – wąs przedstawiający graficzny obraz wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia azotu azotynowego N-NO₂ w ściekach na zadanych głębokościach złoża filtracyjnego.

Na podstawie wartości przedstawionych na rysunku 67 daje się zauważyć wzrost mediana stężenia azotu azotynowego w początkowych głębokościach złoża filtracyjnego (do głębokości 30 cm). Mediana stężenia azotu azotynowego w ściekach po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 0,58 mgN-NO₂⋅dm⁻³, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wynosiła 0,36 mgN-NO₂⋅dm⁻³.
Kolejnym badanym wskaźnikiem był azot azotanowy N-NO₃. W tabeli 47 przedstawiono podstawowe statystyki opisowe stężenia azotu azotanowego z poszczególnych etapów oczyszczania prototypu zmodyfikowanego filtru żwirowo-piaskowego.

Poddając analizie zebrane dane (tabela 47) można stwierdzić, że średnie stężenie azotu azotanowego w ściekach dopływających do filtry „F1” wyniosło 1,82 mgN-NO₃⋅dm⁻³. Świadczy to o warunkach beztlenuowych jakie panują w osadniku gnilnym. Można zaobserwować wzrost stężenia azotu azotanowego, zwłaszcza na głębokości 30 cm, gdzie średnie stężenie wyniosło 29,71 mgN-NO₃⋅dm⁻³. Na kolejnej badanej głębokości (50 cm) zaobserwowano wzrost średniej wartości azotu azotanowego do poziomu 30,03 mgN-NO₃⋅dm⁻³. Poddając analizie działanie warstwy piaskowej prototypu zmodyfikowanego filtry można zauważyć dalsze zwiększanie stężenia azotu azotanowego w ściekach. Po przecięciu ścieków przez warstwę piaskową zanotowano średnie stężenie azotu azotanowego na poziomie 47,65 mgN-NO₃⋅dm⁻³.

Rysunek 68 przedstawia wartości mediany i kwantyli 25% i 75% wraz z zakresem wartości nieodstających dla stężenia azotu azotanowego N-NO₃ w ściekach na zadanych głębokościach złoża filtracyjnego.
Tabela 47. Podstawowe statystyki opisowe wartości azotu azotanowego N-NO₃ w ściekach z poszczególnych głębokości zmodyfikowanego filtru źwirowo-piaskowego „F1”

Table 47. Basic descriptive statistics of nitrate nitrogen N-NO₃ concentrations from individual treatment stages in the prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępné oczyszczone</th>
<th>Warstwa źwirowa</th>
<th>Własniwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>1,82</td>
<td>3,72</td>
<td>29,71</td>
</tr>
<tr>
<td>Median</td>
<td>m_c</td>
<td>1,69</td>
<td>3,18</td>
<td>27,32</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>0,35</td>
<td>0,89</td>
<td>11,14</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>3,93</td>
<td>9,34</td>
<td>62,00</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>0,75</td>
<td>2,30</td>
<td>13,07</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,41</td>
<td>0,62</td>
<td>0,44</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>35,00</td>
<td>28,00</td>
<td>28,00</td>
</tr>
</tbody>
</table>

*) – głębokości mierzone były narastającą od 0 cm (ścieki dopływające do filtru) do 110 cm (ścieki oczyszczone odpływające z filtru)

Rysunek 68. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia azotu azotanowego N-NO₃ w ściekach z poszczególnych głębokości złóż filtracyjnego prototypu zmodyfikowanego filtru źwirowo-piaskowego „F1”

Figure 68. Values of median, quantile (25% and 75%) and the range of non-deviating values for nitrate nitrogen N-NO₃ concentration in sewage from individual depths of filter bed of the “F1” prototype of the modified gravel and sand filter
Na podstawie przeprowadzonych badań na rysunku 68 stwierdzono wzrost stężenia azotu azotanowego na głębokości 30 cm złoża żwirowego. Stężenie N-NO₃ wzrastało na kolejnych głębokościach do wartości 47,65 mgN-NO₃·dm⁻³ przy głębokości 110 cm. Świadczy to o intensywnie zachodzących procesach przemiany azotu amonowego do azotu azotanowego w warunkach tlenowych. Można sądzić, że w złożu panują korzystne warunki tlenowe sprzyjające prze- mianom form azotu w procesie nitryfikacji.

Na rysunku 69 przedstawiono tendencje zmian stężenia azotu azotanowego w czasie eksploatacji zmodyfikowanego złoża żwirowo-piaskowego „F1”.

Rysunek 69. Tendencja zmian stężenia N-NO₃ w ściekach oczyszczonych w czasie eksploatacji oczyszczalni

Figure 69. The change trend of N-NO₃ concentration in sewage treated during the treatment plant operation

Biorąc pod uwagę czas działania prototypu zmodyfikowanego filtru żwirowo-piaskowego daje się zauważyć zmniejszające się wartości azotu azotanowego. Wyraźne obniżenie stężenia N-NO₃ zanotowano od 138 doby działania prototypu „F1”, gdzie uzyskano stężenie azotu azotanowego na poziomie 30,64 mgN-NO₃·dm⁻³. Dopasowano linię trendu o typie logarytmicznym. Współczynnik korelacji wyniósł Rₓᵧ=0,88 i według skali Stanisza [1998] była to korelacja bardzo wysoka. Współczynnik determinacji R² wyniósł 0,7692, co oznacza, że przedstawiony model regresji opisuje blisko 77% obserwacji.

Azot ogólny Nₒg

Ostatnim badanym wskaźnikiem był azot ogólny, który podobnie jak fosfor ogólny stanowi niebezpieczeństwo eutrofizacji wód powierzchniowych.
Skuteczność oczyszczania ścieków...

Tabela 48. Podstawowe statystyki opisowe wartości azotu ogólnego N_{og} w ściekach z poszczególnych głębokości zmodyfikowanego filtru żwirowo-piaskowego „F1”

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Ścieki wstępnie oczyszczone</th>
<th>Warstwa żwirowa</th>
<th>Właściwa warstwa filtracyjna (piaskowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\bar{X})</td>
<td>155,31</td>
<td>118,10</td>
<td>78,97</td>
</tr>
<tr>
<td>Mediana</td>
<td>(m_e)</td>
<td>151,57</td>
<td>117,98</td>
<td>72,53</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>95,99</td>
<td>56,25</td>
<td>42,14</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>202,28</td>
<td>168,72</td>
<td>120,00</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>25,62</td>
<td>29,72</td>
<td>22,71</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(V_{zm})</td>
<td>0,16</td>
<td>0,25</td>
<td>0,29</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>35</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

1) – głębokości mierzone były narastając od 0 cm (ścieki dopływające do filtru) do 110 cm (ścieki oczyszczone odpływające z filtru)

Na podstawie przeprowadzonych badań można stwierdzić, że średnie stężenie azotu ogólnego w ściekach wstępnie oczyszczonych dopływających do filtru wyniosło 155,31 mgN_{og} \cdot dm^{-3}, co jest wartością wysoką biorąc pod uwagę wyniki badań prezentowanych przez innych autorów [USEPA 1992, Schudela i Bollera 1989]. Według badań przeprowadzonych we Francji [Asenizacja indywidualna 1982], zakres stężenia azotu ogólnego w ściekach po osadniku gnili-
nym wyniósł od 31 do 130 mgN og dm⁻³. Przyczyną wysokich wartości azotu ogólnego mogło być zastosowanie jednokomorowego osadnika gnilnego. Wartości wskaźników zanieczyszczenia ścieków z odpływu z tego typu urządzenia są wyższe niż z urządzeń wielokomorowych, czego dowodzą inne badania [Grygorczuk 2011].

Analizując wartości z tabeli 48 można odczytać wyraźny spadek wartości azotu ogólnego na poszczególnych głębokościach zmodyfikowanego filtra zwiro-rowo-piażkowego. Po przeszczepieniu ścieków przez warstwę żwirową zaobserwowano zmniejszenie wartość tego wskaźnika. Przy głębokości 10 cm średnia wartość azotu ogólnego wyniosła 118,10 mgN og dm⁻³, a dla głębokości 50 cm 61,8 mgN og dm⁻³. Należy zatem podkreślić, że średnio na warstwie żwirowej stężenie azotu ogólnego zostało zmniejszone o 93,51 mgN og dm⁻³. Do właściwie warstwy filtracyjnej (warstwa piasku) dopływały ścieki o znacznie obniżonej średniej wartości azotu ogólnego (61,8 mgN og dm⁻³). Poddając analizie działanie warstwy piaskowej nastąpiło nieznaczne zmniejszenie stężenia azotu ogólnego z wartości 61,8 mgN og dm⁻³ do 60,94 mgN og dm⁻³. Powodem tego stanu był wzrost w głębszych warstwach złoża stężenia azotu azotanowego NO₃, który jest częścią składową azotu ogólnego.

Rysunek 70. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla stężenia azotu ogólnego w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru żwirowo-piażkowego „F1”

Figure 70. Values of median, quantile (25% and 75%) and the range of non-deviating values for total nitrogen concentration in sewage from individual depths of filter bed of the “F1” prototype of the modified gravel and sand filter
Skuteczność oczyszczania ścieków...

Biorąc pod uwagę wartości przedstawione na rysunku 70 daje się zauważyć spadek mediany stężenia azotu ogólnego wraz z głębokością złoża filtracyjnego. Sytuacja ta dotyczy zwłaszcza pierwszych 50 cm głębokości złoża. Mediany stężenia azotu ogólnego w ściekach dopływających do złoża wynosiły 151,57 mgN\textsubscript{og}-dm3, podczas gdy po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 58,83 mgN\textsubscript{og}-dm3, natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediany wyniosła 60,94 mgN\textsubscript{og}-dm3.

Na rysunku 71 przedstawiono zmniejszenie azotu ogólnego w ściekach na założonych głębokościach prototypu filtra.

Na podstawie danych z rysunku 71 można zauważyć, że największe zmniejszenie azotu ogólnego nastąpiło w pierwszych warstwach złoża żwirowego. Po przesączeniu ścieków przez warstwę 10 cm stężenie azotu ogólnego zostało zmniejszone o 37,21 mgN\textsubscript{og}-dm3, co procentowo daje 39,4% całkowitego zredukowanego stężenia azotu ogólnego. Na głębokości od 10 do 30 cm zostało zmniejszone stężenie azotu ogólnego o 39,14 mgN\textsubscript{og}-dm3, co odpowiada 41,5% całkowitego zredukowanego azotu ogólnego. Łącznie na warstwie zabezpieczającej (żwirowej) stężenie azotu ogólnego zostało zmniejszone o 93,52 mgN\textsubscript{og}-dm3. Znacznie wolniej zmniejszane było stężenie azotu ogólnego w warstwie piaskowej. Na ten stan miała wpływ wzrastająca ilość azotu azotanowego NO\textsubscript{3} w głębszych warstwach złoża piaskowego.

Rysunek 71. Zmniejszenie stężenia azotu ogólnego w ściekach na założonych głębokościach złoża filtra żwirowo-piaskowego „F1”

Figure 71. Values of total nitrogen concentration reduction in sewage at the assumed depths of the “F1” gravel and sand filter bed

165
6.2.4. Miąższość warstwy filtracyjnej jako czynnik różnicujący wartość wskaźników zanieczyszczenia ścieków

W rozdziale tym zbadano statystycznie, czy różnice pomiędzy średniimi stężeniami badanych wskaźników w ściekach oczyszczonych z poszczególnych głębokości złoża filtracyjnego są istotne. Cel ten osiągnięto poprzez przeprowadzenie analizy jednoczynnikowej wariancji. W tabeli 49 przedstawiono wyniki testu Shapiro-Wilka normalności rozkładu wartości wskaźników zanieczyszczeń w ściekach.

Tabela 49. Wyniki testu Shapiro-Wilka normalności rozkładu wartości wskaźników zanieczyszczeń w ściekach

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>Głębokość poboru ścieków ze złoża prototypu filtru „F1” [cm]</th>
<th>0</th>
<th>10</th>
<th>30</th>
<th>50</th>
<th>90</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChZT_Cr</td>
<td>S-W</td>
<td>0,958</td>
<td>0,956</td>
<td>0,926</td>
<td>0,966</td>
<td>0,925</td>
<td>0,959</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,197</td>
<td>0,286</td>
<td>0,053</td>
<td>0,390</td>
<td>0,050</td>
<td>0,215</td>
</tr>
<tr>
<td>BZT3</td>
<td>S-W</td>
<td>0,943</td>
<td>0,964</td>
<td>0,948</td>
<td>0,938</td>
<td>0,962</td>
<td>0,938</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,074</td>
<td>0,438</td>
<td>0,180</td>
<td>0,066</td>
<td>0,430</td>
<td>0,061</td>
</tr>
<tr>
<td>Tlen rozpuszczony</td>
<td>S-W</td>
<td>0,902</td>
<td>0,791</td>
<td>0,947</td>
<td>0,969</td>
<td>0,925</td>
<td>0,942</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,008</td>
<td>0,007</td>
<td>0,169</td>
<td>0,445</td>
<td>0,052</td>
<td>0,064</td>
</tr>
<tr>
<td>Zawiesina ogólna</td>
<td>S-W</td>
<td>0,978</td>
<td>0,946</td>
<td>0,969</td>
<td>0,965</td>
<td>0,981</td>
<td>0,981</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,774</td>
<td>0,092</td>
<td>0,599</td>
<td>0,398</td>
<td>0,876</td>
<td>0,808</td>
</tr>
<tr>
<td>Fosfor ogólny</td>
<td>S-W</td>
<td>0,972</td>
<td>0,973</td>
<td>0,927</td>
<td>0,968</td>
<td>0,977</td>
<td>0,978</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,563</td>
<td>0,678</td>
<td>0,055</td>
<td>0,415</td>
<td>0,798</td>
<td>0,700</td>
</tr>
<tr>
<td>Azot amonowy</td>
<td>S-W</td>
<td>0,970</td>
<td>0,937</td>
<td>0,938</td>
<td>0,946</td>
<td>0,974</td>
<td>0,949</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,433</td>
<td>0,095</td>
<td>0,096</td>
<td>0,092</td>
<td>0,714</td>
<td>0,108</td>
</tr>
<tr>
<td>Azot organiczny</td>
<td>S-W</td>
<td>0,947</td>
<td>0,989</td>
<td>0,885</td>
<td>0,899</td>
<td>0,883</td>
<td>0,955</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,103</td>
<td>0,988</td>
<td>0,005</td>
<td>0,004</td>
<td>0,005</td>
<td>0,168</td>
</tr>
<tr>
<td>Azot całkowity Kjeldahla</td>
<td>S-W</td>
<td>0,977</td>
<td>0,961</td>
<td>0,926</td>
<td>0,979</td>
<td>0,955</td>
<td>0,925</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,652</td>
<td>0,366</td>
<td>0,054</td>
<td>0,741</td>
<td>0,170</td>
<td>0,052</td>
</tr>
<tr>
<td>Azot azotynowy NO2</td>
<td>S-W</td>
<td>-</td>
<td>0,762</td>
<td>0,902</td>
<td>0,891</td>
<td>0,906</td>
<td>0,950</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>-</td>
<td>0,000</td>
<td>0,013</td>
<td>0,003</td>
<td>0,019</td>
<td>0,114</td>
</tr>
<tr>
<td>Azot azotanowy NO3</td>
<td>S-W</td>
<td>0,881</td>
<td>0,895</td>
<td>0,925</td>
<td>0,947</td>
<td>0,851</td>
<td>0,782</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,001</td>
<td>0,009</td>
<td>0,047</td>
<td>0,097</td>
<td>0,001</td>
<td>0,000</td>
</tr>
<tr>
<td>Azot ogólny</td>
<td>S-W</td>
<td>0,975</td>
<td>0,967</td>
<td>0,935</td>
<td>0,934</td>
<td>0,925</td>
<td>0,926</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0,640</td>
<td>0,512</td>
<td>0,057</td>
<td>0,055</td>
<td>0,053</td>
<td>0,054</td>
</tr>
</tbody>
</table>

Objaśnienia: S-W wartość testu Shapiro-Wilka, p-prawdopodobieństwo testowe p
Kolorem czerwonym zaznaczono wskaźniki, które nie podlegają rozkładowi normalnemu

W tabeli 49 zaprezentowano wyniki testu Shapiro-Wilka normalności rozkładu wartości badanych wskaźników zanieczyszczeń w ściekach oczyszczonych, odpływających z analizowanych obiektów. W przypadku, gdy prawdopodobieństwo testowe p jest mniejsze od poziomu istotności α = 0,05, należy
Skuteczność oczyszczania ścieków...

odrzucić hipotezę zerową o normalności rozkładu, (świadcz to o tym, że dana zmienna nie spełnia podlega rozkładowi normalnemu). Z obliczeń wynika, że sytuacja taka ma miejsce w przypadku: tlenu rozpuszczonego, azotu organicznego, N-NO₃, N-NO₂. Wymogi analizy ANOVA mówią, że wszystkie porównywane zmienne muszą mieć rozkład normalny, dlatego też nie przeprowadzono analizy ANOVA dla azotu organicznego, azotynowego i azotanowego. Próbowano co prawda, doprowadzić do normalności te wskaźniki, ale wiedza o tym, że zbyt duża liczba danych.

