Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 69 | 4 |
Tytuł artykułu

Concentrations of blood serum and urinal ellagitannin metabolites depend largely on the post-intake time and duration of strawberry phenolics ingestion in rats

Treść / Zawartość
Warianty tytułu
Języki publikacji
The different duration of a strawberry phenolic fraction intake and different post-intake time were experimental factors affecting the concentrations of ellagitannin metabolites in the urine and blood serum of rats. For four days, the animals were gavaged once a day as follows: group C (water, days 1–4), group F1–4 (fraction, days 1–4), group F1–3 (fraction, days 1–3; water, day 4), group F1–2 (fraction, days 1, 2; water, days 3, 4), group F3–4 (water, days 1, 2; fraction, days 3, 4), and group F4 (water, days 1–3; and fraction, day 4). The daily dosage of the fraction gavaged to one rat was 20 mg/kg of body weight. The fraction contained monomers and dimers of ellagitannins as well as proanthocyanidins. The caecal, urinal, and blood serum ellagitannin metabolites were analysed 12 h after the last treatment. Ellagic acid, urolithin A, and nasutin A were detected in the caecal digesta. In turn, urolithin A, nasutin A, and their glucuronide conjugates were detected in the urine, while urolithin A glucuronide, nasutin A glucuronide, and ellagic acid dimethyl ether glucuronide were found in the serum. The highest caecal and urinal concentrations of ellagitannin metabolites followed the F1–4 treatment. In the serum, the highest concentrations of the metabolites were determined in the rats administered the phenolic fraction during days 1–4 and 3–4. No metabolites were found in the rats following the C and F1–2 treatments. The results suggest that the presence of ellagitannin metabolites in the rat’surine and serum largely refl ects the concentrations of caecal metabolites and the number of subsequent days of strawberry phenolic fraction administration.
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
  • Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
  • Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
  • Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
  • 1. Cerdá, B., Periago, P., Espín, J.C., Tomás-Barberan, F.A. (2005a). Identifi cation of urolithin A as ametabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry, 53(14), 5571–5576.
  • 2. Cerdá , B., Tomás-Barberá n, F.A., Espín, J.C. (2005b). Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts and oak-aged wine in humans: identifi cation of biomarkers and individual variability. Journal of Agricultural and Food Chemistry, 53(2), 227–235.
  • 3. Chiabrando, V., Giuggioli, N., Maghenzani, M., Peano, C., Giacalone, G. (2018). Improving storability of strawberries with gaseous chlorine dioxide in perforated clamshell packaging. Polish Journal of Food and Nutrition Sciences, 68(2), 141–148.
  • 4. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (2010). Official Journal of the European Union, L 276, 20.10.2010, p. 33–79.
  • 5. Espín, J.C., Larrosa, M., Garcia-Conesa, M.T., Tomas-Barberán, F.A. (2013). Biological signifi cance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, art. no. 270418.
  • 6. Fotschki, B., Juśkiewicz, J., Jurgoński, A., Kołodziejczyk, K., Milala, J., Kosmala, M., Zduńczyk, Z. (2016). Anthocyanins in strawberry polyphenolic extract enhance the beneficial effects of diets with fructooligosaccharides in the rat cecal environment. PLoS ONE, 11(2), art. no. e0149081.
  • 7. Fotschki, B., Juśkiewicz, J., Kołodziejczyk K., Jurgoński A., Kosmala M., Milala, J., Ognik K., Zduńczyk, Z. (2018). Protective effects of ellagitannin-rich strawberry extracts on biochemical and metabolic disturbances in rats fed a diet high in fructose. Nutrients, 10(4), art. no. 445.
  • 8. Fotschki, B., Juśkiewicz, J., Sójka, M., Jurgoński, A., Zduńczyk, Z. (2015). Ellagitannins and flavan-3-ols from raspberry pomace modulate caecal fermentation processes and plasma lipid parameters in rats. Molecules, 20(12), 22848–22862.
