HANNA KWAŚNA, JERZY DUX

Możliwości ograniczenia zgorzeli siewek sosny zwyczajnej przez Trichoderma spp.

The possibility of control the Scots pine seedlings damping-off with Trichoderma spp.

Wstęp

Gryby z rodzaju Trichoderma zaliczane są obecnie do najbardziej skutecznych saprofitycznych grzybów antagonistycznych, szeroko stosowanych w biologicznej ochronie roślin drzewiastych, rolniczych i ogrodniczych. Gryby z tego rodzaju, zwłaszcza T. viride łączą w sobie wiele cech dobrego antagonisty, do których należy: szybki wzrost, obfite zarodnikowanie, powszechne występowanie w środowisku lasu, tworzenie substancji fungitoksykowych (głównie antybiotyków peptydowych), produkcja enzymów hydro- litycznych i celulolitycznych, możliwość egzystencji na wielu substratach, łatwość w wykorzystywaniu wielu substancji organicznych i nieorganicznych oraz zdolność do pasożytnictwa. Zastosowane w formie biopreparatu zasiedlają szybko traktowane podłoża chroniąc rośliny przed działaniem grzybów patogenicznych. Najnowsze badania potwierdzają również dużą rolę Trichoderma spp. w stymulowaniu wzrostu nowych korzeni, również u roślin drzewiastych.

W niewielkim doświadczeniu infekcyjnym zbadano wpływ T. harzianum i T. viride w trocinach sosnowych i bukowych oraz biopreparatu opartego na T. harzianum na trzy najczęściej występujące grzyby zgorzelowe: Cylindrocarpon destructans, Fusarium oxysporum i Rhizoctonia solani – wywołujące zgorzel siewek i zamieranie systemu korzeniowego sadzonek wielu gatunków drzew i krzewów w szkółkach leśnych i podłożach szkółkarskich

Materiał i metody

Do badań użyto trzy grzyby zgorzelowe: C. destructans (Zinssm.) Scholten, F. oxysporum Schlecht. oraz R. solani Kuhn, wyizolowane z siewek sosny zwyczajnej z terenu Polski zachodniej w latach 1996-1997, oraz dwa gatunki Trichoderma: T. harzianum Rifai i T.
viride Pers. wyizolowane z gleby leśnej z okolic Warszawy w roku 1996, jak również preparat biologiczny oparty na T. harzianum.

Sterylne trociny sosnowe i bukowe zaszczepiano wodną zawiesiną zarodników T. harzia-
num i T. viride w kolbach. Kolby umieszczono w temp. 24°C na 14 dni mieszając zawartość co drugi dzień.

Doniczkę wypełniono nie sterylizowaną glebą leśną. Część doniczek przykrywano dwu-
centymetrową warstwą gleby leśnej zmieszanej w stosunku 1:1 lub 3:1 z trocinami
bukowymi lub sosnowymi, sterylnymi lub przeróżnietymi T. viride lub T. harzianum. Inne
donicze -przykrywano dwu centymetrową warstwą niesterylnej kory sosnowej lub miesza-
niny kory sosnowej i torfu zmieszanych w stosunku 3:1. Dodawano do nich odpowiednio
preparat biologiczny z T. harzianum stosowany w postaci roztworu w stężeniu 0,1% w
ilości 25 ml/doniczkę (kombinacja 8), lub w postaci proszku w ilości 0,01g/130 g mieszana-
niny kory i torfu (kombinacja 9). Do doniczek wysiewano po 25 podkielekowanych nasion
sosny zwyczajnej (Pinus sylvestris L.). Nasiona podlewano 5 ml zawiesiny C. destructans
lub F. oxysporum otrzymanej przez wypłukanie zarodników i strzępek, rosnącej w 200 ml
kolbce 2-tygodniowej kultury, w 120 ml wody destylowanej, sterylnej. W doświadczeniu
z R. solani 9 mm² fragmenty pożywki PDA przeróżnietej przez patogena wykładano do
podłoża, po czym umieszczano na nich podkielekowane nasiona. W kombinacjach 1-7
nasiona przykrywano 3-4 mm warstwą gleby leśnej. W kombinacjach 8 i 9 nasiona
wysiewano do kory lub mieszaniny kory i torfu. Po 2, 3 i 4 tygodniach liczono zdrowe
siewki.

