Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 52 | 2 | 59-87
Tytuł artykułu

Sinice i ich wplyw na roslinozerne zwierzeta planktonowe

Warianty tytułu
Cyanobacteria and their influence on herbivore zooplankton
Języki publikacji
Cyclical changes of biomass and taxonomic composition of phytoplankton are normally observed in eutrophic lakes of temperate zone. Resistant to grazing by herbivores, colonial and filamentous cyanobacteria and algae become dominant in summer and often form water blooms. Cyanobacteria blooms cause unwanted by humans and unfavorable for most of the aquatic plants and animals changes in abiotic conditions in the reservoir. Changes in phytoplankton community result in changes in species composition and size structure of herbivorous zooplankton. Colonial and filamentous cyanobacteria presence often causes increased abundance of small-bodied cladocerans, rotifers and copepods and decreased numbers of large-bodied cladocerans e.g. of the genus Daphnia. Taxa which can use cyanobacteria as food, and thus are potentially able to limit the growth of cyanobacteria, fall out from the community of herbivorous zooplankton. This decrease in grazing pressure is possible due to series of direct and indirect mechanisms developed during coevolution in the phytoplankton-zooplankton exploitation system (Fig. 1). There are three different means by which cyanobacteria presence affects herbivorous zooplankton. The morphology of cyanobacteria is the first of them. Cyanobacteria forming colonies or long filaments (i) are to large for small-bodied filter feeders so they are not grazed by them and (ii) mechanically interfere with filtration process of large-bodied Daphnia, causing dramatic decrease of effectiveness and/or rate of food collection which, in consequence, leads to reduced growth rate of the animals and decreases their abundance in zooplankton community. Second, cyanobacteria low nutritional value and their indigestibility, limit growth of the animals. Thick cell wall or different gelatinous surrounding enable cyanobacteria to survive the passage through the gut of the animals. Also low assimilation rate of the nutrients from cyanobacteria cell and lack of some essential compounds lead to reduced growth and/or fecundity of the animals. Finally, toxicity of cyanobacterial secondary metabolites reduces the growth of zooplankton and thereby limits grazing pressure. Intracellular toxins are effective protections against selective grazers such as copepods and cladocerans from genus Bosmina. This toxicity is, however, insufficient for nonselective grazers, because it kills the animals only when the cyanobacteria are digested or when the cells are damaged e.g through breaking the filaments during process of cleaning of the filtering apparatus. Extracellular toxin, instead, can kill not only all potential consumers of cyanobacteria, but also their competitors e.g. eukariotic algae. Toxin synthesis can be therefore highly adaptive for cyanobacteria, because it allows to release from grazers and competitors pressure. Vulnerability of different planktonic species to direct effects of cyanobacteria presence is strongly dependent on the mode of feeding (nonselective filtration vs. selective food collection) and the size of the animals. Low food conditions favor the large-bodied cladocerans, e.g. Daphnia, which are the most effective filtrators and require lower threshold food concentrations to sustain positive growth rate than small-bodied species do. However, low food quality, i.e. cyanobacteria presence, causes effects similar to fish predation, because it creates favorable conditions for dominance of copepods and small bodied cladocerans and eliminates large-bodied cladocerans of the genus Daphnia. Cyanobacteria presence can indirectly reduce the growth of herbivorous zooplankton through (i) allelopathic suppression of growth of algae, which are high nutritious food source for zooplankton, (ii) forcing the animals to stay in deeper (colder and poor in food) water layer, (iii) disturb adaptive responses of the animals to predation and (iv) changing the abiotic conditions in the lake. Unlike direct effects of cyanobacteria presence, that concern mostly the large-bodied Daphnia, indirect effects reduce growth of all zooplankton taxa. Cyanobacteria presence can induce changes of behaviour, morphology and life history of the animals which are exposed to them (Table I). Cyanobacteria can cause changes in parameters essential for fitness like: growth rate, age and size at first reproduction, number, size and sex of the offspring, and lifespan. In the lake dominated by cyanobacteria, their presence can be a strong selection factor which favors zooplankton clones less vulnerable to one or all ways of their negative influence.
