BOLESŁAW PORTER

Pracochłonność ściinki i okrzesywania drzew w rębnym drzewostanie sosnowym

Labour Consumption at Felling and Barking Trees in Ripe for Felling Pine Stand

Zajomość czasów trwania poszczególnych operacji w procesie pozyskiwania drewna jest niezbędna w planowaniu organizacji prac, przy określaniu zarówno zapotrzebowania na siłę roboczą i środki techniczne konieczne do wykonania zadań wynikających z planu cięć, jak i projektowaniu nowych rozwiązań technicznych i technologicznych.

Jednym z podstawowych parametrów procesu pozyskiwania drewna jest pracochłonność. Z analizy literatury przedmiotu wynika, że zależy ona od wielu czynników, z których za najistotniejsze uważa się rodzaj użytkowania, pierśnicy usuwanych drzew, organizację robót, wyposażenie robotników w środki techniczne, termin prowadzenia prac itp. (1, 2, 3).

Cel badań i założenia metodyczne

Celem prowadzonych badań było poznanie, w warunkach zrębu zupełnego, wpływu terminu pozyskiwania drewna oraz pierśnicy usuwanych drzew na pracochłonność operacji procesu pozyskiwania drewna tj. ściinki i okrzesywania drzew.

Do badań wybrano jednorodny, 97-letni drzewostan sosnowy rosnący na siedlisku Bśw. Teren powierzchni był równy, miejscami pofałowany, pokrywa runa typowo borowa. Przeciętna pierśnica drzewostanu — 32 cm, średnia wysokość — 20 m, jakość drzew — 2.

Powierzchnię, z której usunięto wcześniej podrosty i podszyty, podzielono na dwie działki robocze: jedną do prowadzenia obserwacji w okresie letnio-jięciennym, a drugą w okresie zimowym.
TABELA 1
Zestawienie pracochłonności operacji w zależności od pierśnicy

<table>
<thead>
<tr>
<th>Pierśnica w cm</th>
<th>Liczebność w szt.</th>
<th>Średni czas trwania operacji w min/drzewo</th>
<th>Ścinarka</th>
<th>Wrzesień</th>
<th>Luty</th>
<th>Okrzesywanie</th>
<th>Wrzesień</th>
<th>Luty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_i)</td>
<td></td>
<td></td>
<td>(y_1)</td>
<td>(y_2)</td>
<td></td>
<td>(y_3)</td>
<td>(y_4)</td>
</tr>
<tr>
<td>19–21</td>
<td>3</td>
<td>0,58</td>
<td>0,53</td>
<td>1,08</td>
<td>1,17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22–24</td>
<td>4</td>
<td>0,80</td>
<td>0,58</td>
<td>1,46</td>
<td>1,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–27</td>
<td>9</td>
<td>0,51</td>
<td>0,70</td>
<td>1,82</td>
<td>1,59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28–30</td>
<td>24</td>
<td>0,80</td>
<td>0,82</td>
<td>1,75</td>
<td>1,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31–33</td>
<td>14</td>
<td>1,19</td>
<td>0,94</td>
<td>2,01</td>
<td>1,99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34–36</td>
<td>13</td>
<td>0,88</td>
<td>0,88</td>
<td>2,71</td>
<td>2,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37–39</td>
<td>6</td>
<td>1,14</td>
<td>1,13</td>
<td>3,39</td>
<td>2,88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40–42</td>
<td>6</td>
<td>1,18</td>
<td>0,89</td>
<td>2,74</td>
<td>3,17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43–45</td>
<td>2</td>
<td>1,00</td>
<td>1,05</td>
<td>3,00</td>
<td>2,46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46–48</td>
<td>2</td>
<td>1,50</td>
<td>1,54</td>
<td>3,13</td>
<td>2,88</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pomiary terenowe wykonano we wrześniu w temperaturze około 15°C i w lutym — w temperaturze około -10°C, pokrywa śnieżna ponad 10 cm.

W obu terminach opadów atmosferycznych nie notowano. Do prac zrębowych zatrudniono doświadczonego drwala wyposażonego w pilarkę PS-180 i pomocnicze narzędzia ręczne. Podczas badań mierzono zarówno pierśnice drzew, jak i odpowiadające im bezpośrednie czasy wykonania operacji. Pierśnice drzew notowano z dokładnością do 1 cm, a czasy wykonania operacji do 1 sekundy. Na każdej działce ścięto i okrzeszono po 83 drzewa, które reprezentowały cały zakres pierśnic drzewostanu (tab. 1 i 2).

Wyniki pomiarów opracowano statystycznie, a stwierdzone zależności przedstawiono w postaci równań regresji (tab. 3).