Analizie poddano takie wskaźniki zanieczyszczenia ścieków jak: BZT₅, ChZTCr, zawiesina ogólna, fosfor ogólny, azot amonowy, azot ogólny.

W analizie wariancji przyjęto hipotezy badawcze postaci:

\[H₀: μ₁ = μ₂ = μ₃ = \ldots = μₙ \]
\[H¹: μ₁ ≠ μ₂ ≠ μ₃ \ldots ≠ μₙ \]

Według hipotezy zerowej średnie wartości badanego wskaźnika w ściekach oczyszczonych z poszczególnych głębokości złoża filtracyjnego są takie same /nie różnią się istotnie od siebie/.

Hipoteza alternatywna zakłada istotne różnice pomiędzy średnimi wartościami badanego wskaźnika w ściekach oczyszczonych z poszczególnych głębokości zmodyfikowanego złoża filtracyjnego.

Poniżej przedstawiono wyniki istotności różnic wariancji dla badanych wskaźników w ściekach pobieranych z zadańych głębokości złoża filtracyjnego.

Tabela 50. Wyniki istotności różnic wariancji dla badanych wskaźników

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>SS-Effect</th>
<th>df</th>
<th>MS</th>
<th>SS-Effect error</th>
<th>Df error</th>
<th>MS error</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZT₅</td>
<td>11541756</td>
<td>5</td>
<td>2308351</td>
<td>1923643</td>
<td>179</td>
<td>10747</td>
<td>214,798</td>
<td>0,00</td>
</tr>
<tr>
<td>ChZTCr</td>
<td>22183033</td>
<td>5</td>
<td>4437007</td>
<td>2314773</td>
<td>179</td>
<td>12932</td>
<td>343,111</td>
<td>0,00</td>
</tr>
<tr>
<td>Zawiesina ogólna</td>
<td>1898358</td>
<td>5</td>
<td>379672</td>
<td>539645</td>
<td>168</td>
<td>3212</td>
<td>118,197</td>
<td>0,00</td>
</tr>
<tr>
<td>Fosfor ogólny</td>
<td>1501,888</td>
<td>5</td>
<td>300,378</td>
<td>928,394</td>
<td>177</td>
<td>5,245</td>
<td>57,268</td>
<td>0,00</td>
</tr>
<tr>
<td>Azot amonowy</td>
<td>323909,3</td>
<td>5</td>
<td>64781,9</td>
<td>63454,6</td>
<td>181</td>
<td>350,6</td>
<td>184,786</td>
<td>0,00</td>
</tr>
<tr>
<td>Azot całkowity Kiejdala</td>
<td>553841,3</td>
<td>5</td>
<td>110768,3</td>
<td>57860,6</td>
<td>182</td>
<td>317,9</td>
<td>348,421</td>
<td>0,00</td>
</tr>
<tr>
<td>Azot ogólny</td>
<td>248817</td>
<td>5</td>
<td>49763</td>
<td>98561</td>
<td>181</td>
<td>545</td>
<td>91,387</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Objaśnienie oznaczeń: SS-Effect – suma kwadratów (suma kwadratów odchyleń od średniej), df – liczba stopni swobody, MS –średnia suma kwadratów, F- wartość empiryczna sprawdzianu testu, p – prawdopodobieństwo testowe (0,05).

Z powyższej tabeli wynika, że istotne różnice pomiędzy variancjami występują w przypadku takich wskaźników jak: BZT₅, ChZTCr, zawiesina ogólna. Wyniki te sugerują, że średnica złoża filtracyjnego istotnie wpływa na uzyskane
stężenia badanych wskaźników w ściekach oczyszczonych. Świadczą o tym wartości prawdopodobieństw testowych nieprzekraczające wartości krytycznej 0,05.

W przypadku związków biogennych nie obserwuje się istotnych różnic między wariancjami (p>0,05). Świadzy to o tym, że azot ogólny i fosforany są zależne od innych czynników niż uziarnienie złoża filtracyjnego.

Wskaźnik BZT₅
W dalszej kolejności przeprowadzono analizę wariancji w celu określenia, czy miąższości złoża filtracyjnego jest czynnikiem istotnie różnicującym wartość BZT₅ w ściekach oczyszczonych, odpływających z poszczególnych głębokości złoża żwirowo-piaskowego.

W tabeli 51 przedstawiono wartości prawdopodobieństw testowych Tu-kaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości BZT₅ w ściekach oczyszczonych.

Tabela 51. Wartość prawdopodobieństwa testowego (Tu-kaya) istotności różnic pomiędzy parą średnich wartości BZT₅ w ściekach oczyszczonych Table 51. Probability value (Tukay) of significance of differences between pairs of mean BOD₅ values in treated sewage

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>[0] Średnia wartość BZT₅</th>
<th>Średnia wartość BZT₅</th>
<th>[10] Średnia wartość BZT₅</th>
<th>Średnia wartość BZT₅</th>
<th>[30] Średnia wartość BZT₅</th>
<th>Średnia wartość BZT₅</th>
<th>[50] Średnia wartość BZT₅</th>
<th>Średnia wartość BZT₅</th>
<th>[90] Średnia wartość BZT₅</th>
<th>Średnia wartość BZT₅</th>
<th>[110] Średnia wartość BZT₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>709,86 mgO₂.dm⁻³</td>
<td>297,32 mgO₂.dm⁻³</td>
<td>133,61 mgO₂.dm⁻³</td>
<td>92,12 mgO₂.dm⁻³</td>
<td>43,46 mgO₂.dm⁻³</td>
<td>18,40 mgO₂.dm⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,666000</td>
<td>0,021264</td>
<td>0,000471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,666000</td>
<td>0,536798</td>
<td>0,044767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,021264</td>
<td>0,536798</td>
<td>-</td>
<td>0,953289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000471</td>
<td>0,044767</td>
<td>0,953289</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich wartości BZT₅ w ściekach oczyszczonych. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości BZT₅ w ściekach oczyszczonych. Sytuacja ta nie dotyczy zależności pomiędzy średnią wartością BZT₅ w ściekach oczyszczonych dla głębokości: 30 cm i 50 cm, 50cm i 90 cm oraz 90 cm i 110 cm.
Wskaźnik ChZT_{Cr}

W tabeli 52 wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości ChZT_{Cr} w ściekach oczyszczonych.

Tabela 52. Wartości prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości ChZT_{Cr} w ściekach oczyszczonych

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>Średnia wartość ChZT<sub>Cr</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1014,70 mgO<sub>2</sub> dm<sup>-3</sup></td>
<td>464,46 mgO<sub>2</sub> dm<sup>-3</sup></td>
<td>203,51 mgO<sub>2</sub> dm<sup>-3</sup></td>
<td>157,33 mgO<sub>2</sub> dm<sup>-3</sup></td>
<td>82,89 mgO<sub>2</sub> dm<sup>-3</sup></td>
</tr>
<tr>
<td>10</td>
<td>0,000020</td>
<td>-</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>30</td>
<td>0,000020</td>
<td>0,000020</td>
<td>-</td>
<td>0,651808</td>
<td>0,001372</td>
</tr>
<tr>
<td>50</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,651808</td>
<td>-</td>
<td>0,154254</td>
</tr>
<tr>
<td>90</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,001372</td>
<td>0,154254</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000032</td>
<td>0,002986</td>
<td>0,936314</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05

Analizując dane z tabeli 52 należy stwierdzić, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości ChZT_{Cr} w ściekach oczyszczonych. Sytuacja ta podobnie jak w przypadku wskaźnika BZT₅ nie dotyczy zależności pomiędzy średnią wartością BZT₅ w ściekach oczyszczonych dla głębokości: 30 i 50 cm, 50 i 90 cm oraz 90 i 110 cm. Świadczyć to może o tym, że w warstwach początkowych (do 30 cm procesy tlenowe zachodzą najintensywniej).

Zawiesina ogólna

W tabeli 53 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości zawiesiny ogólnej w ściekach oczyszczonych.

Poddając analizie dane zawarte w tabeli 53 można zauważyć, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości zawiesiny ogólnej w ściekach oczyszczonych.
ogólnej w ściekach oczyszczonych. Sytuacja ta podobnie jak w przypadku wskaźnika ChZTCr nie dotyczy zależności pomiędzy średnią wartością zawiesiny ogólnej w ściekach oczyszczonych dla głębokości: 30 i 50 cm, 50 i 90 cm, 90 i 110 cm oraz 50 i 110 cm. Świadczyć to może o tym, że w warstwach początkowych (do 30 cm) zawiesina ogólna jest usuwana w największym stopniu.

Tabela 53. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości zawiesiny ogólnej w ściekach oczyszczonych

Table 53. Probability value (Tukay) of significance of differences between pairs of mean total suspended solids’ values in treated sewage

<table>
<thead>
<tr>
<th>Główkość [cm]</th>
<th>Średnia wartość zawiesiny ogólnej mg dm$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>314,93</td>
<td>177,26</td>
<td>82,44</td>
<td>43,17</td>
<td>30,89</td>
<td>27,11</td>
</tr>
<tr>
<td>[0]</td>
<td>-</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[10]</td>
<td>0,000020</td>
<td>-</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[30]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>-</td>
<td>0,124621</td>
<td>0,013323</td>
<td>0,005790</td>
</tr>
<tr>
<td>[50]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,124621</td>
<td>-</td>
<td>0,968248</td>
<td>0,875088</td>
</tr>
<tr>
<td>[90]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,013323</td>
<td>0,968248</td>
<td>-</td>
<td>0,999880</td>
</tr>
<tr>
<td>[110]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,005790</td>
<td>0,875088</td>
<td>0,999880</td>
<td>-</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05

Fosfor ogólny

W dalszej kolejności w tabeli 54 wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości fosforu ogólnego w ściekach oczyszczonych.

Na podstawie danych zawartych w tabeli 54 można zauważyć, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości fosforu ogólnego w ściekach oczyszczonych. Podobnie jak w przypadku wcześniejszych wskaźników również w przypadku fosforu ogólnego nie dotyczy zależności pomiędzy średnią wartością fosforu ogólnego w ściekach oczyszczonych dla głębokości: 50 i 90 cm, 50 i 110 cm oraz 90 i 110 cm. Świadczyć to o tym, że w warstwach początkowych (do 50 cm) fosfor ogólny jest usuwany w największym stopniu.
Tabela 54. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości fosforu ogólnego w ściekach oczyszczonych

Table 54. Probability value (Tukay) of significance of differences between pairs of mean total phosphorus values in treated sewage

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>[0]</th>
<th>[10]</th>
<th>[30]</th>
<th>[50]</th>
<th>[90]</th>
<th>[110]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia wartość fosforu ogólnego</td>
<td>11,40</td>
<td>9,28</td>
<td>6,88</td>
<td>5,08</td>
<td>4,40</td>
<td>4,20</td>
</tr>
<tr>
<td>mgPo₉ dm⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0]</td>
<td>0,000297</td>
<td>-</td>
<td>0,000202</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[10]</td>
<td>0,000020</td>
<td>0,001714</td>
<td>-</td>
<td>0,000094</td>
<td>0,000182</td>
<td></td>
</tr>
<tr>
<td>[30]</td>
<td>0,000020</td>
<td>0,001714</td>
<td>-</td>
<td>0,038370</td>
<td>0,000094</td>
<td>0,000182</td>
</tr>
<tr>
<td>[50]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,038370</td>
<td>-</td>
<td>0,881701</td>
<td>0,603772</td>
</tr>
<tr>
<td>[90]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000949</td>
<td>0,881701</td>
<td>-</td>
<td>0,999562</td>
</tr>
<tr>
<td>[110]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000182</td>
<td>0,603772</td>
<td>0,999562</td>
<td>-</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05.

Azot amonowy N-NH₄

W dalszej kolejności w tabeli 55 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości azotu amonowego N-NH₄ w ściekach oczyszczonych.

W przypadku azotu amonowego (tabela 55) zaobserwowano, że statystycznie różnice pomiędzy średnimi stężeniami azotu amonowego w początkowych głębokościach złoża są nie istotne. Podobnie jest w przypadku najniższych głębokości filtru (90 i 110 cm). Świadczy to o tym, że w warstwach środowiskowych złoża filtracyjnego (od 30 do 50 cm) azot amonowy jest usuwany w największym stopniu. Na podstawie danych zawartych w tabeli 54 można zauważyć, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości fosforu ogólnego w ściekach oczyszczonych.
Tabela 55. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości azotu amonowego N-NH₄ w ściekach oczyszczonych

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>[0] Średnia wartość azotu amonowego 109,30 mgN-NH₄ dm⁻³</th>
<th>[10] Średnia wartość azotu amonowego 95,13 mgN-NH₄ dm⁻³</th>
<th>[30] Średnia wartość azotu amonowego 33,06 mgN-NH₄ dm⁻³</th>
<th>[50] Średnia wartość azotu amonowego 16,77 mgN-NH₄ dm⁻³</th>
<th>[90] Średnia wartość azotu amonowego 11,87 mgN-NH₄ dm⁻³</th>
<th>[110] Średnia wartość azotu amonowego 7,86 mgN-NH₄ dm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>-</td>
<td>0,052660</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[10]</td>
<td>0,052660</td>
<td>-</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[30]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>-</td>
<td>0,014358</td>
<td>0,000468</td>
<td>0,000026</td>
</tr>
<tr>
<td>[50]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,014358</td>
<td>-</td>
<td>0,929972</td>
<td>0,364826</td>
</tr>
<tr>
<td>[90]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000468</td>
<td>0,929972</td>
<td>-</td>
<td>0,969955</td>
</tr>
<tr>
<td>[110]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000026</td>
<td>0,364826</td>
<td>0,969955</td>
<td>-</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05

Azot Kjeldahla

W tabeli 56 przedstawiono wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości azotu Kjeldahla w ściekach oczyszczonych.

Tabela 56. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości azotu Kjeldahla w ściekach oczyszczonych

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>[0] Średnia wartość azotu Kjeldahla 153,49 mgN-Kj dm⁻³</th>
<th>[10] Średnia wartość azotu Kjeldahla 114,28 mgN-Kj dm⁻³</th>
<th>[30] Średnia wartość azotu Kjeldahla 44,22 mgN-Kj dm⁻³</th>
<th>[50] Średnia wartość azotu Kjeldahla 30,55 mgN-Kj dm⁻³</th>
<th>[90] Średnia wartość azotu Kjeldahla 19,02 mgN-Kj dm⁻³</th>
<th>[110] Średnia wartość azotu Kjeldahla 13,28 mgN-Kj dm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>-</td>
<td>0,052660</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[10]</td>
<td>0,052660</td>
<td>-</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000020</td>
</tr>
<tr>
<td>[30]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>-</td>
<td>0,014358</td>
<td>0,000468</td>
<td>0,000026</td>
</tr>
<tr>
<td>[50]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,014358</td>
<td>-</td>
<td>0,929972</td>
<td>0,364826</td>
</tr>
<tr>
<td>[90]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000468</td>
<td>0,929972</td>
<td>-</td>
<td>0,969955</td>
</tr>
<tr>
<td>[110]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,000026</td>
<td>0,364826</td>
<td>0,969955</td>
<td>-</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05
W przypadku azotu Kjeldahla (tabela 56) zaobserwowano, że statystyczne różnice pomiędzy średnimi stężeniami azotu Kjeldahla w początkowych głębokościach ścieków są nie istotne. Podobnie jest w przypadku największych głębokości filtru (90 i 110 cm). Świadczy to o tym, że w warstwach środkowych złoża filtracyjnego (od 30 do 50 cm) azot Kjeldahla jest usuwany w największym stopniu.

Wskaźnik azotu ogólnego

W tabeli 57 wartości prawdopodobieństw testowych Tukaya sprawdzających istotność różnic pomiędzy poszczególnymi parami średnich wartości azotu ogólnego w ściekach oczyszczonych.

Wartość prawdopodobieństwa testowego poniżej 0,05 informuje o istotnej różnicy poszczególnych par średnich wartości azotu ogólnego w ściekach oczyszczonych. Oznacza to, że głębokość złoża filtracyjnego jest czynnikiem decydującym istotnie o wartości azotu ogólnego w ściekach oczyszczonych. Sytuacja ta nie dotyczy zależności pomiędzy średnią wartością azotu ogólnego w ściekach oczyszczonych dla głębokości: 30 i 50 cm, 50 i 90 cm oraz 90 i 110 cm. Reasumując należy zaznaczyć, że usuwanie azotu ogólnego nastąpiło najintensywniej w początkowych warstwach filtra. W głębszych warstwach narastały wartości azotu azotanowego (N-NO₃), które są wliczane do azotu ogólnego. Badając wartości azotu całkowitego Kjeldahla należy zaznaczyć, że azot był usuwany na całej głębokości złoża.