Opis fizyczny
  • Uniwersytet Warszawski, ul.Banacha 2, 02-097 Warszawa
  • Abrusán G. 2004 - Filamentous cyanobacteria, temperature and Daphnia growth: the role of fluid mechanics - Oecologia, 141: 395-401.
  • Arnold D. E. 1971 - Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae - Limnol. Oceanogr. 16: 906-920.
  • Bednarska A. 2006 - Adaptive changes in morphology of Daphnia filter appendages in response to food stress - Pol. J. Ecol. 54.
  • Berthon J. L., Brousse S. 1995 - Modification of migratory behavior of planktonic Crustacea in the presence of a bloom of Microcystis aeruginosa (Cyanobacteria) - Hydrobiologia, 300/301: 185-193.
  • Bloem J., Vijverberg J. 1984 - Some observations on the diet and food selection of Daphnia hyalina (Cladocera) in an eutrophic lake - Hydrobiol. Bull. 18: 39-45.
  • Brett M. T., Müller-Navarra D. C. 1997 - The role of highly unsaturated fatty acids in aquatic foodweb processes - Freshw. Biol. 38: 483-499.
  • Burns C. W. 1968 -Direct observations of mechanisms regulating feeding behavior of Daphnia in lakewater - Int. Rev. Ges. Hydrobiol. 53: 83-100.
  • Caraco N. F., Miller R. 1998 - Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton - Can. J. Fish. Aquat. Sci. 55: 54-62.
  • Claska M. E., Gilbert J. J. 1998 - The effect of temperature on the response of Daphnia to toxic cyanobacterium - Freshw. Biol. 39:221-232.
  • Dawidowicz P. 1990 - The effect of Daphnia on filament length of blue-green algae - Hydrobiologia, 191: 265-268.
  • Dawidowicz P., Gliwicz Z. M., Gulati R. D. 1988 - Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test - Limnologica, 19: 21-26.
  • DeBernardi R., Giussani G. 1990 - Are blue-green algae a suitable food zooplankton? An overview - Hydrobiologia, 200/201: 29-41.
  • DeBernardi R., Giussani G., Pedretti E. L. 1981 - The significance of blue-green algae as food for filter feeding zooplankton: Experimental studies on Daphnia spp. fed by Microcystis aeruginosa - Verb. Int. Verein. Limnol. 21: 477-483.
  • DeMott W. R., Gulati R. D., VanDonk E. 2001 - Daphnia food limitation in three hypereutrophic Dutch Lakes: evidence for exclusion of large-bodies species by interfering filaments of cyanobacteria - Limnol. Oceanogr. 46: 2054-2060.
  • DeMott W. R., Moxter F. 1991 - Foraging on cyanobacteria by copepods: Responses to chemical defenses and resource abundance - Ecology, 72:1820-1834.
  • DeMott W. R., Zhang Q.-X., Carmichael W. W. 1991 - Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia - Limnol. Oceanogr. 36:1346-1357.
  • Edmondson W. T., Litt А. Н. 1982 - Daphnia in Lake Washington - Limnol. Oceanogr. 27: 272-293.
  • Epp G. T. 1996a - Grazing on filamentous cyanobacteria by Daphnia pulicaria - Limnol. Oceanogr. 41: 560-567.
  • Epp G. T. 1996b - Clonal variation in the survival and reproduction of Daphnia pulicaria under low-food stress - Freshw. Biol. 35:1-10.
  • Ferrão-Filho A. S., Azevedo S. M. F. O. 2003 - Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans - Aquat. Ecol. 37: 23-35.
  • Ferrão-Filho A. S., Azevedo S. M. F. O., DeMott W. 2000 - Effects of toxic and nontoxic cyanobacteria on the life history of tropical and temperate cladocerans - Freshw. Biol. 45: 1-19.
