MOISTURE INFLUENCE ON THE UNITARY ENERGY OF A CUTTING PROCESS OF SELECTED ENERGY PLANTS

Henryk Rode, Paweł Witkowski

Warsaw University of Technology
Faculty of Civil Engineering, Mechanics and Petrochemistry
Department of Mechanical Systems Engineering and Automation
Address: Al. Jachowicza 2/4, 09–402 Płock, Poland; e-mail: hrode@op.pl

Summary. Research results of a cutting process of selected energy plants are presented in the following case study. The study also presents the influence of a plant’s moisture on the unitary energy of cutting the stems, with various diameters, of the following energy plants: Salix viminalis, Sida Hermaphrodita, Miskanthus Giganteus, Reynoutria sachalinensis and Topinambour.

Key words: cutting process, energy plants, unitary energy of cutting, moisture

INTRODUCTION

The rigorous requirements concerning environmental protection, as well as the search for ecological and cheap sources of energy cause the fact that the cultivation of energy plants is becoming more and more popular [Dreszer et al. 2003, Gradzik et al. 2003]. These plants, while being burnt, emit not much sulphur dioxide into the atmosphere and the carbon dioxide balance is almost zero because it is absorbed during the plants’ growth [Grzybek 2002]. The weight of the ash left after the burning process is twenty times lower. The expected and systematic increase of energy plants plantations causes the fact that the problem of the harvest and processing, which also means cutting process of the plants, is becoming quite significant. The knowledge about the influence of such factors as geometric dimensions, moisture and morphological constitution on the unitary energy of the cutting process is necessary for proper design and optimization of this process [Frączek, Mudryk 2006, Górski 2001, Kowalski 1993, Kwaśniewski et al. 2006, Popko, Miszczuk 1989, Szymanek 2007]. It is of vital importance for the proper functioning of agricultural machines’ cutting units.

THE PURPOSE OF THE RESEARCH

The cutting process of plants has been researched for many years at the Institute of Mechanical Engineering Warsaw University of Technology in Płock [Żuk 1979, Żuk 1986, Żuk, Rode 1992,]. The influence of selected parameters of the cutting unit and the plant’s constitution and condition
on the quality of the cutting process and its power-consumption has mainly been concerned in the above mentioned research [Rode 2008, Rode, Szpetulski 2010].

The aim of the latest research was to determine the influence of the moisture of the selected energy plants on the power-consumption of their cutting process. The research was carried out with the usage of a laboratory station, constructed for this purpose, at the Institute of Mechanical Engineering Warsaw University of Technology in Plock. The research of the energy plants’ cutting process included determining unitary energy of the cutting process of plants’ stems with different diameters, without forks and with different moisture.

The notion unitary energy means the total energy needed for the realisation of the cutting process falling on the unit area of the section of the cut plant.

THE SUBJECT OF STUDY

The plants characterized by high biomass increase, high resistance to diseases and pests and with low soil requirements are cultivated for energy purposes [Baran et al. 2007, Dubas et al. 2004]. According to this, energy willow (Salix viminalis), Sida Hermaphrodita, Miskanthus Giganteus, Reynoutria sachalinesis and Topinambour were selected as representatives of such plants.

Salix viminalis is an energy willow species. It is characterized by a quick increase of timber mass (about 14 times bigger than in case of naturally grown forests) [Juliszewski et al.2006, Rudko, Stasiak 2004, Szczukowski et al.2002, Szczukowski et al.2004]. It is also characterized by very high fuel value. Its other advantages are low soil requirements, easy vegetative reproduction (shoots), resistance to frost and pests and low fertilizer and pesticides requirements (possibility of fertilization with sludge). The willow’s sprouts achieve the height of even 7 metres, which is why it is the best to process them into silvers, briquettes and pellets, and then burn them in stoves. The ash weigh does not exceed 1% of the burnt weight. Moreover, it also functions as phytoremediation – soil and water natural purification of heavy metals and other chemical combinations.

![Image of Salix viminalis stem in cross-section]

Fig. 1. View of Salix viminalis’ stem in a cross-section
Sida Hermaphrodita is a perennial plant with a big increase of timber mass, especially in the first year of growth. It is cultivated mainly for energy purposes, for reclamation of chemically degraded soil or in roadsides protecting other crops from transport pollution. It is also used as a raw material in pulp and paper industry. It is characterized by high resistance to soil and climate requirements. It reproduces generatively (seeds) or by vegetation (shoots) [Rutkowski 2006].