Tabela 57. Wartość prawdopodobieństwa testowego (Tukaya) istotności różnic pomiędzy poszczególnymi parami średnich wartości azotu ogólnego w ściekach oczyszczonych

<table>
<thead>
<tr>
<th>Głębokość [cm]</th>
<th>Średnia wartość azotu ogólnego</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>155,31 mgNₒ dm⁻³</td>
<td>118,10 mgNₒ dm⁻³</td>
<td>78,97 mgNₒ dm⁻³</td>
<td>61,79 mgNₒ dm⁻³</td>
<td>64,59 mgNₒ dm⁻³</td>
</tr>
<tr>
<td>[10]</td>
<td>0,000020</td>
<td>-</td>
<td>0,065194</td>
<td>0,209444</td>
<td>0,999989</td>
</tr>
<tr>
<td>[30]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,065194</td>
<td>-</td>
<td>0,997922</td>
</tr>
<tr>
<td>[50]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,209444</td>
<td>0,997922</td>
<td>-</td>
</tr>
<tr>
<td>[90]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,065194</td>
<td>0,999989</td>
<td>-</td>
</tr>
<tr>
<td>[110]</td>
<td>0,000020</td>
<td>0,000020</td>
<td>0,209444</td>
<td>0,999989</td>
<td>-</td>
</tr>
</tbody>
</table>

Kolorem czerwonym zaznaczono wartości prawdopodobieństwa testowego poniżej 0,05
6.2.5. Analiza redukcji badanych wskaźników

W rozdziale przedstawiono analizę skuteczności zmniejszania wybranych zanieczyszczeń w ściekach przepływających przez prototyp zmodyfikowanego filtru żwirowo-piaskowego „F1”. Redukcję zanieczyszczeń określano w odniesieniu do ścieków dopływających do filtra (ściek po osadniku gnilnym). Do określenia skuteczności zmniejszenia badanych wskaźników posłużono się wzorem (9). Analizie poddano redukcję takich wskaźników jak: BZT₅, ChZTCr, zawiesina ogólna, fosfor ogólny, azot amonowy, azot ogólny.

Redukcja wskaźnika BZT₅

W tabeli 58 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia BZT₅ po przeszczepieniu ścieków przez wybrane warstwy zmodyfikowanego filtra żwirowo-piaskowego „F1” o przepływie pionowym.

Tabela 58. Podstawowe statystyki opisowe redukcji BZT₅ z poszczególnych głębokości prototypu zmodyfikowanego filtra żwirowo-piaskowego

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja BZT₅ na kolejnych głębokościach złoża filtracyjnego [%]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Warstwa żwirowa</td>
<td>Warstwa piaskowa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po 10 cm</td>
<td>Po 30 cm</td>
</tr>
<tr>
<td>Średnia X</td>
<td></td>
<td>52,07</td>
<td>78,41</td>
</tr>
<tr>
<td>Mediana mₑ</td>
<td></td>
<td>58,11</td>
<td>79,29</td>
</tr>
<tr>
<td>Minimalna Min</td>
<td></td>
<td>12,50</td>
<td>62,50</td>
</tr>
<tr>
<td>Maksymalna Max</td>
<td></td>
<td>84,62</td>
<td>92,00</td>
</tr>
<tr>
<td>Rozstęp Rₑ</td>
<td></td>
<td>72,12</td>
<td>29,50</td>
</tr>
<tr>
<td>Odch. stand. σ</td>
<td></td>
<td>19,97</td>
<td>9,72</td>
</tr>
<tr>
<td>Wsp. zmien. Vₑ</td>
<td></td>
<td>0,34</td>
<td>0,12</td>
</tr>
<tr>
<td>Liczba próbek N</td>
<td></td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

*) - głębokości, z których pobierano próbki do analiz fizyko-chemicznych (mierzone od górnej powierzchni warstwy filtracyjnej)

Poddając analizie dane z tabeli 58 można zauważyć wzrost skuteczności zmniejszenia BZT₅ wraz ze wzrostem miąższości złoża filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję BZT₅ na poziomie 52,07%, podczas gdy już po przeszczępień ścieków przez 50 cm uzyskano wynik 86,87%. Po przeszczępień ścieków przez 10 cm uzyskano redukcję BZT₅ równą 97,27%. Tak, więc warstwa żwirowa o miąższości 50 cm spowodowała zmniejszenie BZT₅ o 86,87%. Należy stwierdzić największy rozstęp skuteczności zmniejszenia BZT₅ przy przeszczępnień ścieków przez 10 cm warstwę żwirową. Rozstęp wyniósł 72,12%, a współczynnik zmienności ukształtował się na poziomie 0,34.
Skuteczność oczyszczania ścieków...

Obserwuje się wyraźną stabilizację skuteczności zmniejszenia BZT₅ ze wzrostem miąższości filtru, o czym świadczą malejące wartości odchylenia standardowego i współczynnika zmienności ze wzrostem głębokości filtru. Przykładowo współczynnik zmienności skuteczności zmniejszenia BZT₅ dla głębokości złoża 10 cm wyniósł 0,34 podczas gdy dla głębokości 110 cm był blisko 30 krotnie niższy i wyniósł 0,01. Takie dane świadczą o wzroście stabilności działania prototypu przy zwiększaniu miąższości złoża filtracyjnego.

Na rysunku 72 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości nieodstających dla zmiennej redukcja BZT₅ dla zadanych głębokości złoża filtracyjnego prototypu „F1”.

Analizując wartości przedstawione na rysunku 72 można zaobserwować wyraźne zwiększenie skuteczności zmniejszenia BZT₅ przy wzrastającej głębokości złoża filtracyjnego. Mediana dla zmiennej „redukcja BZT₅” i dla głębokości złoża 10 cm wyniosła 58,11%. Jest to wartość duża i świadczy o bardzo intensywnie zachodzących procesach zmniejszania tego wskaźnika w początkowych głębokościach złoża. Po przesaczaniu ścieków przez warstwę żwirową (50 cm) mediana skuteczności zmniejszenia BZT₅ wyniosła 88,00%. Należy zauważyć, że mediana zmniejszenia BZT₅ po przesaczaniu przez całą warstwę żwiro-piaskową wyniosła 97,50%, co stanowi bardzo dobry rezultat potwierdzający korzystne warunki tlenowe dla zmniejszania BZT₅. Warto zwrócić uwagę na stabilizujące się wartości skuteczności zmniejszenia BZT₅ wraz ze wzrostem głębokości złoża filtracyjnego.
W dalszej kolejności przedstawiono analizę skuteczności zmniejszania ChZT_{Cr}. W tabeli 59 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia ChZT_{Cr} po przesączeniu ścieków przez wybrane warstwy zmodyfikowanego filtru żwirowo-piaskowego „F1” o przepływie pionowym.

Tabela 59. Podstawowe statystyki opisowe redukcji ChZT_{Cr} z poszczególnych głębokości prototypu zmodyfikowanego filtru żwirowo-piaskowego

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja ChZT<sub>Cr</sub> na kolejnych głębokościach złoża filtracyjnego [%]</th>
<th>Warstwa żwirowa</th>
<th>Warstwa piaskowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Po 10 cm<sup>1/1</sup></td>
<td>Po 30 cm<sup>1/1</sup></td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>51,81</td>
<td>77,91</td>
<td>83,72</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_c</td>
<td>55,39</td>
<td>79,99</td>
<td>83,38</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>21,11</td>
<td>63,40</td>
<td>70,47</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>84,35</td>
<td>91,98</td>
<td>92,32</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>σ</td>
<td>63,24</td>
<td>28,57</td>
<td>21,85</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,28</td>
<td>0,11</td>
<td>0,07</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>27</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

^{1/1} – głębokości, z których pobierano próbki ścieków do analiz fizyko-chemicznych (na zerie od górnej powierzchni warstwy filtracyjnej)
Skuteczność oczyszczania ścieków...

Analizując dane z tabeli 59 daje się zauważyć wzrost skuteczności zmniejszenia ChZTₐ, wraz ze wzrostem miąższości złoża filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję ChZTₐ na poziomie 51,81%, podczas gdy już po przesączeniu ścieków przez warstwę 50 cm uzyskano wynik 83,72%. Po przesączeniu ścieków przez cały filtr uzyskano redukcję ChZTₐ równą 94,84%. Warstwa żwirowa o miąższości 50 cm spowodowała zmniejszenie ChZTₐ o 83,72%. Stwierdzono największy rozstęp skuteczności zmniejszania ChZTₐ przy przesączeniu ścieków przez 10 cm warstwę żwirowej (63,24%). Również współczynnik zmienności ukształtował się na najwyższym poziomie 0,34. Obserwuje się wyraźną stabilizację skuteczności zmniejszenia ChZTₐ ze wzrostem miąższości filtru, o czym świadczyć mogą malejące wartości odchylenia standardowego i współczynnika zmienności ze wzrostem głębokości filtra. Współczynnik zmienności skuteczności zmniejszenia ChZTₐ dla głębokości złoża 10 cm wyniósł 0,34 podczas gdy dla głębokości 110 cm był 14 krotnie niższy i wyniósł 0,02. Takie dane świadczą o wzroście stabilności działania prototypu przy zwiększaniu miąższości złoża filtracyjnego.

Na rysunku 73 przedstawiono graficzny obraz mediany, kwantyli oraz zakresu wartości nieodstających dla zmiennej redukcja ChZTₐ dla zadanych głębokości złoża filtracyjnego prototypu „F1”.

Rysunek 73. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla zmiennej redukcja wartości ChZTₐ dla zadanym głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra

Figure 73. Values of median, quantile (25% and 75%) and the range of non-deviating values for variable efficiency of CODₐ value reduction for the selected filter bed depths of the modified filter prototype
Analizując wartości przedstawione na rysunku 73 można zaobserwować wyraźne zwiększanie skuteczności zmniejszenia ChZT$_{C_{0}}$ przy wzrastającej głębokości złoża filtracyjnego. Mediana skuteczności zmniejszenia ChZT$_{C_{0}}$ dla głębokości złoża 10 cm wyniosła 55,39%. Tak duża redukcja świadczy o intensywnie zachodzących procesach zmniejszania tego wskaźnika w początkowych głębokościach złoża. Po przesączaniu ścieków przez warstwę zwięziową (50 cm) mediana skuteczności zmniejszenia ChZT$_{C_{0}}$ wyniosła 83,38%. Należy zauważyć, że mediana zmniejszenia ChZT$_{C_{0}}$ po przesączaniu przez całą warstwę zwięziowo-piaskową wyniosła 94,76%, co stanowi bardzo dobry wynik, który potwierdza korzystne warunki tlenowe dla zmniejszania ChZT$_{C_{0}}$. Należy zwrócić uwagę na stabilizujące się wartości skuteczności zmniejszenia ChZT$_{C_{0}}$ wraz ze wzrostem głębokości złoża filtracyjnego.

Redukcja zawiesiny ogólnej

W tabeli 60 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia zawiesiny ogólnej po przesączaniu ścieków przez wybrane warstwy zmodyfikowanego filtru zwięziowo-piaskowego „F1” o przepływie pionowym.

Tabela 60. Podstawowe statystyki opisowe redukcji zawiesiny ogólnej z poszczególnych głębokości prototypu zmodyfikowanego filtru zwięziowo-piaskowego

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja zawiesiny ogólnej na kolejnych głębokościach złoża filtracyjnego [%]</th>
<th>Warstwa zwięziowa</th>
<th>Warstwa piaskowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Po 10 cm1</td>
<td>Po 30 cm1</td>
<td>Po 50 cm1</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>55,84</td>
<td>73,89</td>
<td>85,89</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_n</td>
<td>57,48</td>
<td>76,22</td>
<td>86,88</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>16,15</td>
<td>41,49</td>
<td>74,68</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>89,11</td>
<td>91,02</td>
<td>93,47</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>R_p</td>
<td>72,96</td>
<td>58,51</td>
<td>18,79</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>21,82</td>
<td>13,82</td>
<td>5,06</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,38</td>
<td>0,18</td>
<td>0,06</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>22</td>
<td>24</td>
<td>27</td>
</tr>
</tbody>
</table>

(*) - głębokości, z których pobierano próbki ścieków do analiz fizyko-chemicznych (mierzone od górnej powierzchni warstwy filtracyjnej)

Dane z tabeli 60 wskazują wyraźnie na wzrost skuteczności zmniejszenia stężenia zawiesiny ogólnej wraz ze wzrostem miąższości złoża filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję jej stężenia na poziomie 55,84%, natomiast po przesączaniu ścieków przez warstwę 50 cm uzyskano wynik 85,89%. Po przesączaniu ścieków przez cały filtr uzyskano redukcję równą 91,25%. Stwierdzono największy rozstęp skuteczności przy przesączaniu...
Skuteczność oczyszczania ścieków...

ścieków przez 10 cm warstwę żwiru (72,96%). Zauważono wyraźną stabilizację skuteczności ze wzrostem miąższości filtra, o czym świadczyć mogą malejące wartości odchylenia standardowego i współczynnika zmienności ze wzrostem głębokości filtra. Współczynnik zmienności skuteczności zmniejszenia dla głębokości złoża 10 cm wyniósł 0,38, podczas gdy dla głębokości 110 cm był blisko 10 razy niższy i wyniósł 0,04. Takie dane świadczą o wzroście stabilności działania prototypu przy zwiększaniu miąższości złoża filtracyjnego.

Na rysunku 74 przedstawiono graficzny obraz mediana, kwantyli oraz zakresów wartości nieodstających dla zmiennej redukcji zawiesiny ogólnej dla zadanego select height of the modified filter prototype.

Rysunek 74. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla zmiennej redukcja stężenia fosforu ogólnego dla zadanego select height of the modified filter prototype.

Figure 74. Values of median, quantile (25% and 75%) and the range of non-deviating values for variable efficiency of total phosphorus concentration value reduction for the selected filter bed depths of the modified filter prototype.

Analizując wartości przedstawione na rysunku 74 można zaobserwować wzrost skuteczności zmniejszenia stężenia fosforu ogólnego przy wzrastającej głębokości złoża filtracyjnego. Mediana skuteczności zmniejszenia stężenia fosforu ogólnego dla głębokości złoża 10 cm wyniosła 16,69%. Po przesączeniu ścieków przez warstwę żwirową (50 cm) mediana skuteczności zmniejszenia stężenia fosforu ogólnego wyniosła 56,39%. Mediana zmniejszenia stężenia fosforu ogólnego po przesączeniu przez całą warstwę żwirowo-piaskową wyniosła 65,92%. Obserwuje się spadek skuteczności zmniejszenia stężenia fosforu ogólnego wraz z czasem eksploatacji prototypu złoża „F1”. Powodem tej sytuacji może być wyczerpujący się w miarę eksploatacji oczyszczalni kompleks

179
sorpcyjny złoża filtracyjnego. Podobnie jak w przypadku wskaźników tlenowych i zawiesiny ogólnej należy zwrócić uwagę na stabilizujące się wartości skuteczności zmniejszenia stężenia fosforu ogólnego wraz ze wzrostem głębokości złoża filtracyjnego.

Redukcja azotu amonowego N-NH₄

W dalszym etapie przedstawiono redukcję stężenia azotu amonowego. W tabeli 62 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia stężenia azotu amonowego po przesączeniu ścieków przez wybrane warstwy zmodyfikowanego filtra „F1” o przepływie pionowym.

Tabela 62. Podstawowe statystyki opisowe redukcji azotu amonowego z poszczególnych głębokości prototypu zmodyfikowanego filtra wirowo-piaskowego

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja stężenia azotu amonowego na kolejnych głębokościach złoża filtracyjnego [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Warstwa wirowa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po 10 cm⁻¹</td>
</tr>
<tr>
<td>Średnia</td>
<td>X</td>
<td>13,58</td>
</tr>
<tr>
<td>Mediana</td>
<td>mₚ</td>
<td>11,07</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>-28,70</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>59,84</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Rₓ</td>
<td>88,55</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>20,67</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V₂m</td>
<td>1,87</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>28</td>
</tr>
</tbody>
</table>

*) – głębokości, z których pobierano próbki ścieków do analiz fizyko-chemicznych (mierzone od górnej powierzchni warstwy filtracyjnej)

Na podstawie analizy danych z tabeli 62 daje się zaobserwować widoczny wzrost skuteczności zmniejszenia stężenia azotu amonowego wraz ze wzrostem miąższości złoża filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję stężenia azotu amonowego na poziomie 13,58%. Począwszy od głębokości 30 cm zaobserwowano znacznie wyższe wartości zmniejszenia stężenia azotu amonowego (70,50%), natomiast po przesączeniu ścieków przez warstwę 50 cm uzyskano wynik 84,90%. Po przesączeniu ścieków przez cały filtr uzyskano redukcję azotu amonowego równą 92,74%. Stwierdzono stabilizację skuteczności zmniejszenia stężenia azotu amonowego ze wzrostem miąższości filtra, o czym świadczyć mogą małe wartości odchylenia standardowego i współczynnika zmienności ze wzrostem głębokości filtra. Współczynnik zmienności skuteczności zmniejszenia stężenia azotu amonowego dla głębokości złoża 10 cm wyniósł 1,87 podczas gdy dla głębokości 110 cm był ponad 30 krotnie...
niższy i wyniósł 0,06. Świadczy to o wzroście stabilności działania prototypu przy zwiększaniu mięjszości złoża filtracyjnego.

W dalszej kolejności na rysunku 76 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości nieodstających dla zmiennej redukcja stężenia azotu amonowego dla zadaną głębokości złoża filtracyjnego prototypu „F1”.