  • Fogg G. E., Walsby A. E. 1971 - Bouyancy regulation and the growth of planktonic blue- green algae - Mitt. Int. Verein. Limnol. 19: 182-188.
  • Fogg G. E., Zalewajko C., Watt D. 1965 - Extracellular products of phytoplankton photosynthesis - Proc. R. Soc. Lond. B, 162: 517-534.
  • Forsyth D. J., Haney J. F., James M. R. 1991 - Direct observation of toxic effects of cyanobacterial extracellular products on Daphnia - Hydrobiologia, 228:151-155.
  • Forsyth D. J., James M. R., Cryer M. 1990 - Alteration of seasonal and diel patterns in vertical migration of zooplankton by Anabaena and planktivorous fish - Arch. Hydrobiol. 117: 385-404.
  • Fulton R. S. Ill 1988 - Grazing on filamentous algae by herbivorous zooplankton - Freshw. Biol. 20: 263-271.
  • Fulton R. S. III, Paerl H. W. 1987a - Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) bloom - Limnol. Oceanogr. 32: 634-644.
  • Fulton R. S. Ill, Paerl H. W. 1987b - Toxic and inhibitory effects of the blue-green alga Microcistis aeruginosa on herbivorous zooplankton - J. Plankton Res. 9: 837-855.
  • Ghadouani A., Pinel-Alloul B. 2002 - Phenotypic plasticity in Daphnia pulicaria as an adaptation to high biomass of colonial and filamentous cyanobacteria: experimental evidence - J. Plankton Res. 24:1047-1056.
  • Ghadouani A., Pinel-Alloul B., Plath K., Codd G. A., Lampert W. J. 2004 - Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria - Limnol. Oceanogr. 49: 666-679.
  • Ghadouani A., Pinel-Alloul B., Prepas E. 2003 - Effects of experimentally induced cyanobacteria blooms on crustacean zooplankton communities - Freshw. Biol. 48: 363-381.
  • Gilbert J. J. 1990 - Differential effects of Anabaena affinis on cladocerans and rotifers: mechanisms and implications - Ecology, 71:1727-1740.
  • Gilbert J. J. 1996 - Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium - Ecology, 77:1174-1180.
  • Gilbert J. J. 1998 - Differential sensitivity of Synchaeta and Daphnia to nucleosides from Anabaena affinis - Hydrobiologia, 387/388: 277-281.
  • Gliwicz Z. M. 1969 - Studies on the feeding of pelagic zooplankton in lakes with varying trophy - Ekol. Pol. 17:663-708.
  • Gliwicz Z. M. 1977 - Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake - Ekol. Pol. 25: 179-225.
  • Gliwicz Z. M. 1980 - Filtering rates, food size selection, and feeding rates in cladocerans another aspect of interspecific competition in filter feeding zooplankton (W: Evolution and ecology of zooplankton communities. Red. W. C. Kerfoot) - University Press, Hanover, London, 282-291.
  • Gliwicz Z. M. 1990 - Daphnia growth at different concentrations of blue-green filaments Arch. Hydrobiol. 120: 51-65.
  • Gliwicz Z. M., Lampert W. 1990 - Food thresholds in Daphnia species in the absence and presence of blue-green filaments - Ecology, 71: 691-702.
  • Gliwicz Z. M., Siedlar E. 1980 - Food size limitation and algae interfering with food collection in Daphnia - Arch. Hydrobiol. 88:155-177.
  • Goad L. J. 1981 - Sterol biosynthesis and metabolism in marine invertebrates - Pure Appl. Chem. 51: 837-852.
  • Gross E. M. 2003 - Allelopathy of aquatic autotrophs - Crit. Rev. Plant Sci. 22: 313-339.
  • Gustafsson S., Hansson L.-A. 2004 - Development of tolerance against toxic cyanobacteria in Daphnia - Aquat. Ecol. 38: 37-44.
