PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 6 | 917-923
Tytuł artykułu

Relations between the yield of pine and Ca-Al ratio in the growth environment and plants

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Relations between the yields of pine and Ca/Al ratio were studied in two experiments. In the first exper­iment one-year-old pine seedlings were grown in soil-water cultures. The source of elements was the soil from O, AE and Bv horizons sampled under pine stands. In the second experiment two-year-old pines were culti­vated in quartz sand and increasing doses of Al were added. The results showed that the yield of one-year-old pine was not related to the Ca/Al value, neither in soil solution nor in plants. Increasing doses of Al from 2 to 100 mg Al kg-1 decreased the yield from 42 g to 13 g d.w. and Ca/Al values from 8.1 to 1.0 in needles, from 4.4 to 1.0 in shoots and from 0.63 to 0.07 in roots. The correlation coefficient between Ca/Al and yield of nee­dles was 0.850, between Ca/Al and yield of shoots was 0.867 and between Ca/Al and yield of roots was 0.712.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
17
Numer
6
Strony
917-923
Opis fizyczny
p.917-923,fig.,ref.
Twórcy
autor
  • Institute of Environmental Protection, Krucza 5/11, 00-548 Warsaw, Poland
autor
autor
Bibliografia
  • 1. WIŚNIEWSKA I. Physiological and genetic basis of plant reaction to aluminium ions. Postępy Nauk Rolniczych 1/307, 35, 2004 [In Polish].
  • 2. KOCHIAN L.V., PENCE N.S., LETHAM D.L.D., PINEROS M.A., MAGALHAES J.V., HOEKENGA O.A., GARVIN D.F. Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant and Soil 247, 109, 2002.
  • 3. ZHENG S.J., LIN X., YANG J., LIU Q., TANG C. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar. Plant and Soil 261, 85, 2004.
  • 4. JOZEFACIUK G., SZATANIK-KLOC A. Decrease in vari­able charge and acidity of root surface under Al treatment and correlated with Al tolerance of cereal plants. Plant and Soil 260, 137, 2004.
  • 5. KIKUI S., SASAKI T., OSAWA H., MATSUMOTO H., YAMAMOTO Y. Malate enhances recovery from alu­minum-caused inhibition of root elongation in wheat. Plant and Soil 290 (1-2), 1, 2007.
  • 6. KAGERIA N.K., CARVALHO I.R.O. Influence of alumini­um in nutrient solution on chemical composition in upland rice cultivars. Plant and Soil 69, 31, 1982.
  • 7. KONG F.X., LIU Y., HU W., SHEN P.P., ZHOU L.C., WANG L.S. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH. Chemosphere 40, 311, 2000.
  • 8. MERIGA B., REDDY K.B., RAO R., REDDY A.L., KISHOR K.P.B. Aluminium induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). Journal of Plant Physiology 161, 63, 2004.
  • 9. SYMEONIDIS L., ABOU AUDA M.M., YUPSANIS T. Aluminium toxicity effects on Cucumis melo and response of diphosphonucleoside kinases. Biologia Bratislava 59, 133, 2004.
  • 10. GHANATI F., MORITA A., YOKOTA H. Effects of alu­minum on the growth of tea plant and activation of antioxidant system. Plant and Soil 276, 133, 2005.
  • 11. WATANABE T., OSAKI M. Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant and Soil 237, 63, 2001.
  • 12. MASSOT N., POSCHENRIEDER Ch., BARCELO J. Aluminium-induced increase of zeatin riboside and dihydrozeatin riboside in Phaseolus vulgaris L. cultivars. Journal of Plant Nutrition 17, 255, 1994.
  • 13. BRUNET J. Interacting effects of pH, aluminium and base cations on growth and mineral composition of the woodland grasses Bromus benekenii and Hordelymus europaeus. Plant and Soil 161, 157, 1994.
  • 14. HOSSAIN A.K.M.Z., OHNO T., KOYAMA H., HARA T. Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance. Plant and Soil 276, 193, 2005.
  • 15. CRONAN Ch.S., GRIGAL D.F. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environmental Quality 24, 209, 1995.
  • 16. ALVAREZ E., FERNANDEZ-MARCOS M.L., MONTER- ROSO C., FERNMANDEZ-SANJURJO M.J. Application of aluminium toxicity indices to soils under various forest species. Forest Ecology and Management 211, 227, 2005.
  • 17. CARNOL M., INESON P., DICKINSON A.L. Soil solution and cations influenced by (NH4)2SO4 deposition in a conif­erous forest. Environmental Pollution 97, 1, 1997.
  • 18. ADAM M. Nutrient fluctuations in Sitka spruce (Picea sitchensis) plantations: the implications for future forest management practice. Forestry 72 (3), 249, 1999.
  • 19. RABEN G., ANDREAE H. Short- and long-term pulses of acidification in forest ecosystems of Saxony (Germany). Journal of Forestry Science 45, 163, 1999.
  • 20. REHFUESS K.E. Indikatoren der Fruchtbarkeit von Waldboden - zeitliche Veronderungen und menschlicher EinfluB. Forstwissenschaftliches Centralblatt 118, 88, 1999.