![Gráfico](image)

Rysunek 75. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla zmiennej redukcja stężenia azotu amonowego dla zadaną głębokości złoża filtracyjnego prototypu zmodyfikowanego filtru

Figure 75. Values of median, quantile (25% and 75%) and the range of non-deviating values for variable efficiency of ammonium nitrogen concentration value reduction for the selected filter bed depths of the modified filter prototype

Poddając analizie wartości przedstawione na rysunku 75 można zaobserwować wyraźne zwiększenie skuteczności zmniejszenia stężenia azotu amonowego przy wzrastającej głębokości złoża filtracyjnego. Medianą skuteczności zmniejszenia stężenia azotu amonowego dla głębokości złoża 10 cm wyniosła 13,58%. Po przesączeniu ścieków przez warstwę żwirową (50 cm) medianą skuteczności zmniejszenia stężenia azotu amonowego wyniosła 84,90%. Medianą zmniejszenia stężenia azotu amonowego po przesączeniu przez całą warstwę żwirowo-piaskową wyniosła 92,74%. Należy zwrócić uwagę na stabilizujące się wartości skuteczności zmniejszenia stężenia azotu amonowego wraz ze wzrostem głębokości złoża filtracyjnego.

Redukcja azotu organicznego

W tabeli 63 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia stężenia azotu organicznego po przesączeniu ścieków przez wy-
brane warstwy zmodyfikowanego filtra źwirowo piaskowego „F1” o przepływie pionowym.

Tabela 63. Podstawowe statystyki opisowe redukcji azotu organicznego z poszczególnych głębokości prototypu zmodyfikowanego filtra źwirowo-piaskowego

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja stężenia azotu organicznego na kolejnych głębokościach złoża filtracyjnego [%]</th>
<th>Warstwa złoża</th>
<th>Warstwa piaskowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Po 10 cm</td>
<td>Po 30 cm</td>
<td>Po 50 cm</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>52,39</td>
<td>49,87</td>
<td>66,88</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>52,07</td>
<td>60,22</td>
<td>69,69</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>8,48</td>
<td>-11,17</td>
<td>34,85</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>90,69</td>
<td>91,76</td>
<td>90,21</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>R</td>
<td>82,21</td>
<td>102,93</td>
<td>55,36</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>21,03</td>
<td>30,76</td>
<td>16,75</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,40</td>
<td>0,51</td>
<td>0,24</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>25</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

*) – głębokości, z których pobierano próby ścieków do analiz fizyko-chemicznych (mierzone od górnej powierzchni warstwy filtracyjnej)

Analizując dane z tabeli 63 stwierdza się wzrost skuteczności zmniejszenia stężenia azotu organicznego wraz ze wzrostem miąższości złoża filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję stężenia azotu organicznego równe 52,39%. Po przeszczepieniu ścieków przez warstwę 50 cm uzyskano wynik 66,88%. Natomiast po przeszczepieniu ścieków przez cały filtr uzyskano redukcję azotu organicznego równą 87,93%. Stwierdzono stabilizację skuteczności zmniejszenia azotu organicznego ze wzrostem miąższości filtra, o czym świadczyć mogą malejące wartości odchylenia standardowego i współczynnika zmienności ze wzrostem głębokości filtra. Współczynnik zmienności skuteczności zmniejszenia stężenia azotu organicznego dla głębokości złoża 30 cm wynosił 0,51 podczas gdy dla głębokości 110 cm był ponad 7 krotnie niższy i wyniósł 0,07. Świadczy to o wzroście stabilności działania prototypu przy zwiększeniu miąższości złoża filtracyjnego.

Na rysunku 77 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości nieodstających dla zmiennej redukcja stężenia azotu organicznego dla zadanego głębokości złoża filtracyjnego prototypu „F1”.

Analizując wartości przedstawione na rysunku 77 można zaobserwować wyraźne zwiększenie skuteczności zmniejszenia stężenia azotu organicznego przy wzrastającej głębokości złoża filtracyjnego. Mediana skuteczności zmniejszenia stężenia azotu organicznego dla głębokości złoża 10 cm wyniosła 52,07%. Po przeszczepieniu ścieków przez warstwę źwirową (50 cm) mediana skuteczności zmniejszenia stężenia azotu organicznego wyniosła 69,69%. Me-
diana zmniejszenia stężenia azotu organicznego po przeszczepaniu przez całą warstwę żwirowo-piaskową wyniosła 89,58%. Należy zwrócić uwagę na stabilizujące się wartości skuteczności zmniejszenia stężenia azotu organicznego wraz ze wzrostem głębokości złóż filtracyjnego.

Rysunek 77. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstępnących dla zmiennej redukcja stężenia azotu organicznego dla zadanego głębokości złóż filtracyjnego prototypu zmodyfikowanego żwirowo-piaskowego „F1”

Redukcja azotu ogólnego

Ostatnim analizowanym wskaźnikiem był azot ogólny. W tabeli 64 przedstawiono podstawowe statystyki opisowe skuteczności zmniejszenia stężenia azotu ogólnego po przeszczepieniu ścierek przez warstwy zmodyfikowanego filtra.

Poddając analizie dane z tabeli 64 można zauważyć wzrost skuteczności zmniejszenia stężenia azotu ogólnego wraz ze wzrostem miąższości złóż filtracyjnego. Przy głębokości złoża 10 cm uzyskano redukcję stężenia azotu ogólnego na poziomie 23,64%, podczas gdy już po przeszczepieniu ścierek przez warstwę 50 cm uzyskano średnią skuteczność na poziomie 59,89%. Po przeszczepieniu ścierek przez cały filtr uzyskano redukcję stężenia azotu ogólnego równą 64,79%. Współczynnik zmienności skuteczności zmniejszenia stężenia azotu ogólnego dla głębokości złoża 10 cm wyniósł 0,77, podczas gdy dla głębokości 110 cm był ponad 5 krotnie niższy i wyniósł 0,14.

Na rysunku 78 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości nieodstępnących dla zmiennej redukcja stężenia azotu ogólnego dla zadanego głębokości złóż filtracyjnego prototypu „F1”.

![Rysunek 77](image_url)
Tabela 64. Podstawowe statystyki opisowe redukcji azotu ogólnego z poszczególnych głębokości prototypu zmodyfikowanego filtru żwirowo-piaskowego

Table 64. Basic descriptive statistics of total nitrogen reduction effectiveness from individual treatment stages in the prototype of the modified gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Redukcja stężenia azotu ogólnego na kolejnych głębokościach złoża filtracyjnego [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Warstwa żwirowa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Po 10 cm*)</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>23,64</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>24,37</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>-11,20</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>61,62</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>R_o</td>
<td>72,83</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>18,73</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,77</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>27</td>
</tr>
</tbody>
</table>

*) – głębokości, z których pobierano próbki ścieków do analiz fizyko-chemicznych (mierzone od górnej powierzchni warstwy filtracyjnej)

Rysunek 78. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla zmiennej redukcja stężenia azotu ogólnego dla złoża filtracyjnego prototypu zmodyfikowanego

Figure 78. Values of median, quantile (25% and 75%) and the range of non-deviating values for variable efficiency of organic nitrogen concentration for the selected filter bed depths of the modified prototype
Analizując wartości przedstawione na rysunku 78 obserwuje się zwiększenie skuteczności zmniejszenia stężenia azotu ogólnego przy wzrastającej głębokości złoża filtracyjnego. Mediana skuteczności zmniejszania stężenia azotu organicznego dla głębokości złoża 10 cm wyniosła 24,37%. Po przesaczaniu ścieków przez warstwę zwirową (50 cm) mediana skuteczności zmniejszenia stężenia azotu ogólnego wyniosła 59,07%. Mediana zmniejszenia stężenia azotu ogólnego po przesaczaniu przez całą warstwę zwirowo-piaskową wyniosła 63,88%.

6.2.6. Kinetyka reakcji w prototypie „F1”

Powszechnie przyjmuje się, że szybkość reakcji wyrażana będzie współczynnikiem k o rzędzie zerowym, pierwszym lub wyższym. W tabeli 65 przedstawiono równania szybkości reakcji zerowego, pierwszego i drugiego rzędu w formie różniczkowej i całkowej.

Tabela 65. Równania szybkości reakcji nieodwracalnych rzędu zerowego, pierwszego i drugiego [Klimiuk i in. 1995]

Table 65. Equations of irreversible reactions of zero, first and second rate [Klimiuk et al. 1995]

<table>
<thead>
<tr>
<th>Rząd reakcji</th>
<th>Równanie różniczkowe szybkości reakcji</th>
<th>Rozwiązanie analityczne równania szybkości reakcji</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{dS_o}{dt} = -k_0$</td>
<td>$S_o = S_s - k_0 \cdot t$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{dS_o}{dt} = -k_1 \cdot S_o$</td>
<td>$S_o = S_s \cdot \exp(-k_1 \cdot t)$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{dS_o}{dt} = -k_2 \cdot S_o^2$</td>
<td>$S_o = \frac{S_s}{1 + S_s \cdot k_2 \cdot t}$</td>
</tr>
</tbody>
</table>

gdzie:
- dS_o – różnica wartości wskaźnika zanieczyszczeń przypadająca na przyrost czasu zatrzymania ścieków w złożu filtracyjnym,
- dt – przyrost czasu zatrzymania ścieków w złożu filtracyjnym,
- k_0 – stała kinetyki reakcji zerowego rzędu $[\text{mg} \cdot \text{dm}^{-3} \cdot \text{d}^{-1}]$,
- k_1 – stała kinetyki reakcji pierwszego rzędu $[\text{d}^{-1}]$,
- k_2 – stała kinetyki reakcji drugiego rzędu $[\text{d}^{-1} \cdot \text{mg}^{-1} \cdot \text{dm}^{-3}]$,
- S_s – wartości danego wskaźnika zanieczyszczeń na wejściu do modelu $[\text{mg} \cdot \text{dm}^{-3}]$,
- S_o – wartości danego wskaźnika zanieczyszczeń na wyjściu z modelu $[\text{mg} \cdot \text{dm}^{-3}]$,
- t – czas zatrzymania ścieków w złożu filtracyjnym $[\text{d}]$.

Stałe kinetyki reakcji wymienionych rzędów obliczono przekształcając wzory zawarte w tabeli 65.
Postać tych równań jest następująca:

\[k_0 = \frac{S_x - S_o}{t} \]
(30)

\[k_1 = \frac{1}{t} \ln \frac{S_x}{S_o} \]
(31)

\[k_2 = \frac{S_x - S_o}{S_o \cdot t} \]
(32)

Czas zatrzymania ścieków w zmodyfikowanym filtrze piaskowym został określony doświadczalnie. Do tego celu wykorzystano model wycinkowy „M2” ze względu na bezpośrednie odwzorowanie rzeczywistego obiektu w terenie. W celu określenia czasu zatrzymania ścieków w modelu „M2” w zależności od obciążenia hydraulicznego wykonano eksperyment przy następujących obciążeniach hydraulicznych: 25, 75, 125, 150, 200 dm\(^3\)·m\(^2\)·d\(^{-1}\). Po roku pracy modelu „M2” i po wpracowaniu się złoża filtracyjnego przestano dawkować ścieki i rozpoczęto dawkowanie wody z barwnikiem spożywnym o intensywnej barwie (fotografia 21). Od momentu rozpoczęcia dawkowania markera mierzono czas i w równomiernych odstępach czasu (30 min) pobierano próbkę ścieków w celu stwierdzenia pojawienia się markera w odpływie.

Fotografia 21. Układ do dozowania barwnika do modelu „M2”- widoczny zbiornik (C), sterownik czasowy (B) i pompa perystaltyczna (A)

Photo 21. System for dye dispensing to “M2” model - visible container (C), time controller (B) and peristaltic pump (A)
Autor zdecydował się na takie rozwiązanie ze względu na fakt, że w wyniku pracy filtra nastąpiło zatrzymanie zanieczyszczeń w złożu (głównie na jego powierzchni) a to z kolei przyczyniało się do wydłużenia czasu zatrzymania ścieków w złożu. Dzięki bezpośrednim doświadczalnym pomiarom czasu przebywania markera (barwnika) w złożu filtracyjnym określono czas zatrzymania ścieków w zależności od obciążenia hydraulicznego. Wyniki tych pomiarów przedstawiono na rysunku 79.

Na rysunku 79 przedstawiono graficzny obraz zależności czasu zatrzymania ścieków w złożu od obciążenia hydraulicznego złoża.

Rysunek 79. Zależność czasu zatrzymania ścieków w złożu filtracyjnym od obciążenia hydraulicznego (kolor czerwony dotyczy czasu zatrzymania obliczonego ze wzoru (3), kolor niebieski czas zatrzymania określony z pomiaru)

Figure 79. Relationship between the retention time of sewage in the filter bed and the hydraulic load (red color relates to the retention time calculated from the formula (3), blue color relates to the retention time determined from the measurement)

W celu stwierdzenia dopasowania stałych kinetyki reakcji do wartości pomierzonych określono wartości statystycznych miar jakości modeli matematycznych. Poniżej przedstawiono wykorzystane miary statystyczne:

Względny średniokwadratowy błąd resztowy (WBR):

\[
WBR = \frac{1}{S_{2p}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (S_{2p,i} - S_{2m,i})^2}
\]

(33)
Specjalny współczynnik korelacji

\[RS = \sqrt{\frac{\sum_{i=1}^{n} (2S_{2p,i} - S_{2m,i} - S_{2m,i}^2)}{\sum_{i=1}^{n} S_{2p,i}^2}} \]
(34)

W tabeli 66 przedstawiono wartości statystycznych miar jakości modeli matematycznych.

Tabela 66. Wartości statystycznych miar jakości modeli matematycznych
[Błążejewski 1999]

<table>
<thead>
<tr>
<th>Model</th>
<th>RS</th>
<th>WBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znakomity</td>
<td>0,99-1,00</td>
<td>0,00-0,02</td>
</tr>
<tr>
<td>Bardzo dobry</td>
<td>0,98-0,95</td>
<td>0,03-0,05</td>
</tr>
<tr>
<td>Dobry</td>
<td>0,94-0,90</td>
<td>0,06-0,10</td>
</tr>
<tr>
<td>Dość dobry</td>
<td>0,89-0,85</td>
<td>0,11-0,25</td>
</tr>
<tr>
<td>Niezadowalający</td>
<td>poniżej 0,85</td>
<td>powyżej 0,25</td>
</tr>
</tbody>
</table>

Przy stosowaniu statystycznych miar jakości modelu nie ma ustalonych granic jakie poszczególne miary powinny osiągnąć, aby model mógł zostać przyjęty. Niemniej jednak istnieją wartości ekstremalne tych miar określające, że model jest idealny i wówczas WBR=0, RS = 1 oraz, że model jest niezadowalający (nie wnosi żadnej informacji) i wówczas RS=0 natomiast dla wartości WBR granice nie istnieją [Błążejewski 1999].

Kinetyka reakcji dla BZT5

Na podstawie wzorów (30), (31), (32) obliczono stałe kinetyki reakcji (zerowego, pierwszego i drugiego rzędu) dla BZT5. W tabeli 67 przedstawiono średnie wartości stałych kinetyki reakcji oraz modeli matematycznych.