  • Gustafsson S., Rengefors K., Hansson L.-A. 2005 - Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects - Ecology, 86: 2561-2567.
  • Ha K., Jang М.-H., Takamura N. 2004 - Colony formation in planktonic algae induced by zooplankton culture media filtrate - J. Freshwater Ecol. 19: 9-16.
  • Haider S., Naithani V., Viswanathan P. N.. Kakkar P. 2003 - Cyanobacterial toxins: a growing environmental concern - Chemosphere, 52:1-21.
  • Hairston N. G., Jr., Holtmeier C. L., Lampert W., Weider L. J., Post D. M., Fischer J. M., Cáceres C. E., Fox J. A., Gaedke U. 2001 - Natural selection for grazer resistance to toxic cyanobacteria: Evolution of phenotypic plasticity? - Evolution, 55: 2203-2214.
  • Hanazato T. 1991 - Interrelations between Microcystis and Cladocera in the highly eutrophic Lake Kasumigaura, Japan - Int. Rev. Ges. Hydrobiol. 76: 21-36.
  • Hanazato T., Yasuno M. 1984 - Growth, reproduction and assimilation ofMoina macrocopa fed on Microcystis and/or Chlorella - Jap. J. Ecol. 34:195-202.
  • Hanazato T., Yasuno M. 1987 - Evaluation of Microcystis as food for zooplankton in a eutrophic lake - Hydrobiologia, 144: 251-259.
  • Haney J. F. 1987 - Field studies on zooplankton-cyanobacteria interactions - NZJ Mar. Freshw. Res. 21: 467-475.
  • Haney J. F., Sasner J. J., Ikawa M. 1995 - Effects of products released by Aphanizomenon flos-aquae and purified saxitoxin on the movements of Daphnia carinata feeding appendages -Limnol. Oceanogr. 40: 263-272.
  • Hawkins P., Lampert W. 1989 - The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium - Limnol. Oceanogr. 34:1084-1089.
  • Hietala J., Laurén-Määttä C., Walls M. 1997-Sensitivity ofDaphniato toxic cyanobacteria: effects of genotype and temperature - Freshw. Biol. 37:299-306.
  • Holm N. P., Ganf G. G., Shapiro J. 1983 - Feeding and assimilation rates ofDaphiapulex fed Aphanizomenon flos-aquae - Limnol. Oceanogr. 28: 677-687.
  • Holm N. P., Shapiro J. 1984 - An examination of lipid reserves and the nutritional status of Daphnia pulex fed Aphanizomenon flos-aquae - Limnol. Oceanogr. 29:1137-1140.
  • Ikawa M., Sasner J. J., Haney J. F. 2001 - Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth - Hydrobiologia, 443: 19-22.
  • Infante A., Abella S. E. B. 1985 - Inhibition of Daphnia by Oscillatoria in Lake Washington - Limnol. Oceanogr. 30: 1046-1052.
  • Jang М.-H., Ha K., Joo G.-J., Takamura N. 2003 - Toxin production of cyanobacteria is increased by exposure to zooplankton - Freshw. Biol. 48: 1540-1550.
  • Kaebernick M., Neilan B. A. 2001 -Ecological and molecular investigations of cyanotoxin production - FEMS Microbiol. Ecol. 35:1-9.
  • Kearns K. D., Hunter M. D. 2000 - Green algal extracellular products regulate antialgal toxin production in a cyanobacterium - Environ. Microbiol. 2:291-297.
  • Keating K. I. 1977 - Allelopathic influence on blue-green bloom sequence in a eutrophic lake -Science, 196: 885-887.
  • Keating K. I. 1978 - Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure - Science, 199: 971-973.
  • King D. L. 1970 - Role of carbon in eutrophization - J. Wat. Poll. Contr. Fed. 42: 2035-2051.
  • Kirk K. L., Gilbert J. J. 1992 - Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria - Ecology, 73:2208-2217..
