Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 35 | 2 |
Tytuł artykułu

The effect of dietary lipid level and composition on growth, survival, and development of the digestive system of larval sneep, Chondrostoma nasus [L.]

Warianty tytułu
Języki publikacji
Background. Rearing larval fish under laboratory conditions requires the use of appropriate artificial diets that fully replace natural food. Up till now, no starter has been developed for cyprinid rheophilic fish larvae, and these fish are therefore fed diets developed for other fish species. The present study was undertaken to evaluate the effects of diets of different protein-, lipid-, and fatty acid compositions on growth, survival, and changes in the digestive system during larval development of sneep (nase), Chondrostoma nasus (L.), from hatching until the juvenile stage. Materials and Methods. From day 4 until day 21 post-hatch, sneep larvae were fed, Artemia nauplii and three starters: Nutra AB 3.0 (NU), Perla plus (PP), and Perla larva proactive (PL). Each experimental treatment was run in triplicate. On day 21 of the experiment, samples of fish were taken for size measurement, histological and morphometrical examination, and fatty acid analyses. Results. The fish fed Artemia exhibited the highest growth rate and survival. Among the groups fed artificial diets, the highest survival and growth were observed in NU group, while PL group showed the worst results (P < 0.05). Comparison of the fatty acid composition in the diets and fish bodies revealed that the levels of n-3 PUFA were considerably higher in the bodies of fish fed starters than in the diets themselves, while concentrations of n-6 PUFA in the PP and PL groups were lower in fish than in diets. The NU diet showed the highest n-3 : n-6 ratio (5.54), while PP had the lowest. The highest MUFA : PUFA ratio occurred in Artemia nauplii and the lowest in the PP diet. Histological observations revealed the presence of supranuclear lipid vacuoles in the enterocytes of the middle intestine section of Artemia-fed larvae. No such vacuoles were found in fish fed artificial diets. Morphological changes in the livers of fish fed various diets involved hepatocyte size and cytoplasm area containing glycogen and lipids. Conclusion. Among the artificial diets, Nutra was the most appropriate for rearing sneep larvae. The results revealed that sneep larvae are capable of elongating and desaturating linolenic- and linoleic acids into longer-chain fatty acids.
Opis fizyczny
  • Warsaw Agricultural University, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Ahlgren G., Gustafsson I.-B., Boberg M. 1992. Fatty acid kontent and chemical composition of freshwater microalgae.Journal of Phycology 28: 37–50.
  • Anonymous 1993. Nutrient requirements of fish. Committee on Animal Nutrition; Board on Agriculture; National Research Council; National Academy Press, Washington, DC.
  • Arzel J., Martinez Lopez F.X., Métailler R., Stéphan G.,Gandemer G., Guillaume J. 1994. Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123:361–375.
  • Bell J.G., Ghioni C., Sargent J.R. 1994. Fatty acid composition of 10 freshwater invertebrates which are natural ford organisms of Atlantic salmon parr (Salmo salar): a comparison with commercial diets. Aquaculture 128: 301–313.
  • Bell M.V., Henderson R.J., Pirie B.J.S., Sargent J.R. 1985.Effect of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot, Scopthalmus [sic] maximus. Journal of Fish Biology 26: 181–191.
  • Bell M.V., Henderson R.J., Sargent J.R. 1986. The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology B 83: 711–719.
  • Brown P.B., Dabrowski K., Garling D.L. 1996. Nutrition and feeding of yellow perch (Perca flavescens). Journal of Applied Ichthyology 12: 171–174.
  • Caballero M.J., López-Calero G., Socorro J., Roo F.J.,Izquierdo M.S., Férnandez A.J. 1999. Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture 179: 277–290.
  • Castell J.D., Sinnhuber R.O., Wales J.H., Lee J.D. 1972.Essential fatty acids in the diet of rainbow trout (Salmo gairdneri):growth, feed conversion and some gross deficiency symptoms. Journal of Nutrition 102: 77–86.
  • Deplano M., Diaz J. P., Connes R., Kentouri-Divanach M.,Cavalier F. 1991. Appearance of lipid absorption capacities in larvae of the sea bass Dicentrarchus labrax L., during transition to the exotrophic phase. Marine Biology 108:361–371.
  • Fontagné S., Geurden I., Escarffe A.-M., Bergot P. 1998.Histological changes induced by dietary phospholipids In intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture 161: 213–223.
  • Gawlicka A., Herold A.M., Barrows F.T., Noüe de la J., Hung S.S.O. 2002. Effect of dietary lipids on growth, fatty acid composition, intestinal absorption and hepatic storage In white sturgeon (Acipenser transmontanus R.) larvae. Journal of Applied Ichthyology 18: 673–681.
  • Henderson R.J. 1996. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids.Archives of Animal Nutrition 49: 5–22.
  • Henderson R.J., Tillmanns M.M., Sargent J.R. 1996. The lipid composition of two species of serrasalmid fish in relation to dietary polyunsaturated fatty acids. Journal of Fish Biology 48: 522–538.
  • Isik O., Sarihan E., Kusvuran E., Gul O., Erbatur O. 1999.Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus,and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174: 299–311.
  • Izquierdo M.S., Arakawa T., Takeuchi T., Haroun R.,Watanabe T. 1992. Effect of n-3 HUFAlevels in Artemia on growth of larval Japanese flounder (Paralicthys olivaceus).Aquaculture 105: 73–82.
  • Kamler E., Keckeis H., Buer-Nemeschkal E. 1998.Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. Journal of Fish Biology 53: 658–682.