Podobnie jak w przypadku BZT5 stwierdzono bardzo duże wartości stałej kinetyki reakcji zerowego rzędu, zwłaszcza w początkowych głębokościach złoża \((k_{0w}=3360 \text{ mg-dm}^{-3}\cdot\text{d}^{-1})\) podczas gdy dla najniższej warstwy (od 90 do 110 cm), gdzie stała kinetyki reakcji zerowego rzędu \(k_0\) wyniosła 90 mg-dm\(^{-3}\cdot\text{d}^{-1}\). Przyczyną tego stanu były bardzo duże wartości BZT5 (ponad 700 mgO\(_2\cdot\text{dm}^{-3}\)) w ściekach dopływających do złoża filtracyjnego. W oparciu o przeprowadzone obliczenia stwierdzono, że redukcję BZT5 można opisać za pomocą kinetyki reakcji drugiego rzędu, o czym świadcza najkorzystniejsze wartości zastosowa-
nych modeli WBR i RS (od modelu dobrego do modelu znakomitego). Jedynie dla warstwy od 50 do 90 cm stwierdzono, że redukcję BZT$_3$ można opisać za pomocą kinetyki pierwszego rzędu (WBR= 0,05; RS=0,97)

Tabela 67. Średnie wartości stałych kinetyki reakcji oraz ocena jakości modeli opisujących dla BZT$_3$

Table 67. Average values of reaction kinetics constants and mathematical models for BOD$_5$

<table>
<thead>
<tr>
<th>Warstwa złoża filtracyjnego [cm]</th>
<th>Wyszczególnienie</th>
<th>0-10</th>
<th>10-30</th>
<th>30-50</th>
<th>50-90</th>
<th>90-110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba pomiarów N</td>
<td></td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Pomierzona wartość</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{2m} [mgO$_2$.dm$^{-3}$]</td>
<td></td>
<td>304,63</td>
<td>136,33</td>
<td>80,19</td>
<td>43,19</td>
<td>18,30</td>
</tr>
<tr>
<td>k_{2m} [mg . dm$^{-3}$.d$^{-1}$]</td>
<td></td>
<td>273,18</td>
<td>134,40</td>
<td>80,07</td>
<td>43,91</td>
<td>17,33</td>
</tr>
<tr>
<td>WBR [-]</td>
<td></td>
<td>0,141</td>
<td>0,161</td>
<td>0,122</td>
<td>0,073</td>
<td>0,154</td>
</tr>
<tr>
<td>RS [-]</td>
<td></td>
<td>0,743</td>
<td>0,625</td>
<td>0,795</td>
<td>0,935</td>
<td>0,715</td>
</tr>
<tr>
<td>Zerowy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{2m} [mgO$_2$.dm$^{-3}$]</td>
<td></td>
<td>273,11</td>
<td>130,74</td>
<td>83,00</td>
<td>42,36</td>
<td>17,52</td>
</tr>
<tr>
<td>k_{2m} [d$^{-1}$]</td>
<td></td>
<td>7,76</td>
<td>7,62</td>
<td>4,47</td>
<td>1,11</td>
<td>3,13</td>
</tr>
<tr>
<td>WBR [-]</td>
<td></td>
<td>0,093</td>
<td>0,103</td>
<td>0,083</td>
<td>0,053</td>
<td>0,083</td>
</tr>
<tr>
<td>RS [-]</td>
<td></td>
<td>0,893</td>
<td>0,883</td>
<td>0,923</td>
<td>0,973</td>
<td>0,933</td>
</tr>
<tr>
<td>Pierwszy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{2m} [mgO$_2$.dm$^{-3}$]</td>
<td></td>
<td>256,64</td>
<td>117,95</td>
<td>80,72</td>
<td>38,17</td>
<td>16,06</td>
</tr>
<tr>
<td>k_{2m} [d$^{-1}$. mg$^{-1}$.dm$^{-3}$]</td>
<td></td>
<td>0,021</td>
<td>0,047</td>
<td>0,046</td>
<td>0,024</td>
<td>0,136</td>
</tr>
<tr>
<td>WBR [-]</td>
<td></td>
<td>0,083</td>
<td>0,093</td>
<td>0,053</td>
<td>0,063</td>
<td>0,073</td>
</tr>
<tr>
<td>RS [-]</td>
<td></td>
<td>0,913</td>
<td>0,913</td>
<td>0,963</td>
<td>0,963</td>
<td>0,913</td>
</tr>
</tbody>
</table>

1 – model znakomity, 2 – model bardzo dobry, 3 – model dobry, 4– model dość dobry, 5 – niezadawalający

Kinetyka reakcji dla ChZT$_{Cr}$

Na podstawie wzorów (30), (31), (32) obliczono stałe kinetyki reakcji (zerowego, pierwszego i drugiego rzędu) dla ChZT$_{Cr}$. W tabeli 68 przedstawiono średnie wartości stałych kinetyki reakcji oraz modeli matematycznych.

Na uwagę zasługują bardzo duże wartości stałej kinetyki reakcji zerowego rzędu, zwłaszcza w początkowych głębokościach złoża. Przyczyną tego stanu były bardzo duże wartości ChZT$_{Cr}$ w ściekach dopływających do złoża filtracyjnego. Na podstawie przeprowadzonych obliczeń stwierdzono, że redukcja wskaźnika ChZT$_{Cr}$ można opisać za pomocą kinetyki reakcji drugiego rzędu, o czym świadczą najkorzystniejsze wartości zastosowanych modeli WBR i RS (od modelu dobrrego do modelu znakomitego). Dla ostatniej warstwy (od 90 do 110 cm) stwierdzono, że redukcja wskaźnika ChZT$_{Cr}$ można opisać za pomocą kinetyki pierwszego rzędu (WBR= 0,06; RS=0,96).
Tabela 68. Średnie wartości stałych kinetyki reakcji oraz ocena jakości modeli opisujących dla ChZT_{Cr}

Table 68. Average values of reaction kinetics constants and mathematical models for COD_{Cr}

<table>
<thead>
<tr>
<th>Rząd kinetyki reakcji</th>
<th>Wyszechgólnienie</th>
<th>Warstwa złoża filtracyjnego [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>Liczba pomiarów N</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Srednia wartość k<sub>0</sub> [mgO<sub>2</sub>·dm<sup>-3</sup>·d<sup>-1</sup>]</td>
<td>473,04</td>
<td>205,19</td>
</tr>
<tr>
<td>Zerowy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S<sub>2p</sub> [mgO<sub>2</sub>·dm<sup>-3</sup>]</td>
<td>433,00</td>
<td>209,18</td>
</tr>
<tr>
<td>k<sub>0</sub> [mg·dm<sup>-3</sup>·d<sup>-1</sup>]</td>
<td>4648</td>
<td>2377</td>
</tr>
<tr>
<td>WBR [-]</td>
<td>0,11<sup>4)</sup></td>
<td>0,14<sup>4)</sup></td>
</tr>
<tr>
<td>RS [-]</td>
<td>0,85<sup>5)</sup></td>
<td>0,71<sup>4)</sup></td>
</tr>
<tr>
<td>Pierwszy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S<sub>2p</sub> [mgO<sub>2</sub>·dm<sup>-3</sup>]</td>
<td>421,38</td>
<td>202,16</td>
</tr>
<tr>
<td>k<sub>0</sub> [d<sup>-1</sup>]</td>
<td>7,31</td>
<td>7,66</td>
</tr>
<tr>
<td>WBR [-]</td>
<td>0,09<sup>4)</sup></td>
<td>0,09<sup>4)</sup></td>
</tr>
<tr>
<td>RS [-]</td>
<td>0,90<sup>4)</sup></td>
<td>0,91<sup>4)</sup></td>
</tr>
<tr>
<td>Drugi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S<sub>2p</sub> [mgO<sub>2</sub>·dm<sup>-3</sup>]</td>
<td>398,95</td>
<td>183,79</td>
</tr>
<tr>
<td>k<sub>0</sub> [d<sup>-1</sup>·mg<sup>-1</sup>·dm<sup>-3</sup>]</td>
<td>0,013</td>
<td>0,030</td>
</tr>
<tr>
<td>WBR [-]</td>
<td>0,08<sup>4)</sup></td>
<td>0,08<sup>4)</sup></td>
</tr>
<tr>
<td>RS [-]</td>
<td>0,92<sup>4)</sup></td>
<td>0,92<sup>4)</sup></td>
</tr>
</tbody>
</table>

1) – model znakomity, 2) – model bardzo dobry, 3) – model dobry, 4) – model dość dobry, 5) – niezadowalający

Zawiesina ogólna

Na podstawie wzorów (30), (31), (32) obliczono stałe kinetyki reakcji (zerowego, pierwszego i drugiego rzędu) dla zawiesiny ogólnej. W tabeli 69 przedstawiono średnie wartości stałych kinetyki reakcji oraz modeli matematycznych.

W przypadku zawiesiny ogólnej również stwierdzono bardzo duże wartości stałej kinetyki reakcji zerowego rzędu, zwłaszcza w początkowych głębokościach złoża (k₀≈1595 mg · dm⁻³·d⁻¹) podczas gdy dla najniższej warstwy (od 90 do 110 cm) gdzie stała kinetyki reakcji zerowego rzędu k₀ wyniosła 20 mg·dm⁻³·d⁻¹. Przyczyną tego stanu były bardzo duże stężenia zawiesiny ogólnej w ściekach dopływających do złoża filtracyjnego. W oparciu o przeprowadzone obliczenia stwierdzono, że usuwanie zawiesiny ogólnej można opisać za pomocą kinetyki reakcji pierwszego rzędu, o czym świadczą najkorzystniejsze wartości zastosowanych modeli WBR i RS (od modelu dobrego do modelu znakomitego). Dla warstwy od 30 do 50 cm oraz od 50 do 90 cm stwierdzono, że usuwanie zawiesiny ogólnej można opisać za pomocą kinetyki drugiego rzędu.
Tabela 69. Średnie wartości stałych kinetyki reakcji oraz ocena jakości modeli opisujących dla zawiesiny ogólnnej

Table 69. Average values of reaction kinetics constants and mathematical models for total suspended solids

<table>
<thead>
<tr>
<th>Rząd kinetyki reakcji</th>
<th>Wyszczególnienie</th>
<th>Warstwa złoża filtracyjnego [cm]</th>
<th>0-10</th>
<th>10-30</th>
<th>30-50</th>
<th>50-90</th>
<th>90-110</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liczba pomiarów N</td>
<td></td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Srednia wartość S_{2sp} [mg dm^{-3}]</td>
<td></td>
<td>160,58</td>
<td>83,33</td>
<td>41,96</td>
<td>30,90</td>
<td>25,84</td>
</tr>
<tr>
<td>Zerowy</td>
<td>S_{3m} [mg dm^{-3}]</td>
<td></td>
<td>152,39</td>
<td>83,63</td>
<td>42,02</td>
<td>30,41</td>
<td>25,51</td>
</tr>
<tr>
<td></td>
<td>k_{11} [mg · dm^{-1} · d^{-1}]</td>
<td></td>
<td>1595</td>
<td>712</td>
<td>393</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>WBR [-]</td>
<td></td>
<td>0,14</td>
<td>0,25</td>
<td>0,16</td>
<td>0,07</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>RS [-]</td>
<td></td>
<td>0,83</td>
<td>-</td>
<td>0,68</td>
<td>0,95</td>
<td>0,97</td>
</tr>
<tr>
<td>Pierwszy</td>
<td>S_{3m} [mg dm^{-3}]</td>
<td></td>
<td>132,45</td>
<td>92,08</td>
<td>43,41</td>
<td>29,67</td>
<td>24,61</td>
</tr>
<tr>
<td></td>
<td>k_{12} [d^{-1}]</td>
<td></td>
<td>8,30</td>
<td>5,15</td>
<td>6,04</td>
<td>0,62</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>WBR [-]</td>
<td></td>
<td>0,13</td>
<td>0,16</td>
<td>0,09</td>
<td>0,06</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>RS [-]</td>
<td></td>
<td>0,84</td>
<td>0,68</td>
<td>0,91</td>
<td>0,96</td>
<td>0,97</td>
</tr>
<tr>
<td>Drugi</td>
<td>S_{3m} [mg dm^{-3}]</td>
<td></td>
<td>109,01</td>
<td>88,01</td>
<td>43,02</td>
<td>28,11</td>
<td>23,06</td>
</tr>
<tr>
<td></td>
<td>k_{12} [d^{-1} · mg^{-1} · dm^{-3}]</td>
<td></td>
<td>0,056</td>
<td>0,048</td>
<td>0,104</td>
<td>0,021</td>
<td>0,039</td>
</tr>
<tr>
<td></td>
<td>WBR [-]</td>
<td></td>
<td>0,14</td>
<td>0,11</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>RS [-]</td>
<td></td>
<td>0,81</td>
<td>0,87</td>
<td>0,96</td>
<td>0,96</td>
<td>0,96</td>
</tr>
</tbody>
</table>

1) – model znakomity, 2) – model bardzo dobry, 3) – model dobry, 4) – model dość dobry, 5) – niezadowalający

6.2.7. Analiza mikrobiologiczna ścieków

W dostępnej literaturze jest wiele prac dotyczących analizy jakości ścieków dopływających i odpływających z filtrów piaskowych o przepływie pionowym, jednak zakres tych badań zazwyczaj nie obejmuje analiz mikrobiologicznych. Autor zdecydował się na zbadanie 6 wskaźników mikrobiologicznych (bakterie grupy coli, Escherichia coli, Enterokoki, Salmonella sp., Shigella sp. oraz Clostridium perfringens) w ściekach dopływających do filtra, na odpływie z warstwy żwirowej oraz na odpływie z warstwy piaskowej.

Bakterie grupy coli

W tabeli 70 przedstawiono podstawowe statystyki opisujące liczebności bakterii z grupy coli w ściekach dopływających i odpływających z badanych warstw prototypu zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym.

Na podstawie danych z tabeli 70 można zauważyć, że liczebności bakterii grupy coli w ściekach po osadniku gniłym zawarte były w przedziale od 1,0·10^7 do 1,0·10^8 NPL 100 cm^3. Średnia liczebność bakterii wyniosła 6,14·10^6 NPL 100 cm^3.
Tabela 70. Zestawienie podstawowych statystyk opisujących liczebności bakterii z grupy *coli* w ściekach wstępnie oczyszczonych, po przesączaniu przez warstwę ziarniska oraz po przesączaniu przez warstwę piasku w prototypie zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym

Table 70. Summary of basic descriptive statistics for the abundance of *coli* forms in pre-treated sewage, after being filtered through a layer of gravel and after filtration through a layer of sand in the prototype of the vertical flow gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka Opisowa</th>
<th>Symbol</th>
<th>Liczebność bakterii z grupy coli [NPL·100 cm⁻³]</th>
<th>Redukcja liczebności bakterii z grupy coli [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\overline{x}</td>
<td>6,14 10⁶ 3,44 10⁵ 3,19 10⁴</td>
<td>81,13 79,84 98,25</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>1,0 10⁵ 1,0 10⁵ 1,0 10⁴</td>
<td>90,00 90,00 99,90</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>1,0 10⁴ 1,0 10⁴ 1,0 10³</td>
<td>0,00 0,00 90,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1,0 10⁷ 1,0 10⁶ 1,0 10⁵</td>
<td>99,90 99,90 99,99</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_zm</td>
<td>0,73 1,21 1,35</td>
<td>0,41 0,41 0,03</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7 7 7</td>
<td>7 7 7</td>
</tr>
</tbody>
</table>

Średnia liczebność bakterii z grupy *coli* w ściekach oczyszczonych po warstwie żwirowej wyniosła 3,44·10⁵ NPL·100 cm⁻³. Zauważono zmniejszenie liczebności bakterii po przesączaniu przez warstwę żwirową o 81,13%. Znacznie niższą średnią liczebność bakterii z grupy *coli* stwierdzono w ściekach oczyszczonych po przesączaniu przez cały filtr żwirowo-piaskowy „F1”, gdzie średnia liczebność wyniosła 3,19·10⁴ NPL·100 cm⁻³. Należy zauważyć znaczne zmniejszenie bakterii z grupy *coli* po przesączaniu ścieków przez warstwę żwirowo-piaskową.

Na podstawie liczebności bakterii w ściekach dopływających do filtra, po przesączaniu przez warstwę żwirową filtru oraz ścieków oczyszczonych określono redukcję liczby bakterii z grupy *coli* z poszczególnych etapów oczyszczania (tabela 70). W tej podstawie stwierdzono, że średnia redukcja liczebności bakterii z grupy *coli* po warstwie żwirowej wyniosła 81,13%, a po przesączaniu przez samą warstwę piasku wyniosła dwukrotnie więcej tj. 79,84%. Całkowita średnia redukcja liczebności bakterii z grupy *coli* na całym filtrze żwirowo-piaskowym wyniosła 98,25%.

Bakterie grupy Escherichia coli

W tabeli 71 przedstawiono podstawowe statystyki opisujące liczebności bakterii z grupy *Escherichia coli* w ściekach dopływających i odpływających z bardanych warstw prototypu zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym.
Tabela 71. Zestawienie podstawowych statystyk opisujących liczebności bakterii z grupy *Escherichia coli* w ściekach wstępnie oczyszczonych, po przesączaniu przez warstwę żwiru oraz po przesączaniu przez warstwę piasku w prototypie zmodyfikowanego filtra żwirowo piaskowego o przepływie pionowym

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Liczebność bakterii z grupy Escherichia coli [NPL 100 cm⁻³]</th>
<th>Redukcja liczebności bakterii z grupy Escherichia coli [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{x}</td>
<td>1,90 10⁶ 3,57 10⁴ 4,60 10³</td>
<td>92,70 79,71 98,13</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_c</td>
<td>1,0 10⁶ 1,0 10⁴ 1,0 10³</td>
<td>90,00 90,00 99,00</td>
</tr>
<tr>
<td>Minimalna</td>
<td>M_m</td>
<td>1,0 10⁵ 1,0 10⁴ 1,0 10³</td>
<td>90,00 0,00 90,00</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1,0 10⁷ 1,0 10⁵ 1,0 10⁴</td>
<td>99,90 99,00 99,99</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>1,75 0,01 0,001</td>
<td>0,05 0,41 0,03</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Na podstawie danych z tabeli 71 można zauważyć, że liczebności bakterii grupy *Escherichia coli* w ściekach po osadniku gnilnym zawarte były w przedziale od 1,0·10⁵ do 1,0·10⁷ NPL 100 cm⁻³. Średnia liczebność bakterii wyniosła 1,90·10⁶ NPL 100 cm⁻³.

Średnia liczebność bakterii z grupy *Escherichia coli* w ściekach oczyszczonych po warstwie żwirowej wyniosła 3,57·10⁴ NPL 100 cm⁻³. Na podstawie obserwacji zauważono zmniejszenie liczebności bakterii w wyniku przesączania przez warstwę żwirową o 92,70%. Znacznie niższą średnią liczebność bakterii stwierdzono w ściekach oczyszczonych po przesączaniu przez cały filtr żwirowo-piaskowy „F1”, gdzie średnia liczebność wyniosła 4,60·10³ NPL 100 cm⁻³. Na podstawie obserwacji zauważyto znaczną zmniejszenie liczby bakterii z grupy *Escherichia coli* po przesączaniu ścieków przez warstwę żwirowo-piaskową.

