Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 43 | 4 |
Tytuł artykułu

Astaxanthin, canthaxanthin and astaxanthin esters in the copepod Acartia bifilosa (Copepoda, Calanoida) during ontogenetic development

Treść / Zawartość
Warianty tytułu
Języki publikacji
The contents of astaxanthin, canthaxanthin and astaxanthin esters were studied in natural populations of the copepod Acartia bifilosa from the Pomeranian Bay and Gulf of Gdańsk in the southern Baltic Sea. Samples dominated by any one of three developmental groups: (1) nauplii, (2) copepodids I–III and (3) copepodids IV–V and adults of Acartia bifilosa were analysed by means of high performance liquid chromatography (HPLC). As ontogenetic development progressed, significant changes occurred in the proportion of particular pigments in the total pigment pool of the various developmental groups. Astaxanthin and canthaxanthin occurred in all the groups, the former being clearly dominant. However, an increasing percentage of astaxanthin esters was recorded in the copepodids I–III, and even more in the copepodids IV–V and adults group. Most probably, astaxanthin is the main pigment active in copepod lipid metabolism. Carotenoid pigments in copepods very likely act as efficient free-electron quenchers and may be involved as antioxidants in rapid lipid metabolism. The exogenously feeding stages (late nauplii and copepodids) transform plant carotenoids taken from food and are evidently capable of metabolising astaxanthin by esterification and further degradation. It is emphasised that, according to literature data, astaxanthin esters may have an even higher quenching ability. It is suggested that crustacean carotenoid pigments, with their electron donor-acceptor abilities, may replace oxygen in peroxidation processes connected with lipid metabolism. The consequences of such a physiological role of astaxanthin for present-day estimations of energy balances in zooplankton communities are mentioned.
Opis fizyczny
  • Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
  • Bast A., Haenen G.R., Doelman C.G.A., 1991, Oxidants and antioxidants: state of the art, Am. J. Med., 91, Suppl. 3C, 2–9.
  • Bernhard K., 1989, Synthetic astaxanthin. The route of a carotenoid from research to commercialisation, [in:] Carotenoids chemistry and biology, N.I. Krinsky, M. M. Mathews-Roth & R. F. Taylor (eds.), Plenum Press, New York–London, 337–363.
  • Cheesman D. F., Lee W. L., Zagalsky P.F., 1967, Carotenoproteins in invertebrates, Biol. Rev., 42, 131–160.
  • Conn P.F., Schalch W., Truscott T.G., 1991, The singlet oxygen and carotenoid interaction, J.Photochem. Photobiol. B: Biol., 11, 41–47.
  • Czeczuga B., 1981, Investigations on carotenoprotein complexes in animals. I. Biosynthesis of astaxanthin as a prostethic group of the carotenoprotein complexes in crustaceans, Rocz. Akad. Med. Białystok, 26, 65–74, (in Polish).
  • Di Mascio P., Kaiser S.P., Sies H., 1989, Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys., 274, 532–538.
  • Di Mascio P., Murphy M.E., Sies H., 1991, Antioxidant defense systems: the role of carotenoids, tocopherols and thiols, Am. J. Clin. Nutr., 53, 1945–2005.
  • Dingle J.T., Lucy J.A., 1965, Vitamin A, carotenoids and cell function, Biol. Rev., 40, 422–461.
  • Findlay J. B.C., Pappini D. J.C., Brett M., Zagalsky P.F., 1989, Carotenoproteins, [in:] Carotenoids. Chemistry and biology, N.I. Krinsky, M.M. Mathews-Roth & R.F. Taylor (eds.), Plenum Press, New York–London, 75–104.
  • Foote C. F., Chong Y.C., Denny R. W., 1970, Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection, J. Am. Chem. Soc., 92, 5216–5219.
  • Fronczak M., Styczyńska-Jurewicz E., 1985, Pigment content as a reflection of grazing intensity of mesozooplankton, Stud. i Mater. Oceanol., 46, 235–256.
  • Goodwin T. W., 1971, Pigments – Arthropoda, [in:] Chemical zoology, M. Florkin & B.T. Scheer (eds.), Acad. Press, New York, 279–288.
  • Hairston N.G., 1980, On the diel variation of copepod pigmentation, Limnol. Oceanogr., 25, 742–747.
  • Herring P. J., 1972, Depth distribution of the carotenoid pigments and lipids of some oceanic animals. 1. Mixed zooplankton, copepods and euphausiids, J. Mar. Biol. Ass. U.K., 52, 179–189.
  • Herring P. J., 1973, Depth distribution of the carotenoid pigments and lipids of some oceanic animals. 2. Decapod crustaceans, J. Mar. Biol. Assoc. U.K., 53, 539–562.
  • Hoegh-Guldberg O., Jones R. J., 1999, Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals, Mar. Ecol. Prog. Ser., 183, 73–86.
  • Irigoien X., Head R., Klenke U., Meyer-Harms B., Harbour D., Niehoff B., Hirche H.J., Harris R., 1998, A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus, Mar. Ecol. Prog. Ser., 172, 127–137.
  • Juhl A.R., Ohman M.D., Goericke R., 1996, Astaxanthin in Calanus pacificus: Assessmant of pigment-based measures of omnivory, Limnol. Oceanogr., 41 (6), 1198–1207.