  • 9. Fotschki, B., Milala, J., Karlińska, E., Zduńczyk, Z., Juśkiewicz, J. (2014). Strawberry ellagitannins thwarted the positive effects of dietary fructooligosaccharides in rat cecum. Journal of Agricultural and Food Chemistry, 62(25), (SI), 5871–5880.
  • 10. Garcia-Munoz, C., Hernandez, L., Perez, A., Vaillant, F. (2014). Diversity of urinary excretion patterns of main ellagitannins’ colonic metabolites after ingestion of tropical highland blackberry (Rubus adenotrichus) juice. Food Research International, 55, 161–169.
  • 11. García-Villalba, R., Espín, J.C., Tomá s-Barberá n, F.A. (2016). Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. Journal of Chromatography A, 1428, 162–175.
  • 12. Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J.L., Mezzetti, B., Battino, M. (2012). The strawberry: composition, nutritional quality and impact on human health. Nutrition, 28(1), 9–19.
  • 13. Gonzá lez-Barrio, R., Truchado, P., Ito, H., Espín, J.C., Tomá S.-Barberan, F.A. (2011). UV and MS identifi cation of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. Journal of Agricultural and Food Chemistry, 59(4), 1152–1162.
  • 14. Horwitz, W., Latimer, G.W. (2007). Official Methods of Analysis of AOAC International, 2005, 18th edn. AOAC International, USA.
  • 15. Ito, H. (2011). Metabolites of the ellagitannin geraniin and their antioxidant activities. Planta Medica, 77(1), 1110–1115.
  • 16. Ito, H., Iguchi, A., Hatano, T. (2008). Identifi cation of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. Journal of Agricultural and Food Chemistry, 56(2), 393–400.
  • 17. Jurgoński, A., Juśkiewicz, J., Fotschki, B., Kołodziejczyk, K., Milala, J., Kosmala, M., Grzelak-Błaszczyk, K., Markiewicz, L. (2017). Metabolism of strawberry mono- and dimeric ellagitannins in rats fed a diet containing fructo-oligosaccharides. European Journal of Nutrition, 56(2), 853–864.
  • 18. Juśkiewicz, J., Król, B., Kosmala, M., Milala, J., Zduńczyk, Z. (2015). Physiological properties of ellagitannin-rich preparations obtained from strawberry pomace using different extraction methods. Polish Journal of Food and Nutrition Sciences, 65(3), 199–209.
  • 19. Karlińska, E., Pecio, Ł., Macierzyński, J., Stochmal, A., Kosmala, M. (2019). Structural elucidation of the ellagitannin with a molecular weight of 2038 isolated from strawberry fruit (Fragaria ananassa Duch.) and named fragariin A. Food Chemistry, 296, 109–115.
  • 20. Kawabata, K., Yoshioka, Y., Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), art. no. 370.
  • 21. Kennedy, J.A., Jones, G.P. (2001). Analysis of proanthocyanidins cleavage products following acid-catalysis in the presence of excess phloroglucinol. Journal of Agricultural and Food Chemistry, 49(4), 1740–1746.
  • 22. Kosmala, M., Jurgoński, A., Juśkiewicz, J., Karlińska, E., Macierzyński, J., Rój, E., Zduńczyk, Z. (2017). Chemical composition of blackberry press cake, polyphenolic extract, and defatted seeds, and their effects on cecal fermentation, bacterial metabolites, and blood lipid profi le in rats. Journal of Agricultural and Food Chemistry, 65(27), 5470–5479.
  • 23. Kosmala, M., Zduńczyk, Z., Juśkiewicz, J., Jurgoński, A., Karlińska, E., Macierzyński, J., Janczak, R., Rój, E. (2015). Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. Journal of Agricultural and Food Chemistry, 63(11), 2989–2996.
  • 24. Landete, J.M. (2011). Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Research International, 44(5), 1150–1160.
  • 25. Larrosa, M., González-Sarrías, A., García-Conesa, M.T., Tomás-Barberán, F.A., Espín, J.C. (2006). Urolithins, ellagic acid-derived metabolites produced by human colonic microfl ora, exhibit estrogenic and antiestrogenic activities. Journal of Agricultural and Food Chemistry, 54(5), 1611–1620.