Na podstawie liczebności bakterii w ściekach dopływających do filtra, po przesączaniu przez warstwę żwirową filtru oraz ścieków oczyszczonych określono redukcję liczby bakterii z grupy *Escherichia coli* z poszczególnych etapów oczyszczania (tabela 71). Na tej podstawie stwierdzono, że średnia redukcja liczebności bakterii po warstwie żwiru wyniosła 92,70%, a po przesączaniu przez samą warstwę piasku wyniosła dwukrotnie więcej, tj. 79,71%. Całkowita średnia redukcja liczebności bakterii z grupy *Escherichia coli* na całym filtrze żwirowo-piaskowym wyniosła 98,13%.
Enterokoki

W tabeli 72 przedstawiono podstawowe statystyki opisujące liczebności enterokoków w ściekach dopływających i odpływających z badanych warstw filtru.

Tabela 72. Zestawienie podstawowych statystyk opisujących liczebności enterokoków w ściekach wstępnie oczyszczonych, po przeszyczeniu przez warstwę żwiru oraz po przeszyczeniu przez warstwę piasku w prototypie filtru

Table 72. Summary of basic descriptive statistics for the abundance of *fecal enterococci* in pre-treated sewage, after being filtered through a layer of gravel and after filtration through a layer of sand in the prototype of the filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Liczebność enterokoków [NPL\cdot100 cm^{-3}]</th>
<th>Redukcja liczebności enterokoków [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ścieki wstępnie oczyszczonych</td>
<td>Po warstwie żwirowej</td>
</tr>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>$3.31 \cdot 10^7$</td>
<td>$4.86 \cdot 10^5$</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_c</td>
<td>$1.01 \cdot 10^7$</td>
<td>$1.0 \cdot 10^5$</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>$1.0 \cdot 10^6$</td>
<td>$1.0 \cdot 10^5$</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>$1.0 \cdot 10^8$</td>
<td>$1.0 \cdot 10^6$</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>12,8</td>
<td>0,09</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Analizując dane z tabeli 72 należy stwierdzić, że liczebność enterokoków w ściekach po osadniku gnilnym zawarta była w przedziale od $1,0 \cdot 10^6$ do $1,0 \cdot 10^8$ NPL\cdot100 cm^{-3}. Średnia liczebność enterokoków wyniosła $3,31 \cdot 10^7$ NPL\cdot100 cm^{-3}.

Średnia liczebność enterokoków w ściekach oczyszczonych po warstwie żwirowej wyniosła $4,86 \cdot 10^5$ NPL\cdot100 cm^{-3}. Zaobserwowano zmniejszenie liczebności enterokoków po przeszyczeniu przez warstwę żwir o 93,99%. Niższą średnią liczebność enterokoków stwierdzono w ściekach oczyszczonych po przeszyczeniu przez cały filtr żwirowo-piaskowy „F1”, gdzie średnia liczebność wyniosła $1,74 \cdot 10^5$ NPL\cdot100 cm^{-3}. Należy zauważyć znaczne zmniejszenie enterokoków po przeszyczeniu ścieków przez warstwę żwirowo-piaskową.

Na podstawie wartości liczebności enterokoków w ściekach dopływających do filtru, po przeszyczeniu przez warstwę żwirową filtru oraz ścieków oczyszczonych określono redukcję enterokoków z poszczególnych etapów oczyszczania (tabela 72). Na tej podstawie stwierdzono, że średnia redukcja liczebności enterokoków po warstwie żwir wyniosła 93,99%, a po przeszyczeniu przez samą warstwę piasku 67,00%. Całkowita średnia redukcja liczebności enterokoków na całym filtrze żwirowo-piaskowym wyniosła 98,13%.
Bakterie z rodzaju Salmonella sp.

W tabeli 73 przedstawiono podstawowe statystyki opisujące liczebności bakterii z rodzaju Salmonella sp. w ściekach dopływających i odpływających z badanych warstw prototypu zmodyfikowanego filtru zwirowo-piaskowego o przepływie pionowym.

Tabela 73. Zestawienie podstawowych statystyk opisujących liczebność bakterii z rodzaju Salmonella sp. w ściekach wstępnie oczyszczonych, po przesączaniu przez warstwę żwirową oraz po przesączaniu przez warstwę piasku w prototypie zmodyfikowanego filtru zwirowo-piaskowego o przepływie pionowym

Table 73. Summary of basic descriptive statistics for the abundance of Salmonella sp. in pre-treated sewage, after being filtered through a layer of gravel and after filtration through a layer of sand in the prototype of a vertical flow gravel and sand filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Liczebność bakterii z rodzaju Salmonella sp. [jtk]</th>
<th>Redukcja liczebności bakterii z rodzaju Salmonella sp. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>(\bar{X})</td>
<td>739,4</td>
<td>425,6</td>
</tr>
<tr>
<td>Mediana</td>
<td>(m_\text{m})</td>
<td>360,0</td>
<td>99,0</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>34,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1815,0</td>
<td>1471,0</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>1781,0</td>
<td>1462,0</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>(\sigma)</td>
<td>703,4</td>
<td>515,4</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>(\nu_{\text{zm}})</td>
<td>0,95</td>
<td>1,21</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Na podstawie danych z tabeli 73 można zauważyć wysokie liczby bakterii Salmonella sp. w ściekach po osadniku gnilnym, zawarte są w przedziale od 34 jtk do 1815 jtk. Taki szeroki zakres wynika z faktu, że niższe wartości kolonii bakterii zaobserwowano w okresie początkowej eksploatacji osadnika gnilnego. W miarę eksploatacji osadnika gnilnego i narastania w nim ilości zanieczyszczeń zaobserwowano wyższe wartości kolonii bakterii salmonella sp. (1815 jtk). Średnia wartość kolonii bakterii salmonella sp. w ściekach dopływających do filtru wyniosła 739,4 jtk.

Średnia liczności bakterii z rodzaju Salmonella sp. w ściekach oczyszczonych po warstwie żwirowej wyniosła 425,6 jtk. Zaobserwowano zmniejszenie liczebności bakterii po przesączaniu przez warstwę żwirową na poziomie 313,8 jtk. Znacznie niższą średnią liczebność bakterii z rodzaju Salmonella sp. (8,9 jtk) stwierdzono w ściekach oczyszczonych po przesączaniu przez cały filtr.
źwirowo-piaskowy „F1”. Tak więc należy zauważyć znaczne zmniejszenie bakterii z rodzaju *Salmonella sp.* po przeszczepieniu ścieków przez warstwę piaskową, które średnio wyniosło 416,7 jtk. Podkreślę zatem należy, że warstwa piasku o miąższości 60 cm wpływa bardzo korzystnie na zmniejszenie liczebności bakterii z rodzaju *Salmonella sp.*

Na podstawie wartości liczebności bakterii w ściekach dopływających do filtra, po przeszczepieniu przez warstwę żwirową filtra oraz ścieków oczyszczonych określono redukcję bakterii z rodzaju *Salmonella sp.* z poszczególnych etapów oczyszczania (tabela 73). Na tej podstawie stwierdzono, że średnia redukcja liczebności bakterii z rodzaju *Salmonella sp.* po warstwie żwirowej wyniosła 46,63%, a po przeszczepieniu przez samą warstwę piasku wyniosła dwukrotnie więcej, tj. 90,71%. Całkowita średnia redukcja liczebności bakterii z rodzaju *Salmonella sp.* na całym filtrze żwirowo-piaskowym wyniosła 93,97%.

Na rysunku 80 przedstawionograficzny obraz median, kwantyli oraz zakresów wartości nieodstających dla liczebności bakterii z rodzaju *Salmonella sp.* dla zadanych głębokości złoża filtracyjnego prototypu „F1”.

Rysunek 80. Wartości mediany, kwantyle (25% i 75%) oraz zakresu wartości nieodstających dla liczebności bakterii z rodzaju *Salmonella sp.* w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filtra

Figure 80. Values of median, quantile (25% and 75%) and the range of non-deviating values for the abundance of *Salmonella sp.* in sewage from individual depths of filter bed of the modified filter prototype

Biorąc pod uwagę wartości przedstawione na rysunku 80 daje się zauważyć spadek mediany liczebności bakterii z rodzaju *Salmonella sp.* wraz z głębokością złoża filtracyjnego. Mediana liczebności bakterii z rodzaju *Salmonella sp.* w ściekach dopływających do złoża wyniosła 360,0 jtk podczas, gdy po
przeszczepieniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 99,0 jtk na-
tomiat dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wy-
iosła 8,0 jtk.

Bakterie z rodzaju Shigella sp.
W dalszej części w tabeli 74 przedstawiono podstawowe statystyki opisujące
liczności bakterii z rodzaju *Shigella sp.* w ściekach dopływających i od-
pływających z warstw prototypu zmodyfikowanego filtru.

Tabela 74. Zestawienie podstawowych statystyk opisującej liczebność bakterii z rodzaju
Shigella sp. w ściekach wstępnie oczyszczonych, po przeszczepieniu przez warstwę żwirową oraz po przeszczepieniu przez warstwę piaskową w prototypie zmodyfikowanego filtru

Table 74. Summary of basic descriptive statistics for the abundance of *Shigella sp.*
in pre-treated sewage, after being filtered through a layer of gravel and after filtration through a layer of sand in the prototype of the modified filter

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Liczebność bakterii z rodzaju Shigella sp. [jtk]</th>
<th>Redukcja liczebności bakterii z rodzaju Shigella sp. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Średnia</td>
<td>\bar{X}</td>
<td>528,6</td>
<td>289,1</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_M</td>
<td>420,0</td>
<td>116,0</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>121,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>1236,0</td>
<td>742,0</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>R_s</td>
<td>1115,0</td>
<td>737,0</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>370,8</td>
<td>273,0</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>0,70</td>
<td>0,94</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Analizując dane z tabeli 74 daje się zauważyć wysokie liczebności bakterii
Shigella sp. w ściekach po osadniku gnilnym, gdzie stwierdzono średnią wartość
na poziomie 528,6 jtk. Średnia liczebność bakterii z rodzaju *Shigella sp.* w ściekach
oczyszczonych po warstwie żwirowej wyniosła 289,1 jtk. analizowano zmniejszenie blisko o połowę liczebności bakterii po przeszczepieniu przez warstwę żwirową (239,5 jtk). Można stwierdzić, że warstwa żwiru w niskim stopniu przyczyniła się do zmniejszenia liczebności bakterii. Znacznie niższą średnią liczebność bakterii (12,4 jtk) stwierdzono w ściekach oczyszczonych po przeszczepieniu przez cały filtr żwirowo-piaskowy „F1”. Można zatem zauważyć znaczne zmniejszenie liczebności bakterii po przeszczepieniu ścieków przez warstwę piaskową, które średni wyniosło 276,7 jtk. Podkreślę zatem należy, że warstwa piasku o miąższości 60 cm wpływa bardzo korzystnie na zmniejszenie liczebności tych bakterii.
Na podstawie liczebności bakterii *Shigella sp.* w ściekach dopływających do filtru, po przesączaniu przez warstwę żwirową filtru oraz ścieków oczyszczonych określono redukcję bakterii w ściekach po poszczególnych etapach oczyszczania (tabela 74). Na tej podstawie stwierdzono, że średnia redukcja liczebności bakterii po warstwie żwiru wyniosła 50,12%, a po przesączaniu przez samą warstwę piasku wyniosła 85,88%. Całkowita średnia redukcja liczebności bakterii *Shigella sp.* na całym filtrze żwirowo-piaskowym wyniosła 93,73%.

Na rysunku 81 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości nieodstających dla liczebności bakterii z rodzaju *Shigella sp.* dla zadanego głębokości złoża filtracyjnego prototypu „F1”.

Rysunek 81. Wartości mediany, kwantyli (25% i 75%) oraz zakresu wartości nieodstających dla liczebności bakterii z rodzaju *Shigella sp.* w ściekach z poszczególnych głębokości złoża filtracyjnego prototypu zmodyfikowanego filutra żwirowo-piaskowego „F1”

Figure 81. Values of median, quantile (25% and 75%) and the range of non-deviating values for the abundance of *Shigella sp.* in sewage from individual depths of filter bed of the “F1” prototype of the modified gravel and sand filter

Biorąc pod uwagę wartości przedstawione na rysunku 81 daje się zauważyć spadek mediany liczebności bakterii z rodzaju *Shigella sp.* wraz z głębokością złoża filtracyjnego. Mediana liczebności bakterii z rodzaju *Shigella sp.* w ściekach dopływających do złoża wyniosła 420,0 jtk podczas gdy po przesączaniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 116,0 jtk natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 11,0 jtk.
Bakterie z rodzaju *Clostridium perfringens*

Jako ostatni ze wskaźników mikrobiologicznych przedstawiono liczebności bakterii z rodzaju *Clostridium perfringens*. W tabeli 75 przedstawiono podstawowe statystyki opisowe liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach dopływających i odpływających z badanych warstw prototypu zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym.

Tabela 75. Zestawienie podstawowych statystyk opisujących liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach wstępnie oczyszczonych, po przeszczepieniu przez warstwę żwiru oraz po przeszczepieniu przez warstwę piasku w prototypie zmodyfikowanego filtra

<table>
<thead>
<tr>
<th>Statystyka opisowa</th>
<th>Symbol</th>
<th>Liczebność bakterii z rodzaju Clostridium perfringens [jtk]</th>
<th>Redukcja liczebności bakterii z rodzaju Clostridium perfringens [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>wstępnie oczyszczony. Po warstwie żwirowej</td>
<td>Po warstwie piaskowej</td>
</tr>
<tr>
<td>Średnia</td>
<td>\overline{x}</td>
<td>2179,6</td>
<td>118,0</td>
</tr>
<tr>
<td>Mediana</td>
<td>m_e</td>
<td>134,0</td>
<td>99,0</td>
</tr>
<tr>
<td>Minimalna</td>
<td>Min</td>
<td>49,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Maksymalna</td>
<td>Max</td>
<td>9500,0</td>
<td>245,0</td>
</tr>
<tr>
<td>Rozstęp</td>
<td>Ro</td>
<td>9451,0</td>
<td>235,0</td>
</tr>
<tr>
<td>Odch. stand.</td>
<td>σ</td>
<td>3258,3</td>
<td>75,2</td>
</tr>
<tr>
<td>Wsp. zmien.</td>
<td>V_{zm}</td>
<td>1,49</td>
<td>0,64</td>
</tr>
<tr>
<td>Liczba próbek</td>
<td>N</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Po analizie danych zawartych w tabeli 75 średnia liczebność bakterii z rodzaju *Clostridium perfringens* w ściekach po osadniku gnitnym wynosi 2179,6 jtk. Stwierdzono szeroki zakres wartości w przedziale od 49 jtk do 9500 jtk. Wysoki rozstęp liczebności bakterii może wynikać z gromadzenia się zanieczyszczeń w miarę eksploatacji osadnika gnitnego, a co za tym idzie narastania w nim liczby bakterii *Clostridium perfringens*.

Średnia liczebność bakterii z rodzaju *Clostridium perfringens* w ściekach oczyszczonych po warstwie żwirowej wyniosła 118,0 jtk. Zaobserwowano znaczne zmniejszenie liczebności bakterii po przeszczepieniu przez warstwę żwirową (2061,6 jtk). Dodatkowe zmniejszenie uzyskano na warstwie piaskowej, gdzie w ściekach oczyszczonych po przeszczepieniu przez cały filtr żwirowo-piaskowy „F1” stwierdzono średnią liczebność bakterii z rodzaju *Clostridium perfringens* równą 30,1 jtk. Warstwa żwiru i piasku o łącznej minęsłości 110 cm.
występ w bardzo korzystnie na zmniejszenie liczebności bakterii z rodzaju *Clostridium perfringens*.

Na podstawie liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach dopływających do filtra, po przesączeniu przez warstwę żwirową filtru oraz w ściekach oczyszczonych określono redukcję bakterii w poszczególnych etapach oczyszczania (tabela 75). Na tej podstawie stwierdzono, że średnia redukcja liczebności bakterii z rodzaju *Clostridium perfringens* po warstwie żwiru wyniosła 63,03%, a po przesączeniu przez samą warstwę piasku wyniosła 72,68%. Całkowita średnia redukcja bakterii na całym filtrze żwirowo-piaskowym wyniosła 84,96%.

Na rysunku 82 przedstawiono graficzny obraz median, kwantyli oraz zakresów wartości niedostających dla liczebności bakterii z rodzaju *Clostridium perfringens* dla zadanego głębokości złoża filtracyjnego prototypu „F1”.

![Grafik przedstawiający median, kwantyle i zakres wartości niedostających dla liczebności bakterii z rodzaju Clostridium perfringens.]

Rysunek 82. Wartości mediany, kwantyl (25% i 75%) oraz zakresu wartości niedostających dla liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach o różnorodnych głębokości złoża filtracyjnego.

Figure 82. Values of median, quantile (25% and 75%) and the range of non-deviating values for the abundance of *Clostridium perfringens* in sewage from individual depths of filter bed.