  • Keen J.N., Caceres I., Eliopoulos E., Zagalsky P.F., Findlay J. B., 1991, Complete sequence and model for the A2 subunit of the carotenoid pigment complex, crustacyanin, Eur. J. Biochem., 197, 407–417.
  • Klekowski R. Z., Sazhina L. I., 1985, Respiratory metabolism of some pelagic copepods from the Equatorial Countercurrent of the Indian Ocean, Pol. Arch. Hydrobiol., 32 (3)–(4), 507–543.
  • Kobayashi M., Sakamoto Y., 1999, Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis, Biotechnol. Lett., 21, 265–269.
  • Krinsky N. I., 1991, Effects of carotenoids in cellular and animal systems, Am. J. Clin. Nutr., 53, 238–246.
  • Krinsky N. I., Deneke S.M., 1982, Interaction of oxygen and oxy-radicals with carotenoids, J. Nat. Cancer Inst., 69, 205–210.
  • Łotocka M., 1998, Carotenoid pigments in the Baltic Sea, Oceanologia, 40 (1), 27–38.
  • Matsuno T., Maoka T., Katsuyama M., Ookubo M., Katagiri K., Jimura H., 1984, The occurrence of enantiomeric and meso-astaxanthin in aquatic animals, Bull. Jap. Soc. Sci. Fish., 50, 1589–1592.
  • Meyer-Harms B., Irigoien X., Head R., Harris R., 1999, Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after 1997 spring bloom in the Norwegian Sea, Limnol. Oceanogr., 44, 154–165.
  • Meyer-Harms B., von Bodungen B., 1997, Taxon-specific ingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments, Mar. Ecol. Prog. Ser., 153, 181–190.
  • Miki W., 1991, Biological functions and activities of animal carotenoids, Pure Appl. Chem., 63, 141–146.
  • Mobarhan S., Bowen P., Anderson B., Evans M., Stacewics-Satuntzakis M., Sugarman S., Simms P., Lucchesi D., Friedman H., 1990, Effects of β-carotene repletion on β-carotene absorption, lipid peroxidation, and neutrophil superoxide formation in young men, Nutr. Cancer, 14, 195–206.
  • Murugan G., Nelis H. J., Dumont H. J., De Leenheer A.P., 1995, Cis- and all-trans-canthaxanthin levels in fairy shrimps, Comp. Biochem. Physiol. B, 110B (4), 799–803.
  • Nash H.A., 1969, The stereoisomers of retinal-A: a theoretical study of energy differences, J. Theoret. Biol., 22, 314–324.
  • Petipa T. S., Ostrovskaya N.A., 1987, New way to estimate efficient use of energy in copepod during migrations, 2nd Soviet-French Symp. ‘Production and Trophic Relationships within Marine Ecosystems’, Yalta 27 October – 2 November 1984, Act. Colloq IFREMER, 5, 107–117.
  • Platt J.R., 1959, Carotene donor-acceptor complexes in photosynthesis, Science, 129, 372–374.
  • Renstrom B., Borch G., Liaaen-Jensen S., 1981, Natural occurrence of enantiomeric and meso-astaxanthin. 4. Ex shrimp (Pandalus borealis), Comp. Biochem. Physiol., 69B, 621–624.
  • Ringelberg J., Hallegraeff G.M., 1976, Evidence for a diurnal variation in the carotenoid content of Acanthodiaptomus denticornis (Crustacea, Copepoda) in the Lac Pavian (Auvergne, France), Hydrobiologia, 51 (2), 113–118.
  • Sargent J.R., 2000, Functions and metabolism of lipids in marine organisms: an overview, Proc. Mar. Lipids Symp., Brest (France) 19–20 November 1998, Act. Colloq IFREMER, 27, 181–182.
  • Sargent J.R., Falk-Petersen S., 1988, The lipid biochemistry of calanoid copepods, Hydrobiologia, 167/168, 101–114.
  • Shimidzu N., Goto M., Miki W., 1996, Carotenoids as singlet oxygen quenchers in marine organisms, Fish. Sci., 62, 134–137.
  • Simpson K. L., Chichester C. O., 1981, Metabolism and nutritional significance of carotenoids, Ann. Rev. Nutr., 1, 351–374.
  • Terao J., 1989, Antioxidant activity of β-carotene-related carotenoids in solution, Lipids, 24, 659–661.
  • Torres J. J., Childress J. J., 1985, Respiration and chemical composition of the bathypelagic euphausiid Bentheuphausia amblyops, Mar. Biol., 87 (3), 267–272.
  • Torres J. J., Childress J. J., Quetin L.B., 1982, A pressure vessel for the simultaneous determination of oxygen consumption and swimming speed in zooplankton, Deep-Sea Res., 29 (5A), 631–639.
  • Zagalsky P.F., Cheesman D. F., Ceccaldi H. J., 1967, Studies on carotenoid-containing lipoproteins isolated from the eggs and ovaries of certain marine invertebrates, Comp. Biochem. Physiol., 22, 851–871.
  • Zagalsky P.F., Eliopulos E. E., Findlay J. B.C., 1990, The architecture of invertebrate carotenoproteins, Comp. Biochem. Physiol., 97B, 1–18.
  • Zhang L.X., Cooney R.V., Bertram J. S., 1991, Carotenoids enhance gap functional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action, Carcinogenesis, 12, 2109–2114.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.