Dynamic changes of immunoglobulin concentrations in pig colostrum and serum around parturition

I. Markowska-Daniel, M. Pomorska-Mól, Z. Pejsak

Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland

Abstract

The aim of the study was the determination of IgA, IgM and IgG concentrations in porcine serum and colostrum, in order to evaluate their variations in the perinatal period, as well as to clarify whether there is a correlation between colostrum intake, initial level of immunoglobulins (Ig) in piglet serum and development of their own immunity. The mean IgA, IgM and IgG concentrations in sow serum 10 days before parturition were 1.58, 6.12 and 39.56 mg/ml, respectively. Seven days later only the IgG level was insignificantly lower (34.94 mg/ml, *p* = 0.55), while concentrations of IgA and IgM increased to 2.25 and 7.25 mg/ml, respectively (*p* = 0.23 and 0.62, respectively). The mean initial IgG concentration in colostrum at farrowing was 118.5 mg/ml and differed between sows. The average value of IgA in colostrum at birth was 23.8 mg/ml and decreased to 7.85 mg/ml at 6 hours (h) and to 4.59 mg/ml at 24 h after the onset of farrowing. IgM concentration at birth was 12.1 mg/ml and decreased to 4.23 mg/ml at 24 h postpartum. Positive relationships were found between concentrations of IgM and IgA in serum of piglets at 14 and 56 days of life (r = 0.41 and 0.80, respectively, *p*≤0.05) as well as for IgG concentration in the piglets serum at 7 days and 56 days of age (r = 0.48, *p*≤0.05). The above observations suggest that there is a correlation between the level of Ig in piglet serum in the first days of life and improvement of their own immunity.

Key words: pigs, serum, colostrum, immunoglobulins, immunity, development

Introduction

In pigs, contrary to primates and rodents, transfer of maternal antibodies does not occur by the transplacental route as the epitheliochorial mode of placentation is totally impermeable to sow’s immunoglobulins (Ig) (Milon et al. 1983, Truszczyński and Pejsak 2007). Neonatal piglets are therefore hypo- or agammaglobulinemic at birth, immunologically underdeveloped, and in consequence considered as nearly “immunologically virgin” (Rooke et al. 2003, Svendsen et al. 2005, Pomorska-Mól and Markowska-Daniel 2009, Salmon et al. 2009). At that period piglets, as many other mammalian neonates (lambs, calves, foals), rely on ingestion of antibody-rich colostrum (Chappuis 1998, Jensen et al. 2001, Truszczyński and Pejsak 2007). Their survival depends on the acquisition of maternal immunity via colostrum and milk. Passive transfer of maternal immunity to neonates provides protection against infectious diseases before development of their own adaptive immunity, at both, the mucosal and systemic