  • 21. CAMPS ARBESTAIN M., MOURENZA C., ALVAREZ E., MACIAS F. Influence of parent material and soil type on the root chemistry of forest species grown on acid soils. Forest Ecology and Management 193, 307, 2004.
  • 22. BAKKER M.R., KERISIT R., VERBIST K., NYS C. Effects of liming on rhizosphere chemistry and growth of fine roots and of shoots of sessile oak (Quercus petraea). Plant and Soil 217, 243, 1999.
  • 23. BAKKER M.R. Fine-root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management 122, 7, 1999.
  • 24. HIRANO Y., ISOMURA A., KANEKO S. Root morpholo­gy and nutritional status of Japanese red cedar seedlings sub­jected to in situ levels of aluminum in forest soil solution. Journal of Forest Research 8, 209, 2003.
  • 25. HANSEN K., VESTERDAL L., BASTRUP-BIRK A., BILLE-HANSEN J. Are indicators for critical load exceedance related to forest condition? Water Air and Soil Pollution 183, 293, 2007.
  • 26. HRUSKA J., CUDLIN P., KRAM P. Relationship between Norway spruce status and soil water base cations/aluminum ratios in the Czech Republic. Water, Air and Soil Pollution 130, 983, 2001.
  • 27. NYGAARD P.H., De WIT H.A. Effects of elevated soil solution Al concentrations on fine roots in a middle-aged Norway spruce (Picea abies (L.) Karst.) stand. Plant and Soil 265, 131, 2004.
  • 28. Classification of the forest soils of Poland. Ed. Centrum Informacyjne Lasów Państwowych, Warszawa, pp. 127, 2000 [In Polish].
  • 29. Soil Atlas of Europe. European Soil Bureau Network, European Commission, Luxembourg, pp. 128, 2005.
  • 30. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. Methods for analyses and assessment of soils and plants. IOŚ Warszawa, pp. 334, 1991 [In Polish].
  • 31. PORĘBSKA G. Soil solutions as indicators of forest soil quality. IOŚ, Warszawa, pp. 126, 2003 [In Polish, with English summary].
  • 32. VAN DOBBEN H.F., MULDER J., VAN DAM H., HOUWELING H. Impact of acid atmospheric deposition on the biogeochemistry of moorland pools and surrounding ter­restrial environment. Agricultural Research Reports 931. Pudoc Scientific Publishers, Wageningen, 1992.
  • 33. KASSEL Ch.L. Zur Abhängigkeit der Baum- und Krautschicht mitteleuropäischer Waldgesellschaften von der Nährstoffversorgung des Bodens. Ber. D. Reinh. Tüxen- Ges. 11, 109, 1999.
  • 34. PATEL-SORRENTINO N., LUCAS Y., EYROLLE F., MELFI A.J. Fe, Al and Si species and organic matter leached off a ferrallitic and podzolic soil system from Central Amazonia. Geoderma 137, 444, 2007.
  • 35. KIM M.S., TAKENAKA C., PARK H.T. Effects of vegeta­tion history on distribution of Al in surface soils of suburban forests in Aichi Prefecture, Japan. Journal of Forest Research 11, 365, 2006.
  • 36. ELDHUSET T.D., LANGE H., De WIT H.A. Fine root bio­mass, necromass and chemistry during seven years of ele­vated aluminium concentrations in the soil solution of a mid­dle-aged Picea abies stand. Science of the Total Environment 369, 344, 2006.
  • 37. De WIT H.A., MULDER J., NYGAARD P.H., AAMLID D. Testing the aluminium toxicity hypothesis: A field manipu­lation experiment in mature spruce forest in Norway. Water, Air and Soil Pollution 130, 995, 2001.
  • 38. FERNANDEZ-SANJURJO M.J., ALVAREZ E., GARCIA- RODEJA E. Speciation and solubility control of aluminium in soils developed from slates of the river Sor watershed (Galicia, Spain). Water, Air and Soil Pollution 103, 35, 1998.
  • 39. YAGASAKI Y., MULDER J., OKAZAKI M. The role of soil organic matter and short-range ordered aluminosilicates in controlling the activity of aluminum in soil solutions of volcanic ash soils. Geoderma 137, 40, 2006.
  • 40. VAN HEES P., LUNDSTROM U., DANIELSSON R., NYBERG L. Controlling mechanisms of aluminium in soil solution - an evaluation of 180 podzolic forest soils. Chemosphere 45, 1091, 2001.
  • 41. KOPITTKE P.M., MENZIES N.W., BLAMEY F. P.C. Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant and Soil 266, 177, 2004.
  • 42. OSTROWSKA A., PORĘBSKA G., SIENKIEWICZ J., BORZYSZKOWSKI J., KRÓL H. Soil and vegetation properties in the monitoring of forest environment. IOŚ Warsaw, pp. 159, 2006 [In Polish, with English summary].
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-2cc8b7d7-6d73-4720-89ce-8503ae7ebf5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.