Wpływ Trichoderma spp. na zgorzel siewek powodowaną przez C. destructans, F. oxyspo-
rum i R. solani. zbadano w następujących kombinacjach:

☐ 2. Gleba + sterylne trociny sosnowe w stosunku 1:1 lub 3:1 + grzyb zgorzelowy.
☐ 4. Gleba + trociny sosnowe przeróżniete T. viride w stosunku 1:1 lub 3:1 + grzyb
zgorzelowy.
☐ 5. Gleba + trociny bukowe przeróżniete T. viride w stosunku 1:1 lub 3:1 + grzyb
zgorzelowy.
☐ 6. Gleba + trociny sosnowe przeróżniete T. harzianum w stosunku 1:1 lub 3:1 +
grzyb zgorzelowy.
☐ 7. Gleba + trociny bukowe przeróżniete T. harzianum w stosunku 1:1 lub 3:1 +
grzyb zgorzelowy.
☐ 8. Kora z roztworem preparatu biologicznego + grzyb zgorzelowy.
☐ 9. Kora + torf w stosunku 3:1 z dodatkiem preparatu biologicznego dodanego w
postaci proszku + grzyb zgorzelowy.

Każdorazowo doświadczenie założono w czterech powtórzeniach. Doniczki umieszczono
w szklarni w temperaturze 20-25⁰/15-18⁰C w ciągu dnia i nocy. Doniczki podlewano
codziennie 50 ml wody wodociągowej.
Wyniki

Wyniki podane w tabelach 1-2 sugerują, że grzyby z rodzaju *Trichoderma* stosowane w postaci biopreparatu mogą ograniczać zgorzel siewek sosny powodowaną przez *C. destructans* i *F. oxysporum*. W doświadczeniu z *C. destructans* najsilniejszy efekt ochronny obserwowano po zastosowaniu biopreparatu biologicznego opartego na *T. harzianum*, zastosowanego w postaci zawiesiny wodnej (tab. 1). Nieco mniejszy efekt wystąpił, gdy preparat zastosowano w postaci proszku dodanego do mieszaniny kory sosnowej i torfu. Stosunkowo znaczny efekt ochronny uzyskano po zastosowaniu trocin bukowych przeróżniętych przez *T. harzianum*. Zastosowanie sterylnych trocin bukowych pozwoliło również uzyskać nieco lepszy efekt od kontroli. Pozostałe kombinacje dały efekt gorszy od kontroli.

TABELA 1
Liczba zdrowych siewek w doświadczeniu z *C. destructans* przy stosunku gleby i trocin 1:1

<table>
<thead>
<tr>
<th>Kombinacja</th>
<th>Liczba zdrowych siewek po 2 tyg.</th>
<th>po 3 tyg.</th>
<th>po 4 tyg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>39</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>48</td>
<td>11</td>
</tr>
</tbody>
</table>

TABELA 2
Liczba zdrowych siewek w doświadczeniu z *F. oxysporum* przy stosunku gleby i trocin 1:1

<table>
<thead>
<tr>
<th>Kombinacja</th>
<th>Liczba zdrowych siewek po 2 tyg.</th>
<th>po 3 tyg.</th>
<th>po 4 tyg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>43</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>53</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>37</td>
<td>25</td>
</tr>
</tbody>
</table>
TABELA 3
Liczba zdrowych siewek w doświadczeniu z *F. oxysporum* przy stosunku gleby i trocin 3:1

<table>
<thead>
<tr>
<th>Kombinacja</th>
<th>Liczba zdrowych siewek po 2 tyg.</th>
<th>Liczba zdrowych siewek po 3 tyg.</th>
<th>Liczba zdrowych siewek po 4 tyg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TABELA 4
Liczba zdrowych siewek w doświadczeniu z *R. solani* przy stosunku gleby i trocin 3:1

<table>
<thead>
<tr>
<th>Kombinacja</th>
<th>Liczba zdrowych siewek po 2 tyg.</th>
<th>Liczba zdrowych siewek po 3 tyg.</th>
<th>Liczba zdrowych siewek po 4 tyg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

W doświadczeniu z *F. oxysporum* efekt ochronny był wprost proporcjonalny do ilości wprowadzonych trocin (tab. 2 i 3). Przy stosunku gleby i trocin 1:1 każda kombinacja, zarówno z trocinami sterylnymi jak i przerośniętymi przez *Trichoderma* spp., a zwłaszcza z trocinami przerośniętymi *T. harzianum* dała oczekiwany efekt ochronny, w porównaniu z kontrolą. Przy stosunku gleby i trocin 3:1 efekt ochronny był znacznie gorszy (tab. 3).

Niestety, nie zauważono działania ochronnego w stosunku do *R. solani*. Zarówno w kontroli, jak i w poszczególnych kombinacjach liczba zdrowych siewek była bardzo niewielka (tab. 4). Siewki uległy zgorzeli przedwczesnej kilka dni po wysianiu.
Dyskusja