Analizując dane z rysunku 82 daje się zauważyć szeroki zakres wartości niedostających z liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach dopływających do filtra „F1”. Mediana liczebności bakterii z rodzaju *Clostridium perfringens* w ściekach dopływających do złoża wyniosła 134,0 jtk, podczas gdy po przesączeniu ścieków przez warstwę żwirową (po 50 cm) wyniosła 99,0 jtk natomiast dla ścieków po warstwie piaskowej (ścieki oczyszczone) mediana wyniosła 30,0 jtk.
6.2.8. Analiza niezawodności działania prototypu „F1”

W tabeli 76 przedstawiono wyniki estymowane metodą największej wiarygodności wartości parametrów kształtu i skali rozkładu Weibulla, przy założeniu znajomości parametru położenia dla zmodyfikowanego filtra żwirowo-piaskowego „F1”. W oparciu o szereg symulacji, uzyskano optymalną wartość parametru położenia, na podstawie analizy współczynnika determinacji R^2, charakteryzującego jakość dopasowania danych pomiarowych do funkcji Weibulla, przy różnych wartościach parametru położenia. W przypadku ChZTCr dla parametru położenia 16,515 uzyskano maksymalne R^2 równe 0,925, w przypadku BZT$_5$ dla parametru położenia -1,000 max R^2 wynosiło 0,864, a dla zawiesiny ogólnej max R^2=0,972. Wyniki testu Hollandera-Porshana sugerują, że wszystkie analizowane wskaźniki w odpływie z oczyszczalni można opisać rozkładem Weibulla na poziomie istotności $\alpha=0,05$ (wartości prawdopodobieństwa testowego p są większe od przyjętego α).

Tabela 76. Wartości parametrów rozkładu Weibulla wraz z weryfikacją dobroci jego dopasowania do danych empirycznych dla prototypu zmodyfikowanego filtru

<table>
<thead>
<tr>
<th>Wskaźniki</th>
<th>Parametr położenia</th>
<th>Parametr kształtu</th>
<th>Test Hollandera-Porshana</th>
<th>Prawdopodobieństwo testowe p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChZTCr</td>
<td>16,515</td>
<td>1,94</td>
<td>-0,094</td>
<td>0,925</td>
</tr>
<tr>
<td>BZT$_5$</td>
<td>-1,000</td>
<td>2,75</td>
<td>0,171</td>
<td>0,864</td>
</tr>
<tr>
<td>Zawiesina ogólna</td>
<td>-1,000</td>
<td>3,16</td>
<td>0,035</td>
<td>0,972</td>
</tr>
</tbody>
</table>

Na rysunku 83 przedstawiono dystrybuantę rozkładu Weibulla dla ChZTCr z wyznaczonymi przedziałami ufności na poziomie 95%. Wartość dopuszczalna ChZTCr według Rozporządzenia [2006] wynosi 150 mgO$_2$ dm$^{-3}$. Na tej podstawie można stwierdzić, że analizowana oczyszczalnia w okresie badań (od września 2011 roku do grudnia 2012 roku) pracowała z niezawodnością 99,9%. Świadczy to o tym, że przez okres 365 dóbr w roku prototyp zmodyfikowanego filtra „F1” spełniał wymogi dotyczące wartości ChZTCr w ściekach oczyszczonych.
Rysunek 83. Dystrybuanta rozkładu Weibulla dla wartości ChZTCr w ściekach oczyszczonych w prototypie filtra „F1”
Figure 83. Weibull distribution function for CODCr in sewage treated in the “F1” filter prototype

W dalszej kolejności na rysunku 84 przedstawiono dystrybuzję rozkładu Weibulla dla BZT₅ wraz z wyznaczonymi przedziałami ufności na poziomie 95%. Wartość dopuszczalna BZT₅ według Rozporządzenia [2006] wynosi 40 mgO₂.dm⁻³.

Rysunek 84. Dystrybuanta rozkładu Weibulla dla wartości BZT₅ w ściekach oczyszczonych w prototypie filtra „F1”
Figure 84. Weibull distribution function for BOD₅ in sewage treated in the “F1” filter prototype
Na tej podstawie można stwierdzić, że analizowana oczyszczalnia w okresie badań (od września 2011 roku do grudnia 2012 roku) pracowała z bardzo dużą niezawodnością, zbliżoną do 99,9%. Świadczy to o tym, że przez 365 dób w roku prototyp zmodyfikowanego filtra „F1” spełniał wymogi dotyczące wartości BZT₅ w ściekach oczyszczonych.

Jako ostatni przedstawiono wskaźnik zawiesiny ogólnej. Na rysunku 85 przedstawiono dystrybuantę rozkładu Weibulla dla stężenia zawiesiny ogólnej w ściekach oczyszczonych wraz z wyznaczonymi przedziałami ufności na poziomie 95%. Wartość dopuszczalna zawiesiny ogólnej według Rozporządzenia [2006] wynosi 50 mg.dm⁻³. Na tej podstawie można stwierdzić, że analizowana oczyszczalnia w okresie badań (od września 2011 roku do grudnia 2012 roku) pracowała z bardzo dużą niezawodnością zbliżoną do 99,9%. Świadczy to o tym, że przez 365 dób w roku prototyp zmodyfikowanego filtra „F1” spełniał wymogi dotyczące wartości BZT₅ w ściekach oczyszczonych.

Rysunek 85. Dystrybuanta rozkładu Weibulla dla wartości zawiesiny ogólnej w ściekach oczyszczonych w prototypie filtra „F1”

Figure 85. Weibull distribution function for total suspended solids in sewage treated in the “F1” filter prototype

Na podstawie badań Andraki i Dzienisa [2003], przy poziomie ryzyka na poziomie α=0,05 i dla oczyszczalni poniżej 2000 RLM, dopuszczalny poziom niezawodności technologicznej wynosi 97,3%, co odpowiada 9 dniom wadliwej pracy oczyszczalni w ciągu roku. W oparciu o przeprowadzoną analizę niezawodności funkcjonowania zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym oraz kryterium niezawodności według Andraki i Dzienisa [2003] można stwierdzić, że badany obiekt należy zakwalifikować do oczyszczalni charakteryzujących się bardzo wysokim poziomem niezawodności.
7. PODSUMOWANIE I WNIOSKI

Na rynku jest stosowanych wiele rozwiązań przydomowych oczyszczalni ścieków. Jednym z najstarszych i powszechnie stosowanych jest układ osadnik gnilny z filtrem piaskowym o przepływie pionowym. Filtr piaskowy jest urządzeniem, które stosowane jest jako drugi stopień oczyszczania ścieków bytowych. Filtrat odpływający z tego typu urządzenia jest bezbarwny, klarowny i pozbawiony zapachu. Wadą filtrów piaskowych jest ich duża powierzchnia (nawet 7 m2·M$^{-1}$), która niejednokrotnie dyskwalifikuje to rozwiązanie na małych działkach. W niniejszej pracy przedstawiono wyniki badań skuteczności zmniejszania zanieczyszczeń z wykorzystaniem zmodyfikowanego filtra źwirowo-piaskowego o przepływie pionowym (filtr zakryty). Taki zmodyfikowany filtr zajmuje znacznie mniejszą powierzchnię (1,15 m2·M$^{-1}$), czyli jest kilkakrotnie mniejszy niż w przypadku klasycznych rozwiązań tego typu. Badania zostały wykonane w kilku etapach. W pierwszej kolejności wykonano badania w laboratorium, na modelu „M1” oraz na modelu „R1”. Na podstawie tych badań określono parametry zmodyfikowanego filtra źwirowo-piaskowego i wybudowano jego prototyp w terenie w warunkach rzeczywistych. Badania terenowe przeprowadzono w okresie od września 2011 roku do grudnia 2012 roku. Prototyp został wybudowany w miejscowości Ujazd, gmina Trzciana powiat bocheński, województwo małopolskie. Oczyszczalnia została zaprojektowana dla ścieków bytowych powstających w gospodarstwie zamieszkiwanym przez 5 osób. Próbki ścieków były pobierane ze studni rozdzielczej (ścieki wstępnie oczyszczone w osadniku gnilnym) oraz ścieki oczyszczone ze studzienki przepływowej. Dodatkowo pobierano próbki ścieków z założonych głębokości złoża filtracyjnego (10 ; 30 ; 50 ; 90 cm). Pobrane próbki ścieków przewożono do laboratorium Katedry Inżynierii Sanitarnej i Gospodarki Wodnej Wydziału Inżynierii Środowiska i Geodezji Uniwersytetu Rolniczego w Krakowie. Analizie fizyko-chemicznej poddano następujące wskaźniki zanieczyszczenia ścieków: BZT$_5$, ChZT$_{0}$, tlen rozpuszczony, zawiesina ogólna, odczyn pH, fosfor ogólny, azot amonowy N-NH$_4$, azot organiczny, azot całkowity Kjeldahla, azot azotynowy N-NO$_2$, azot azotanowy N-NO$_3$ oraz azot ogólny. Dodatkowo wykonano analizy mikrobiologiczne dotyczące 6 wskaźników (bakterie grupy coli, Escherichia coli, Enterokoki, Salmonella sp., Shigella sp. oraz Clostridium perfringens) w ściekach dopływających do zmodyfikowanego filtra, na odpływie z warstwy źwirowej oraz na odpływie z warstwy piaskowej.
Mierzona była również objętość ścieków dopływających do oczyszczalni za pomocą zestawu wodomierza sprzężonego z rejestratorem impulsów (przyjęto, że do oczyszczalni trafia 98% wody pomierzonej za pomocą zestawu). Ponadto dokonano w badanym okresie pomiaru temperatury powietrza, temperatury ścieków dopływających do filtru „F1” oraz temperatury ścieków odpływających z filtru „F1”.

Wnioski na podstawie badań laboratoryjnych

Na podstawie przeprowadzonych wstępnych badań laboratoryjnych można przedstawić następujące wnioski:

1. Warstwa wirowa (zabezpieczająca) o grubości 50 cm modelu „M1” w istotny sposób zmniejszyła wartość wskaźników: BZT₅, ChZT₇₅, zawiesiny ogólnej.
2. Średnia redukcja badanych wskaźników w modelu „M1” wyniosła odpowiednio: dla BZT₅ (83,99%), ChZT₇₅ (75,37%), zawiesiny ogólnej (74,75%). Należy zauważyć, że pierwsza warstwa wirowa w znacznym stopniu zmniejszyła wartości badanych wskaźników zanieczyszczających przyczyniających się tym samym do zabezpieczenia właściwej warstwy filtracyjnej przed nadmiernym obciążeniem ładunkiem zanieczyszczeń.
3. Liczba dawkowa ma istotny wpływ na jakość ścieków oczyszczonych. Najwyższe wartości wskaźników odnotowano przy czterech dawkowaniach ścieków na dobę, a najniższe przy 24 dawkowaniach. Zaleca się stosowanie większej liczby dawkowań w ciągu doby (min 12 razy na dobę), ze względu na lepszy efekt oczyszczania ścieków.
4. Nie stwierdzono istotnych statystycznie różnic wartości wskaźników ścieków oczyszczonych ze względu na obciążenie hydrauliczne. Niemniej jednak najniższe wartości wskaźników uzyskano przy najniższym obciążeniu hydraulicznym (38 dm³⋅d⁻¹⋅m⁻²), a najwyższe przy obciążeniu 135 dm³⋅d⁻¹⋅m⁻².
5. Na podstawie badań przeprowadzonych na modelu „M1” stwierdzono niewłaściwe wykorzystanie warstwy zabezpieczającej złoża. Około 40% złoża nie brało udziału w oczyszczaniu ścieków ze względu na pionowy przepływ ścieków z góry na dół, większe wykorzystanie złoża zaobserwowano w warstwie piaskowej ponad 75%. Na tej podstawie podjęto decyzje o zastosowaniu w terenie w prototypie nowatorskiego rozwiązania rozprowadzania ścieków w postaci pakietów rozsądzających. W stosunku do klasycznych rozwiązań zastosowano 10 krótne mniejszą rozstawę drenów rozprowadzających (20 cm między drena- mi), podczas gdy w klasycznych rozwiązaniach stosowana jest rozstawa 2,0 m.
6. Stwierdzono wzrost średniej wartości badanych wskaźników w ściekach oczyszczonych wraz ze wzrostem obciążenia hydraulicznego złoża filtracyjnego modelu „M2”.
7. Na podstawie badań przeprowadzonych na modelu „M2”, proponuje się dopuszczalne obciążenie hydrauliczne złoża filtracyjnego prototypu zmodyfikowanego filtra wirowo-piaskowego nieprzekraczające 125 dm³⋅d⁻¹⋅m⁻².
Wnioski na podstawie badań terenowych.

8. Obciążenie hydrauliczne drenów rozprowadzających ścieki w zmodyfikowanym filtrze żywirowo-piaskowym „F1” wahało się od 10,18 dm3.d$^{-1}$.m$^{-1}$ do 71,03 dm3.d$^{-1}$.m$^{-1}$, przy średnim wynoszącym 31,10 dm3.d$^{-1}$.m$^{-1}$. Obciążenie hydrauliczne powierzchni filtru wyniosło od 29,17 dm3.d$^{-1}$.m$^{-2}$ do 203,47 dm3.d$^{-1}$.m$^{-2}$, natomiast średnie 89,08 dm3.d$^{-1}$.m$^{-2}$.

9. Na podstawie analiz fizyko-chemicznych stwierdzono bardzo wysokie wartości badanych wskaźników zanieczyszczeń w ściekach dopływających do filtra „F1”. Świadczy to, że badana oczyszczalnia wykazywała wysoką skuteczność w ich zanieczyszczeniach mimo wysokiego obciążenia ładunkiem. Tego typu rozwiązania powinny być stosowane w oczyszczaniu małych ilości ścieków, ze względu na dużą stabilność w pracy w warunkach zmiennego dopływu ścieków i dużych wahania w zawartości zanieczyszczeń.

10. W wierzchniej warstwie żywirowej (10 cm) obserwowano bardzo duże zmniejszenie wartości badanych wskaźników. Procesy zachodziły bardzo intensywnie, czego przyczyną mogły być wysokie wartości wskaźników w ściekach dopływających do filtra.

11. Stwierdzono, że miąższość złóż filtracyjnego jest czynnikiem istotnie wpływającym na wartość stężenia wskaźników w ściekach pobranych z zadań głębokości złóż filtracyjnego.

12. Zastosowanie warstwy zabezpieczającej wykonanej z drobnego żywiołu miarodajnej d$_{10}$=1,66 mm i miąższości 50 cm jest zasadne i wskazane przy projektowaniu zmodyfikowanego filtra o przepływie pionowym.

13. Średnie wartości wskaźników zanieczyszczenia ścieków po przeszczepieniu przez właściwą warstwę filtracyjną nie przekraczały wartości dopuszczalnych zawartych w obowiązujących aktach prawnych.

15. Średnia redukcja stężenia zanieczyszczeń po przeszczepieniu ścieków przez właściwą warstwę filtracyjną była stosunkowo niska i wyniosła: dla BZT$_5$ (10,6%); dla CHZTCr (11,12%); dla zawiesiny ogólnej (5,36%); dla fosforu ogólnego (12,14%); dla azotu amonowego (7,84%); dla azotu ogólnego (4,90%). Powodem tego stanu były niskie wartości wskaźników w ściekach dopływających do właściwej warstwy filtracyjnej. Władcowa warstwa filtracyjna była w niewielkim stopniu obciążana ładunkiem zanieczyszczeń, co jest korzystne ze względu na długie funkcjonowanie prototypu bez kolmatacji warstwy piaskowej.

16. Średnia redukcja zanieczyszczeń w prototypie zmodyfikowanego filtra żywirowo-piaskowego była wysoka i wyniosła: dla BZT$_5$ (97,27%); dla CHZTCr,
Skuteczność oczyszczania ścieków...

(94,84%); dla zawiesiny ogólnej (91,25%); dla fosforu ogólnego (66,20%); dla azotu amonowego (92,74%); dla azotu ogólnego (64,79%).

17. Średnia redukcja liczby bakterii w filtrze „F1” była bardzo duża i wyniosła odpowiednio: dla bakterii grupy Coli (98,25%); dla bakterii grupy Escherichia coli (98,13%); dla Enterokoków (98,13%); dla bakterii z rodzaju Salmonella sp. (93,97%); dla bakterii z rodzaju Shigella sp. (93,73%); dla bakterii z rodzaju Clostridium (84,96%).