  • Kromkamp J. 1987 - Formation and functional significance of storage products in cyanobacteria -NZJ Mar. Freshw. Res. 21: 457-465.
  • Kurmayer R. 2001 - Competitive ability of Daphnia under dominance of non-toxic filamentous cyanobacteria - Hydrobiologia, 442: 279-289.
  • Kurmayer R., Christiansen G., Chorus I. 2003 - The abundance of microcystin- producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee - Appl. Environ. Microbiol. 69: 787-795.
  • Kurmayer R., Jüttner F. 1999 - Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich - J. Plankton Res. 21:659-683.
  • Lampert W. 1981a - Toxicity of the blue-green Microcystis aeruginosa: Effective defence mechanism against grazing pressure by Daphnia - Verh. Int. Verein. Limnol. 21:1436-1440.
  • Lampert W. 1981b - Inhibitory and toxic effects of blue-green algae on Daphnia - Int. Rev. Ges. Hydrobiol. 66: 285-298.
  • Lampert W. 1982 - Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on filtering rate of zooplankton - Arch. Hydrobiol. 95:207-220.
  • Lampert W. 1987 - Laboratory studies on zooplankton-cyanobacteria interactions - NZJ Mar. Freshw. Res. 21: 483-490.
  • Lampert W. 1994 - Phenotypic plasticity of the filter screens in Daphnia: adaptation to a low- food environment - Limnol. Oceanogr. 39: 997-1006.
  • Lampert W., Brendelberger H. 1996 - Strategies of phenotypic low-food adaptation in Daphnia: filter screens, mesh sizes and appendage beat rates - Limnol. Oceanogr. 41: 216-223.
  • Laurén-Määttä C., Hietala J., Walls M. 1997a – Responses of Daphnia pulex populations to toxic cyanobacteria - Freshw. Biol. 37: 635-647.
  • Laurén-Määttä C., Kleiven O., Kiviranta J. 1997b - Horizontal distribution of Daphnia pulex in response to toxic and non-toxic algal extracts - J. Plankton Res. 19:141-148.
  • Lundstedt L., Brett M. T. 1991 - Differential growth rates of three cladoceran species in response to mono- and mixed-algal cultures - Limnol. Oceanogr. 36:159-165.
  • Lürling M., Van der Grinten E. 2003 - Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins - Environ. Toxicol. Chem. 22:1281-1287.
  • Martin-Creuzburg D., Von Elert E. 2004 - Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata - J. Chem. Ecol. 30: 483-500.
  • Müller-Navarra D. 1995 - Evidence that highly unsaturated fatty acid limits Daphnia growth in nature - Arch. Hydrobiol 132: 297-307.
  • Mur L. R., Beijdorff R. O. 1978-A model ofthe succession from green to blue-green algae based on light limitation - Verh. Int. Verein. Limnol. 20: 2314-2321.
  • Nandini S. 2000 - Responses of rotifers and cladocerans to Microcystis aeruginosa (Cyanophyceae): A demographic study - Aquat. Ecol. 34: 227-242.
  • Nandini S., Rao T. R. 1998 - Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food - Aquat. Ecol. 31: 283- 298.
  • Nizan S., Dimentman C., Shilo M. 1986 - Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna - Limnol. Oceanogr. 31: 497-502.
  • Nogueira I. C. G., Saker M. L., Pflugmacher S., Wiegand C., Vasconcelos V. M. 2004 - Toxicity of the cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna - Environ. Toxicol. 19: 453-459
  • Oliver R. L., Ganf G. G. 2000 - Freshwater blooms (W: The ecology of cyanobacteria. Their diversity in time and space. Red. B. A. Whitton, M. Potts) - Kluwer Academic Publishers, Netherlands, 149-194.
  • Orcutt J. D., Pace M. L. 1984 - Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques - Hydrobiologia, 119: 73-80.