  • Kanazawa A., Teshima S.I., Sakamoto M., Awal Md. A. 1980.Requirements of Tilapia zillii for essential fatty acids.Bulletin of the Japanese Society of Scientific Fisheries (Nippon Suisan Gakkaishi) 46: 1353–1356.
  • Keckeis H., Bauer-Nemeschkal E., Menshutkin V.V.,Nemeschkal H.L., Kamler E. 2000. Effects of female attributes and egg properties on offspring viability In a rheophilic cyprinid, Chondrostoma nasus. Canadian Journal of Fisheries and Aquatic Sciences 57: 789–796.
  • Koven W.M., Tandler A., Kissil G.W., Sklan D. 1992. The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurata and their effect on survival, lipid composition and size distribution. Aquaculture 104: 91–104.
  • Kolkovski S., TandlerA., Kissil G.W., Gertler A. 1993. The effect of dietary exogenous digestive enzymes on ingestion, assimilation,growth and survival of gilthead seabream (Sparus aurata)larvae. Fish Physiology and Biochemistry 12: 203–209.
  • Lanari D., Poli M.B., Ballestrazzi R., Lupi P., D’Agaro E.,Mecatti M. 1999. The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.).Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 179: 351–364.
  • Lavens P., Sorgeloos P., Dhert Ph., Devresse B. 1995. Larval foods. pp. 373–397. In: Bromage N.R., Roberts R.J. (eds.)Broodstock management and egg and larval quality.Blackwell Science Ltd., Oxford.
  • Martoja R., Martoja-Pierson M. 1970. Tenicas de histologia animal. Toray Masson S.A., Barcelona.
  • Meer van der M.B., Zamora J.E., Verdegem M.C.J. 1997. Effect of dietary lipid level on protein utilization and the size proximate composition of body compartments of Colossoma macropomum (Cuvier). Aquaculture Research 28: 405–417.
  • Montero D., Robaina L.E., Socorro J., Vergara J.M., Tort L.,Izquierdo M.S. 2001. Alteration of liver and muscle fatty acid composition in gilthead seabream (Sparus aurata) juveniles held at high stocking density and fed an essential fatty acid deficient diet. Fish Physiology and Biochemistry 24: 63–72.
  • Pearse A.G.E. 1985. Histochemistry. Theoretical and applied.Vol. 2. Analytical Technology. Churchill Livingstone,Edinburgh.
  • Radünz-Neto J., Corraze G., Bergot P., Kaushik S.J. 1996. Estimation of essential fatty acid requirements of common carp larvae using semi-purified artificial diets. Archiv fur Tierernorung 49: 41–48.
  • Salhi M., Izquierdo M.S., Hernandez-Cruz C.M., Gonzalez M.,Fernandez-Palacios H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata).Aquaculture 124: 275–282.
  • Sargent J.R, Bell J.G., Bell M.V., Henderson R.J., Tocher D.R.1995. Requirement criteria for essential fatty acids. Journal of Applied Ichthyology 11: 183–198.
  • Sargent J.R, Bell G., McEvoy L., Tocher D., Estevez A. 1999.Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191–199.
  • Sargent J.R., Henderson R.J., Tocher D.R. 1989. The lipids.pp. 153–218. In: Halver J.E. (ed.) Fish nutrition, 2nd edn.Academic Press, San Diego, CA.
  • Spisni E., Tugnoli M., Ponticelli A., Mordenti T., Tomasi V.1998. Hepatic steatosis in artificially fed marine teleosts.Journal of Fish Diseases 21: 177–184.
  • Takeuchi T., Arai S., Watanabe T., Shimma Y. 1980.Requirement of eel Anguilla japonica, for essential fatty acids. Bulletin of the Japanese Society of Scientific Fisheries (Nippon Suisan Gakkaishi) 46: 345–353.
  • Verreth J., Torreele E., Spazier E., van der Sluiszen A.,Rombout J., Booms R., Segner H. 1992. The development of a functional digestive system in the African catfish Clarias gariepinus (Burchell). Journal of World Aquaculture Society 23: 286–298.
  • Washburn K.W., Nix D.F. 1974. Genetic basis of yolk cholesterol content. Poultry Science 53: 109–115.
  • Wirth M., Steffens W., Meinelt T., Steinberg C. 1997.Significance of docosahexaenoic acid for rainbow trout (Oncorhynchus mykiss) larvae. Lipid-Fett 99: 251–253.
  • Wolnicki, J., Górny W. 1994. Odchów wylęgu świnki (Chondrostoma nasus L.) w warunkach kontrolowanych. Cz.1: Przebieg i wyniki. [Rearing of nase (Chondrostoma nasus L.) under controlled conditions. Part I. Course and results.]Komunikaty Rybackie 3: 6–7. [In Polish.]
  • Yang X., Dick T.A. 1994. Artcic charr (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss) differ in their growth and lipid metabolism in response to dietary polyunsaturated fatty acids. Canadian Journal of Fisheries and Aquatic Sciences 51: 1391–1400.
  • Yu T.C., Sinnhuber R.O. 1975. Effect of dietary linolenic and linoleic acids on growth and lipid metabolism of rainbow trout (Salmo gairdneri). Lipids 10: 63–66.
  • Yurovitskii Yu.G., Nefedova Z.A., Sidorov V.S. 1996.Dynamics of lipid content in the salmon embryos and larvae.Russian Journal of Developmental Biology 27: 74–78.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.