W dobie ekologizacji produkcji roślinnej podejmuje się próby biologicznej ochrony siewów, co może przyczynić się do ograniczenia stosowania fungicydów w szkółkach. Wyniki przedstawionych badań świadczą o istnieniu możliwości ograniczenia występowania zgorzel spowodowanej przez niektóre patogeny glebowe za pomocą grzybów z rodzaju Trichoderma, stosowanych w postaci biopreparatu lub w postaci trocin sosnowych lub bukowych zasilonych przez Trichoderma spp. W warunkach laboratoryjnych T. viride i T. harzianum, zastosowane w odpowiedniej proporcji, okazały się skuteczne w ograniczaniu porażenia wywoływanego przez C. destructans i F. oxysporum i zupełnie nieskuteczne w walce z R. solani. Wynik ten jest efektem określonej specjalizacji pokarmowej R. solani. Grzyb chętnie zasiedla fragmenty organiczne, zwłaszcza fragmenty drewna i wydaje się, że wzbogacenie podłoża trocinami lub korą z torfem będzie sprzyjało namnożeniu patogena i może wywołać wzrost zagojenia z jego strony. Efekt ochronny uzyskano też w przypadku zastosowania sterylnych, nieprzerzuconych przez Trichoderma spp. trocin sosnowych i bukowych. Pozytywny wpływ trocin na strukturę gleby, jej właściwości chemiczne i mikrobiologiczne był obserwowany wielokrotnie w przeszłości [4, 5]. Sterylne trociny zostają szybko zasiedzione przez obecne powszechnie w glebie leśnej gatunki Trichoderma i dochodzi do znacznego wzrostu populacji grzyba w podłożu. W doświadczeniach użyto niesterylnej gleby leśnej pozostającej z drzewostanu sosnowego, która z reguły jest wolna od patogenów glebowych i jest silnie zasiedlona przez Trichoderma spp. Nawet długotrwała sterylizacja gleby nie zlikwidowałaaby prawdopodobnie całej populacji grzybów z rodzaju Trichoderma, które są niezwykle odpornie na wysoką temperaturę i zdolne do szybkiej reprodukcji w odpowiednim środowisku. Efekt ochronny wywołany wzrostem populacji Trichoderma po jej namnożeniu się w podłożu lub wprowadzeniu do podłoża nie jest jednak długotrwały. Badania [4, 5] wskazują, że populacja Trichoderma spp. w glebie po wzbogaceniu jej trocinami sosnowymi ulega zredukowaniu już po 2 latach. Większość gatunków Trichoderma produkuję enzymy umożliwiające rozkład celulozy, hemicelulozy i białka [1]. Dzięki nim grzyby te aktywnie uczestniczą w procesie rozkładu fragmentów drewna i są w podłożu obecne tak długo jak długo znajduje się w nim atrakcyjna dla nich baza pokarmowa w postaci trocin, kory i torfu. Po jej wyczerpaniu obserwuje się spadek populacji Trichoderma spp. Dwa lata są jednak wystarczającym okresem do zabezpieczenia siewek, które są najbardziej wrażliwe w ciągu kilku pierwszych miesięcy wzrostu.

Autorzy nie badali wpływu użytych biopreparatów na grzyby z rodzaju Pythium, które powszechnie występują w glebach i podłożach szkółkarskich [3]. Wydaje się jednak, że efekt ochronny może być zbliżony do tego uzyskanego z innymi grzybach zgorzelowymi.
Oba gatunki *Trichoderma* były z powodzeniem używane do eliminowania grzybów z rodzaju *Pythium* w przeszłości [2].

Wydaje się, że efekt ochronny uzyskany w doświadczeniu jest mniejszy od efektu, który uzyskano by po zastosowaniu środków chemicznych. Należy jednak zwrócić uwagę, że potencjal infekcyjny patogena w doświadczeniu, przy zastosowaniu zawiesiny zarodnikowo-strzępkowej lub pożywki przerośniętej grzybiątą, był znacznie większy od tego który występuje w większości gleb i podłoże szkółkarskich.

Autorzy bardzo dziękują Panu Prof. dr R. Siweckiemu za podarowanie preparatu biologicznego.

Literatura

Summary

The possibility of control the Scots pine seedlings damping-off with *Trichoderma* spp.

In the laboratory experiment the effectiveness of *Trichoderma harzianum* and *T. viride* in the control of damping-off of pine (*Pinus sylvestris* L.) seedlings caused by *Cylindrocarpon destructans, Fusarium oxysporum* and *Rhizoctonia solani* was investigated. *Trichoderma* spp. were used in pine or beech sawdust substrate or in the form of *T. harzianum* powder. There were also sterile pine and beech sawdust used. There were 9 different combinations of the experiment. The test was carried out in the glasshouse, at 20-25⁰/15-18⁰C during day and night for 4 weeks. *Trichoderma harzianum* used in the form of water suspension or of powder, as well as in the beech sawdust reduced the damping-off caused by *C. destructans*. The sterile beech sawdust was also effective against *C. destructans*. In the experiment with *F. oxysporum* the protective effect depended on the amount of sawdust used. The reduction of damping-off was possible only when bigger amount of sawdust was used. None reduction of damping-off caused by *R. solani* could be inducted by *Trichoderma* spp. used in sawdust or in the form of powder.