TABELA 2
Charakterystyka statystyczna badanych wielkości

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Pierśnica [cm]</th>
<th>Ścinarka</th>
<th>Okrzesywanie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wrzesień</td>
<td>Luty</td>
</tr>
<tr>
<td>Wartość średnia</td>
<td>31,8</td>
<td>0,91</td>
<td>0,87</td>
</tr>
<tr>
<td>Odchlenienie</td>
<td>5,86</td>
<td>0,237</td>
<td>0,172</td>
</tr>
<tr>
<td>standardowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Współczynnik</td>
<td>18,4</td>
<td>26,0</td>
<td>19,9</td>
</tr>
<tr>
<td>zmienności</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardowy błąd</td>
<td>4,0</td>
<td>5,7</td>
<td>4,3</td>
</tr>
<tr>
<td>oceny przy (\alpha = 0,05)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABELA 3
Współczynniki równań regresji oraz ich statystyczna ocena

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Ścinka</th>
<th>Okrzesywanie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wrzesień</td>
<td>luty</td>
</tr>
<tr>
<td>Współczynnik korelacji</td>
<td>0,747</td>
<td>0,848**</td>
</tr>
<tr>
<td>Współczynnik regresji (a)</td>
<td>0,0305</td>
<td>0,0248</td>
</tr>
<tr>
<td>Współczynnik regresji (b)</td>
<td>-0,0580</td>
<td>0,0764</td>
</tr>
<tr>
<td>Błąd standardowy oceny</td>
<td>0,1583</td>
<td>0,0922</td>
</tr>
</tbody>
</table>

Analiza wyników badań

Z przeprowadzonych badań wynika, że pracochłonność badanych operacji, zarówno ścinki jak i okrzesywania drzew, we wrześniu i w lutym jest zbliżona (tab. 1).

Mniejsze średnie wartości czasów trwania operacji zanotowano w okresie zimowym (tab. 2). Zaobserwowane różnice są niewielkie i wynoszą około 4,4% przy ścinkach i 4,1% przy okrzesywaniu. Natomiast w obu terminach badań stwierdzono, że pomiędzy czasem trwania ścinki i okrzesywania, a pierśnicą obrabianych drzew istnieje bardzo duża zależność. Obliczone współczynniki korelacji prostoliniowej, w badanym zakresie pierśnic, są bardzo wysokie (tab. 3), a istotność ich została udowodniona przy \(F_{0.01}\).

Na podstawie przeprowadzonej analizy wariancji nie stwierdzono istotności różnic pomiędzy wartościami średnimi czasów trwania ścinki jak i okrzesywania drzew w zależności od terminu wykonywania robót \(F_{\text{obr}} < F_{0.05}\). Porównanie współczynników regresji prostoliniowej \((b, a)\) w badanych terminach wykazało, że w obu analizowanych operacjach, statystycznie są one równe sobie. Ponieważ z analizy wynika, że termin prac przy pozyskiwaniu drewna nie oddziaływa w istotny sposób na pracochłonność ścinki i okrzesywania drzew, określono parametry równań regresji łącznie.

Ustalone empirycznie równania regresji przyjęły postać:

- ścinka drzew \(r = 0,777**\)
 \[y_s = 0,0276 \, d_{1.3} + 0,0092 \]

- okrzesywanie drzew \(r = 0,901**\)
 \[y_o = 0,0919 \, d_{1.3} - 0,8006 \]

Na podstawie tych zależności opracowano nomogram do szacowania czasochłonności ścinki i okrzesywania drzew w zależności od ich pierśnic (ryc.).

Uzyskane w badaniach wyniki są niższe, w porównywalnym zakresie pierśnic, od wartości przedstawionych przez innych autorów, średnio od 10 do 40%. Zróżnicowanie to zostało spowodowane prawdopodobnie dużym perfekcjonizmem drwała zatrudnionego przy pozyskiwaniu drewna, tak rzadko spotykanym u polskich robotników leśnych. Świadczą o tym również inne czasy zmiany roboczej obserwowane w trakcie jego pracy.
Rozbieżności te oraz duża zmienność warunków pozyskiwania drewna wskazują na celowość prowadzenia dalszych prac badawczych zmierzających do ustalenia powiązań między poszczególnymi operacjami procesu przy zastosowaniu zarówno różnych systemów pozyskiwania jak i poziomów techniki oraz opracowania nomogramów do szacowania czasochłonności robót.

Wnioski

- Między czasem ścinki i okrzesywania drzew a ich pierśnicą istnieje bardzo ścisła prostoliniowa zależność.
- Nie stwierdzono istotnego wpływu terminu prowadzenia prac pozyskaniowych na czasochłonność badanych operacji.
- Celowe jest prowadzenie dalszych badań zmierzających do określenia praco- chłonności operacji jak i całych technologii w zależności od organizacji procesu technologicznego pozyskiwania drewna jak i użytego sprzętu.

Z Katedry Użytkowania Lasu i Inżynierii Leśnej
SGGW w Warszawie

Literatura

Summary

The studies were carried out in a homogeneous pine stand, aged 97 years, growing on fresh poor coniferous forest site, with average breast height diameter — 32 cm and height — 20 m.

The studies were aimed at learning, under conditions of clear cutting, the influence, of the time of wood harvesting (September, February) and of the breast height diameter of removed trees on the labour consumption at felling and barking.

In each of studied times, one felled and barked 83 trees, representing the whole range of breast height diameters of the stand.

One stated that the time of performance of studied operations did not significantly influence the time consumption (slightly lowers values of time consumption were stated in winter). A very great rectilinear dependence of the time consumption at felling and barking trees was stated however, on their breast height diameter.

Empirically stated regression equations of studied operations are as follows:

- felling \((r = 0.777**) \)
 \[y_s = 0.0276 d_{1.3} + 0.0092 \]

- barking \((r = 0.901**) \)
 \[y_o = 0.0919 d_{1.3} - 0.8006 \]

One admitted the usefulness of continuation of studies aimed at determining the labour consumption of single operations and whole technologies in dependence on the organization of the technological process of wood harvesting and on applied equipment.