  • Ostrofsky M. L., Jacobs F. G., Rowan J. 1983-Evidence for the production of extracellular herbivore deterrents by Anabaena flos-aquae - Freshw. Biol. 13: 501-506.
  • Paterson M. J., Findlay D. L., Salki A. G., Hendzel L. L., Hesslein R. H. 2002 -The effects of Daphnia on nutrient stoichiometry and filamentous cyanobacteria: A mesocosm experiment in a eutrophic lake - Freshw. Biol. 47: 1217-1233.
  • Pattinson K. R., Havel J. E., Rhodes R. G. 2003 - Invasibility of a reservoir to exotic Daphnia lumholtzi: experimental assessment of diet selection and life history responses to cyanobacteria - Freshw. Biol. 48: 233-246.
  • Porter K. G. 1975-Variable gut passage of galatinous green algae ingested by Daphnia - Verh. Int. Verein. Limnol. 19: 2840-2850.
  • Porter K. G. 1977 - The plant-animal interface in freshwater ecosystems - Am. Sci. 65:159- 170.
  • Porter K. G., McDonough R. 1984 - The energetic cost of response to blue-green algal filaments by cladocerans - Limnol. Oceanogr. 29: 365-369.
  • Porter K. G., Orcutt J. D. 1980 - Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia (W: Evolution and ecology of zooplankton communities. Red. W. C. Kerfoot) - University Press, Hanover, London, 268-281.
  • Rapala J., Sivonen K. 1998 - Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures Microbial Ecol. 36: 181-192.
  • Rapala J., Sivonen K., Lyra C., Niemelä S. I. 1997 - Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli - Appl. Environ. Microbiol. 63: 2206-2212.
  • Ravet J. L., Brett M. T., Müller-Navarra D. C. 2003-A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation - Limnol. Oceanogr. 48: 1938-1947.
  • Reinikainen M., Hietala J., Walls M. 1999-Reproductive allocation in Daphnia exposed to toxic cyanobacteria - J. Plankton Res. 21:1553-1564.
  • Reinikainen M., Ketola M., Juntunen M., Walls M. 1995 - Effects of Microcystis aeruginosa exposure and nutritional status on the reproduction of Daphnia pulex - J. Plankton Res. 17: 431-436.
  • Reinikainen M., Ketola M., Walls M. 1994 - Effects of the concentration of toxic Microcystis aeruginosa and an alternative food on the survival of Daphnia pulex - Limnol. Oceanogr. 39:424-432.
  • Reinikainen M., Repka S. 2003 - Phenotypic plasticity in life-history traits and feeding appendages in two species of Daphnia fed a natural phytoplankton assemblage - Aquat. Ecol. 37: 409-415.
  • Repka S. 1996 - Inter- and intraspecific differences in Daphnia life history in response to two food sources: the green algae Scenedesmus and the filamentous cyanobacteria Oscillatoria - J. Plankton Res. 18:1213-1223.
  • Repka S. 1997a - Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria - Freshw. Biol. 37: 675-683.
  • Repka S. 1997b - Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. II. Daphnia cucullata feeding on mixed diets - Freshw. Biol. 38:685-692.
  • Repka S., van der Vlies M., Vijverberg J. 1998 - Food quality of detritus derived from the filamentous cyanobacterium Oscillatoria limnetica for Daphnia galeata - J. Plankton Res. 20: 2199-2205.
  • Repka S., Veen A., Vijverberg J. 1999 - Morphological adaptations in filtering screens of D. galeata to food quantity and food quality - J. Plankton Res. 21: 971-989.
  • Reynolds C. S., Oliver R. L., Walsby A. E. 1987 - Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments - NZJ Mar. Freshw. Res. 21: 379-390.
  • Reynolds C. S., Walsby A. E. 1975 - Water blooms - Biol. Rev. 50: 437-481.
  • Richman S., Dodson S. I. 1983 - The effect of food quality on feeding and respiration by Daphnia and Diaptomus - Limnol. Oceanogr. 28: 948-956.