Wnioski ogólne

• Na podstawie przeprowadzonych badań w laboratorium oraz badań w terenie proponuje się stosować jako układ II stopnia oczyszczania ścieków bytowych następujące rozwiązania:
 - zmodyfikowany filtr źwirowo-piaskowy o przepływie pionowym dla 1-5 mieszkańców o nazwie „ZFŻ-P 1-5”;
 - zmodyfikowany filtr źwirowo-piaskowy o przepływie pionowym dla 6-10 mieszkańców o nazwie „ZFŻ-P 6-10” (szczegółowe rysunki przedstawiono w załączniku nr 1 i 2).
• Zaleca się stosowanie głowic rozdzielczych o średnicy 200 mm z przewodami rozdzielczymi o średnicy wewnętrznej w zakresie od 10 mm do 15 mm.
• Zaleca się stosowanie warstwy zabezpieczającej wykonanej z drobnego żwiru o średnicy miarodajnej \(d_{10} = 1,66 \) mm i miąższości 50 cm. Pod tą warstwą powinna być ulożona właściwa warstwa filtracyjna wykonana z piasku płukanego o średnicy miarodajnej \(d_{10} = 0,40 \) mm i miąższości co najmniej 60 cm.
• Niewątpliwą zaletą zmodyfikowanego filtra źwirowo-piaskowego o przepływie pionowym jest niewielka powierzchnia jaką zajmuje (1,15 \(\text{m}^2 \cdot \text{M}^{-1} \)), podczas gdy w klasycznych rozwiązaniach jest to nawet 7 \(\text{m}^2 \cdot \text{M}^{-1} \).
• Biorąc pod uwagę, że usuwanie zanieczyszczeń następuje najintensywniej w początkowej głębokości warstwy zabezpieczającej, bardzo ważną sprawą jest równomierne rozprowadzenie ścieków wstępnie oczyszczonych po powierzchni warstwy zabezpieczającej wykonanej z drobnego żwiru. Zastosowanie innowacyjnego układu rozprowadzającego ścieki pozwoliło w badanym okresie optymalnie wykorzystać powierzchnię złożą filtracyjnego.

Ze względu na znaczne wartości związków biogennych w ściekach oczyszczonych nie zaleca się stosowania zmodyfikowanego filtra źwirowo-piaskowego przy odprowadzaniu ścieków oczyszczonych do wód stojących i jezior.

Skuteczność oczyszczania ścieków...

Krzysztof Chmielowski

rolniczo-przemysłowych”. Kontenerowe i Przydomowe Oczyszczalnie Ścieków, Białystok, 119-127.

Kucharski B., Rak J. (1991b.) Problemy oczyszczalni ścieków ze złożami tarczowymi w świetle rozwiązań technicznych oczyszczalni ELJOT i KOS. Seminarium Eksploatacja oczyszczalni ścieków w Sielpi”. Wydawnictwo PZITS - Kielce, 47-54.

Skuteczność oczyszczania ścieków...

Onsite Wastewater Treatment and Disposal System. (1980). Design Manuel. EPA – USA.

213
Krzysztof Chmielowski

Rozporządzenie Ministra Infrastruktury z dnia 7 kwietnia 2004 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Dz. U. nr 109, poz. 1156.

Rozporządzenie MS z dnia 24 lipca 2006 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dz. U. nr 137, poz. 984.

214
Skuteczność oczyszczania ścieków...

STRESZCZENIE

Nieoczyszczone ścieki bytowe na terenach wiejskich stanowią nadal poważne zagrożenie dla środowiska naturalnego. Brak jednoczesnej budowy systemów wodociągowych i kanalizacyjnych na terenach wiejskich przyczynił się do powstania znacznych dysproporcji pomiędzy zaopatrzeniem w wodę, a odprowadzeniem ścieków. Ścieki surowe wprowadzone do naturalnego odbiornika powodują szybką degradację życia w odbiorniku i przyczyniają się do zachwiania równowagi biologicznej w środowisku. Ścieki nieoczyszczone mogą doprowadzić do pogorszenia jakości wody w studniach indywidualnych, a nawet doprowadzić do całkowitego jej skażenia.

Celem pracy była analiza skuteczności oczyszczania ścieków bytowych w przydomowej oczyszczalni z wykorzystaniem zmodyfikowanego filtra świrowo-piaskowego o przepływie pionowym. Cel pracy został zrealizowany poprzez wykonanie wstępnych badań laboratoryjnych z wykorzystaniem modelu wycinkowego „M1” w skali 1:1, a następnie wykonanie prototypu zmodyfikowanego filtra „F1” w terenie i określenie skuteczności działania w warunkach terenowych. Na tej podstawie autor zaproponował nowatorskie rozwiązanie, zmodyfikowany filtr świrowo-piaskowy o przepływie pionowym. Obecnie trwają procedury związane ze zgłoszeniem patentowym prototypu zmodyfikowanego filtra świrowo-piaskowego.

Autorskie rozwiązanie filtra piaskowego o przepływie pionowym polegało na:

- wprowadzeniu przed właściwą warstwą filtracyjną (piaskową) warstwy zapobiegającej z drobnego wiru,
- zastosowaniu innowacyjnego układu rozprowadzającego ścieki w postaci autorskiego rozwiązania,
- zmniejszeniu powierzchni filtra w stosunku do rozwiązań klasycznych.

Klasyczne filtry piaskowe o przepływie pionowym zajmują znaczą powierzchnię (25-30 m² dla pięcioosobowego gospodarstwa). W pracy podjęto próbę zmniejszenia wymiarów filtra w planie. Ważnym elementem modyfikacji złoża jest zaprojektowanie odpowiedniego systemu rozprowadzania ścieków tak, aby wykorzystać warstwę filtracyjną w jak najwyższym stopniu. Rozstawa drenów rozprowadzających ścieki po powierzchni złoża filtracyjnego w konwencjonalnych rozwiązyaniach jest bardzo duża i wynosi nawet 200 cm. Przy mniejściowej właściwej warstwie filtracyjnej wynoszącej od 60 do 100 cm może dochodzić do nierównomiernego obciążenia złoża filtracyjnego. Poprzez zwiększenie wykorzystania warstwy filtracyjnej oraz wprowadzenie dodatkowej warstwy zapobiegającej (z drobnego wiru) można znacznie zmniejszyć wymiary
filtru piaskowego o przepływie pionowym, przy równoczesnym zachowaniu jakości filtratu na dopuszczałnym poziomie.

Badania obejmowały między innymi określenie wartości wskaźników fizyko-chemicznych zanieczyszczenia w ściekach dopływających oraz odpływających z filtru: BZT₅, ChZT₉, tlen rozpuszczony, zawiesina ogólna, odczyn pH, fosfor ogólny, azot amonowy N-N₄, azot organiczny, azot całkowity Kjeldaha, azot azotanowy N-NO₃ oraz azot ogólny, (dodatkowo określono wartości wskaźników fizykochemicznych ścieków pobranych z następujących głębokości złoża filtracyjnego: 10 cm, 30 cm, 50 cm, 90 cm). Ponadto określono wartości wskaźników mikrobiologicznych zanieczyszczenia ścieków: bakterie grupy coli, Escherichia coli, Enterokoki, Salmonella sp., Shigella sp. oraz Clostridium perfringens) w ściekach dopływających do filtra, na odpływie z warstwy żwirowej oraz na odpływie z warstwy piaskowej.

Na podstawie przeprowadzonych analiz wyników badań zaleca się stosowanie warstwy zabezpieczającej, wykonanej z drobnego wiru o średnicy miarodajnej d₁₀=1,66mm i miąższości 50 cm. Pod tą warstwą powinna być ułożona właściwa warstwa filtracyjna wykonana z piasku plukanego o średnicy miarodajnej d₁₀=0,40mm i miąższości co najmniej 60 cm. Niewątpliwą zaletą zmodyfikowanego filtra żwirowo-piaskowego o przepływie pionowym jest niewielka powierzchnia jaką zajmuje (1,15 m²·M⁻¹) podczas gdy w klasycznych rozwiązaniach jest to nawet 7 m²·M⁻¹. Biorąc pod uwagę, że usuwanie zanieczyszczeń następuje w fazie złożonej, bardzo ważną sprawą jest równomiernie rozprowadzenie ścieków wstępnie oczyszczonych po powierzchni warstwy zabezpieczającej wykonanej z drobnego wiru. Zastosowanie innowacyjnego układu rozprowadzającego ścieki pozwoliło w badanym okresie optymalnie wykorzystać powierzchnię złoża filtracyjnego. Ze względu na znaczną wartość związków biogennych w ściekach oczyszczonych nie zaleca się stosowania zmodyfikowanego filtra żwirowo-piaskowego przy odprowadzaniu ścieków oczyszczonych do wód stojących i jezior.

Słowa kluczowe: ścieki bytowe, oczyszczalnia ścieków, zmodyfikowany filtr żwirowo-piaskowy, redukcja zanieczyszczeń.
SUMMARY

Untreated domestic sewerage still poses a serious threat to the environment in rural areas. The lack of simultaneous construction of water supply and sewerage systems in rural areas contributed to the significant imbalance between water supply and sewage discharge. Raw sewage, entering the natural receiver, cause rapid degradation of life and contribute to the biological imbalance in the environment. Untreated sewage can cause the deterioration of water quality in private wells and may even lead to its total contamination.

In areas, where it is impossible to implement collective sewerage systems, there is an alternative in the form of building septic tanks or household sewage treatment plants. The development of household sewage treatment plants in Poland has been observed for decades. There were 4000 household sewage treatment plants registered in 1998, while in 1999 this number increased to 18054. A rapid increase was observed in subsequent years, i.e. in 2008 there were 51,943 registered household sewage treatment plants, in 2010 this number increased to about 81 thousand and in 2011 about 103 thousand treatment plants were registered. In the near future a dramatic increase in the number of newly built household sewage treatment plants is expected.

The aim of this study was to analyze the efficiency of domestic sewage treatment in a household sewage treatment plant with a modified vertical flow sand and gravel filter. The aim was achieved by performing preliminary laboratory studies using a fragmentary "M1" model in a scale 1:1, and then by construction of a modified prototype of "F1" filter in the field and determining its effectiveness under field conditions. On this basis, the author proposed an innovative solution - a modified vertical flow gravel and sand filter. Currently, the procedures related to the patent application of the prototype of the modified gravel and sand filter are being underway.

The original solution in the vertical flow sand filter consisted in:

– placement of a protective layer of small pebbles before the filtration (sand) layer,
– application of innovative sewage distribution system in the form of the proprietary solution,
– reduction of the filter surface as compared to conventional solutions.

The classic vertical flow sand filters occupy a significant surface (25-30 m² for a five persons household). This study attempts to reduce the dimensions of the filter on the plan. An important element of the bed's modification is the design of a suitable sewage distribution system in order to utilize the filter layer as much as possible. The spacing of sewage distribution drains on the surface of the filter bed in conventional solutions is very large and ranges up to 200 cm. With thickness of the proper filtration layer from 60 to 100 cm the filter bed may be unevenly loaded. By increasing the use of the filter layer and introducing an additional protective layer (made of small pebbles) one can significantly reduce the dimensions of vertical flow sand filter while at the same time maintaining the acceptable level of the filtrate quality.

The study included the determination of physical and chemical indicators of pollution in sewage flowing into and out of the filter: BOD₅, CODC₅, dissolved oxygen, total
suspended solids, pH, total phosphorus, ammonium nitrogen NH₄, organic nitrogen, total Kjeldahl nitrogen, nitrite nitrogen NO₂, nitrate nitrogen NO₃ and total nitrogen (the values of physical and chemical indicators of sewage collected from the following depths of the filter bed were determined: 10 cm, 30 cm, 50 cm, 90 cm). Moreover, the abundance of microbial indicators of sewage pollution (coli-form bacteria, Escherichia coli, Enterococcus faecalis, Salmonella spp., Shigella spp. and Clostridium perfringens) was determined in sewage flowing into the filter, at the outflow from the gravel layer and at the outflow from the sand layer.

Based on the results of the analyzes it is recommended to use a protective layer made of small pebbles with a normal grain size of d₁₀=1.66mm and thickness of 50 cm. Under this layer there should be a proper filtration layer made of rinsed sand with normal diameter of d₁₀=0.40mm and thickness of at least 60 cm. An important advantage of the modified vertical flow gravel and sand filter is its small surface (1.15 m²·M⁻¹) while in the classical solutions it is even up to 7 m²·M⁻¹. Taking into consideration that the removal of pollutants is most intense at the initial depth of the protective layer, it is very important to evenly distribute the pre-treated sewage over the surface of the protective layer made of small pebbles. The use of innovative sewage distribution system allowed the optimal use of the filter bed’s surface during the study period. Due to the large amounts of biogenic compounds in treated sewage, the use of the modified vertical flow gravel and sand filter is not recommended when discharging treated sewage into stagnant water bodies and lakes.

Key words: domestic sewage, sewage treatment plant, modified gravel and sand filter, pollutants removal efficiency
ZAŁĄCZNIK NR 1

a) Zmodyfikowany filtr źwirowo-piaskowy o przepływie pionowym – widok z góry (wariant dla 1-5 mieszkańców)

![Diagram of the water treatment system with labels and measurements.]

- osadnik gminny
- studzienka rozdzielcza
- głowica rozdzielcza
- przewody peszel ∅ 32 mm
- głowica wywrotne
- korytko wywrotne
- osłona korytek rozprowadzających
- studzienka rozdzielcza
- rura do napowietrzania ∅ 100 mm
- peszel do napowietrzania ∅ 50 mm
- studzienka kontrolna
- odprowadzenie do odbiornika

Measurements:
- 50 0 50 100 150 200 cm
b) Zmodyfikowany filtr żwirowo-piaskowy o przepływie pionowym (wariant dla 1-5 mieszkańców) - przekrój A-A

![Diagram A-A]

- folia PE
- rura zbierająca Ø 100 mm
- studienka rozdzielcza
- rura napowietrzająca Ø 100 mm
- osadnik gnilny
- głowica rozdzielcza
- przewody peszel Ø 32 mm
- peszel napowietrzający Ø 50 mm
- studienka kontrolna
- folia PE
- odprowadzenie do odbiornika
- rura napowietrzająca Ø 100 mm
- osłona korytka
- korytko
- korytko
- do rozprowadzenia ścieków
- żwir d10 = 1,66 mm
- piasek d10 = 0,40 mm
- korytko
- peszel napowietrzający Ø 80 mm
- peszel napowietrzający Ø 50 mm
- peszel napowietrzający Ø 100 mm

50 0 50 100 150 200 cm

50 0 50 100 150 200 cm

50 0 50 100 150 200 cm

c) Zmodyfikowany filtr żwirowo-piaskowy o przepływie pionowym (wariant dla 1-5 mieszkańców) - przekrój B-B

![Diagram B-B]
Skuteczność oczyszczania ścieków...

ZAŁĄCZNIK NR 2

a) Zmodyfikowany filtr żwirowo-piaskowy o przepływie pionowym (wariant dla 6-10 mieszkańców) - widok z góry

![Diagram of the filtration system](image-url)
b) Zmodyfikowany filtr żwirowo-piaskowy o przepływie pionowym (wariant dla 6-10 mieszkańców) - przekrój A-A

c) Zmodyfikowany filtr żwirowo-piaskowy o przepływie pionowym (wariant dla 6-10 mieszkańców) - przekrój B-B
INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH

Czasopismo naukowe wydawane przez Komisję Technicznej Infrastruktury Wsi Polskiej Akademii Nauk Oddział w Krakowie. Ma charakter ogólnokrajowy i jest otwarte na Autorów z całego świata. Wydawane jest w języku polskim i angielskim. Zgłaszane do publikacji artykuły winny być oryginalnym osiągnięciem Autora, dotychczas niepublikowanymi, poświęcone problemom technologicznym, projektowym, ekonomicznym lub teoretycznym z tytułu zakresu czasopisma. Przyjmujemy manuskrypty, w objętości do 10 str. pisma komputerowego (Times New Roman, 12, odstęp 1,5) napisane w języku polskim lub angielskim Autorów spoza Polski prosimy o nadsyłanie manuskryptów w języku angielskim. Każdy artykuł winien być zaopatrzony w wyczerpujące streszczenie ze słowami kluczowymi (w języku manuskryptu) do 3000 znaków (jedna strona), wraz z załączonym tłumaczeniem angielskim. Drukujemy również w kolorze, w przypadku istotnej konieczności (fotografie, skomplikowane rysunki, mapy). Manuskrypt, w dwóch egzemplarzach należy przesłać początkowo na adres Redakcji, dołączając tekst na dyskietce lub CD, z oddzielnymi ilustracjami.

INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS

Scientific journal published by the Commission of Technical Infrastructure of Polish Rural Areas of the Academy of Letters - Krakow Branch. It is a nation wide journal, which accepts contributions from Authors from all over the world. It is published in Polish and English. Submitted contributions should be original scientific papers, so far unpublished, dealing with technological, design, economic or theoretical issues within the scope of the journal.

Submitted manuscripts should not exceed 10 typewritten pages (Times New Roman, font 12, 1.5 line spacing). The Authors from abroad may submit their papers in English. Each article must have a summary and keywords of not more than 3000 characters (one page). Color reproductions are possible only in special cases (photographs, complicated figures or maps). The manuscripts, in duplicate, should be sent by post to the editorial office. Electronic version on a diskette or CD with illustrations provided separately should accompany the hard copies.

INFRASTRUKTUR UND ÖKOLOGIE DES LÄNDLICHEN RAUMS

Dem Text wird im Manuskript eine Zusammenfassung mit den Schlussworten vorangestellt, die eine Lange von 3000 Zeichen (1 Druckseite) nicht übersteigen sollte.

Nach Bedarf drucken wir auch in Farbe (Aufnahmen, Karten, komplizierte Bilder).

Die zwei ausgedruckte Exemplare eines Manuskriptes mit der Diskettenversion (die Abbildungen getrennt) bitte zur Redaktion senden.