  • 26. Larrosa, M., González-Sarrías, A., Yanez-Gascon M.J., Selma M.V., Azorin-Ortuno M., Toti S., Tomás-Barberán, F.A., Dolara P., Espín, J.C. (2010). Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon infl ammation on phenolic metabolism. Journal of Nutritional Biochemistry, 21(8), 717–725.
  • 27. Milala, J., Kosmala, M., Karlińska, E., Juśkiewicz, J., Zduńczyk, Z., Fotschki, B. (2017). Ellagitannins from strawberries with different degree of polymerization showed different metabolism through gastrointestinal tract of rats. Journal of Agricultural and Food Chemistry, 65(49), 10738–10748.
  • 28. Nowicka, A., Kucharska, A.Z., Sokół-Łętowska, A., Fecka, E. (2019). Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria×ananassa Duch. Food Chemistry, 270, 32–46.
  • 29. Okva, K., Tamoseviciute, E., Ciziute, A., Pokk, P., Ruksenas, O., Nevalainen, T. (2006). Refi nements for intragastric gavage in rats. Scandinavian Journal of Laboratory Science, 33(4), 243–252.
  • 30. Piwowarski, J.P., Granica, S., Stefańska, J., Kiss, A.K. (2016). Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. Journal of Natural Products, 79(12), 3022–3030.
  • 31. Reeves, P.G. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. Journal of Nutrition, 127, 838–841.
  • 32. Romo-Vaquero, M., Cortes-Martin, A., Loria-Kohen, V., Ramirez-de-Molina, A., Garcia-Mantrana, I., Collado, C.M., Espín, J.C., Selma, M.V. (2019). Deciphering the human gut microbiome of urolithin metabotypes: association with enterotypes and potential cardiometabolic health implications. Molecular Nutrition and Food Research, 63(4), art. no. 1800958.
  • 33. Saha, P., Yeoh, B.S., Singh, R., Chandrasekar, B., Vemula, P.K., Haribabu, B., Vijay-Kumar, M., Jala, V.R. (2016). Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases. PLoS ONE, 11(6), art. no. e0156811.
  • 34. Sandhu, A.K., Miller, M.G., Thangthaeng, N., Scott, T.M., Shukitt-Hale, B., Edirisinghe, I., Burton-Freeman, B. (2018). Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food & Function, 9(1), 96–106.
  • 35. Sójka, M., Klimczak, E., Macierzynski, J., Kołodziejczyk, K. (2013). Nutrient and polyphenolic composition of industrial strawberry press cake. European Food Research and Technology, 237(6), 995–1007.
  • 36. Tomás-Barberá n, F.A., Gonzalez-Sarrias, A., Garcia-Villalba, R., Nunez-Sanchez, M.A., Selma, M.V., Garcia-Conesa, M.T., Espín, J.C. (2017). Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Molecular Nutrition and Food Research, 61(1), art no. 1500901.
  • 37. Toney, A.M., Fan, R., Xian, Y., Chaidez, V., Ramer-Tair, A.E., Chung, S. (2019). Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity, 27(4), 612–620.
  • 38. Van de Velde, F., Esposito, D., Grace, M.H., Pirovani, M.E., Lila, M.A. (2019). Anti-inflammatory and wound healing properties of polyphenolic extracts from strawberry and blackberry fruits. Food Research International, 121, 453–462.
  • 39. Vrhovsek, U., Guella, G., Gasperotti, M., Pojer, E., Zancato, M., Mattivi F. (2012). Clarifying the identity of the main ellagitannin in the fruit of the strawberry, Fragaria vesca and Fragaria ananassa Duch. Journal of Agricultural and Food Chemistry, 60(10), 2507–2516.
  • 40. Wang, J., Hihara, E. (2004). A unifi ed formula for calculating body surface area of humans and animals. European Journal of Applied Physiology, 92(1–2), 13–17
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.