  • Robarts R. D., Zohary T. 1987 - Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria - NZJ Mar. Freshw. Res. 21: 391-399.
  • Rohrlack T., Christoffersen K., Kaebernick M., Neilan B. A. 2004 - Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria - Appl. Environ. Microbiol. 70: 5047-5050.
  • Rohrlack T., Dittmann E., Borner T., Christoffersen K. 2001 - Effects of cell-bound microcystins on survival and feeding of Daphnia spp. - Appl. Environ. Microbiol. 67: 3523- 3529.
  • Rohrlack T., Dittmann E., Henning M., Borner T., Kohl J.-G. 1999 - Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa - Appl. Environ. Microbiol. 65: 737-739.
  • Sarnelle O., Wilson A. E. 2005 -Local adaptation of Daphnia pulicaria to toxic cyanobacteria - Limnol. Oceanogr. 50:1565-1570.
  • Schindler D. W. 1971 - Food quality and zooplankton nutrition - J. Anim. Ecol. 40: 589- 595.
  • Schindler D. W. 1977 - Evolution of phosphorus limitation in lakes. Natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes - Science, 19: 260-262.
  • Schindler D. W., Brunskill G. J., Emerson S., Broecker W. S., Peng T.-H. 1972 - Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops - Science, 177:1192-1194.
  • Shapiro J. 1973 - Blue-green algae: Why they become dominant - Science, 179: 382-384.
  • Shurin J. B., Dodson S. I. 1997 - Sublethal toxic effects of cyanobacteria and nonylphenol on environmental sex determination and development in Daphnia - Environ. Toxicol. Chem. 16: 1269-1276.
  • Sivonen K. 1990 - Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains - Appl. Environ. Microbiol. 56: 2658-2666.
  • Smith V. H. 1983 - Low nitrogen to phosphorus ratios favour dominance by blue-green algae in lake phytoplankton - Science, 221: 669-671.
  • Sterner R. W., Hessen D. O. 1994 - Algal nutrient limitation and the nutrition of aquatic herbivores - Annu. Rev. Ecol. Syst. 25:1-29.
  • Suikkanen S., Fistarol G. O., Granéli E. 2005 - Effects of cyanobacterial allelochemicals on a natural plankton community - Mar. Ecol. Prog. Ser. 287:1-9.
  • Svrcek C., Smith D. W. 2004 - Cyanobacteria toxins and the current state of knowledge on water treatment options: A review - J. Environ. Eng. Sci. 3:155-185.
  • Threlkeld S. T. 1979 -The midsummer dynamics of two Daphnia species in Wintergreen lake, Michigan - Ecology, 60:165-179.
  • Tilzer M. M. 1987 - Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes - NZJ Mar. Freshw. Res. 21:401-412.
  • Von Elert E., Martin-Creuzburg D., Le Coz J. R. 2003 - Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (D. galeata) - Proc. R. Soc. Lond. B, 207: 1209-1214.
  • Von Elert E., Wolffrom T. 2001 Supplementation of cyanobacteria food with polyunsaturated fatty acids does not improve growth of Daphnia - Limnol. Oceanogr. 46: 1552-1558.
  • Walls M., Laurén-Määttä C., Ketola M., Ohra-Aho P., Reinikainen M., Repka S. 1997 - Phenotypic plasticity of Daphnia life history traits: The roles of predation, food level and toxic cyanobacteria - Freshw. Biol. 38: 353-364.
  • Webster K. E., Peters R. H. 1978 - Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions - Limnol. Oceanogr. 23: 1238-1245.
  • Whitton B. A., Potts M. 2000 - Introduction to the cyanobacteria (W: The ecology of cyanobacteria. Their diversity in time and space. Red. B. A. Whitton, M. Potts) - Kluwer Academic Publishers, Netherlands, 1-11.
  • Wiegand C., Pflugmacher S. 2005 - Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review - Toxicol. Appl. Pharmacol. 203: 201-218.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.