Miskanthus Giganteus is a grass. It has stiff blades filled with spongy core. The blades reach the height of 250 cm (great timber mass increase). It is resistant to diseases and pests. The grass does not tolerate waterlogged and marshy ground. It reproduces by vegetation (shoots) [Rutkowski 2006].
Reynoutria sachalinesis is a perennial plant with expansive nature. It grows to 300 cm. The empty stems look like bamboo shoots. It is characterized by great biomass increase and fuel value. Up to 580 GJ of energy can be obtained from 1 ha of crop. It accumulates heavy metals from soil. It grows in riverside bushes and flood meadows [Burnie 2005].

![Fig. 4. View of Reynoutria sachalinesis’ stem in a cross-section](image)

Topinambour is a perennial plant growing to 350 cm. It is cultivated for its tubers, for alcohol and silage, and also for energy purposes. It grows on every soil and is resistant to temperature changes [Burnie 2005].

![Fig. 5. View of Topinambour’s stem in a cross-section](image)
The researched plants came from the Experimental Station at the Faculty of Agriculture and Biology – University of Life Sciences in Skierniewice [Experimental Station of The Faculty of Agriculture at SGGW].

RESEARCH STATION AND THE COURSE OF RESEARCH

Research station for cutting process research is located in the laboratory at the Warsaw University of Technology in Płock [Rode, Szpetulski 2010]. It is a measuring device of pendulous type. During the cutting the plant sample is hold by the holder and is cut by a knife attached at the end of the pendulum. During the research a potential initial and final energy of the pendulum with the knife is determined. The result of a subtraction of initial and final energy determines the energy of cutting.

The plants from the plantation were selected at random. Then, they were selected according to their diameters, moisture and forks. The samples for cutting, 8 cm long, with different diameters and without forks, were prepared from the stems of energy plants. Each measurement was carried out at least 7 times [Mulas, Rumianowski 1997]. The cutting of the plant took place with the following parameters: knife velocity \(V = 4.7 \text{ m/s} \), knife edge thickness = 100 \(\mu \text{m} \), type of knife edge: even with a cut from the top, knife edge angle \(\alpha = 26°30' \).

RESEARCH RESULTS

Fig. 6. Comparison of the course of changes of unitary energy (in moisture function) of cutting the Salix viminalis's stem for 3 different diameters

Legend: energia jednostkowa [kJ/m²] – unitary energy, wilgotność – moisture, x- sample Ø10, ● sample Ø 11, ▲ sample Ø 14

\[
\text{y}=101.42x-3.52 \\
\text{y}=86.99x+13.19 \\
\text{y}=89.49x+50.90
\]
Fig. 7. Comparison of the course of changes of unitary energy (in moisture function) of cutting the Sida Hermaphrodita’s stem for 3 different diameters.

Fig. 8. Comparison of the course of changes of unitary energy (in moisture function) of cutting the Miskanthus’ stem for 3 different diameters.
MOISTURE INFLUENCE ON THE UNITARY ENERGY

Fig. 9. Comparison of the course of changes of unitary energy (in moisture function) of cutting the Reynoutria sachalinesis’ stem for 3 different diameters

Fig. 10. Comparison of the course of changes of unitary energy (in moisture function) of cutting the Topinambour’s stem for 3 different diameters
CONCLUSIONS

1. For stems of *Salix viminalis* the unitary energy increases together with moisture increase. It is independent from the stems’ diameter. It may be connected with the plant’s constitution. In the *Salix viminalis*’ stem’s cross-section the fibrous tissue is the greatest in terms of percentage.

2. Topinamour moisture increase does not change the unitary energy of cutting process regardless of the stem’s diameter. Topinambour’s stem has a full cross-section.

3. The increase of moisture in the remaining plants researched has an impact on the unitary energy decrease. It may result from the fact that there is less energy needed for crushing the plants and also from the epidermis and fibrous tissues cutting resistance. Those plants’ stems’ cross-sections are as those of a pipe.

4. The energy of cutting of the plant decreases rapidly when the plant breaks.

5. The measurement results show, that the moisture has a significant impact on the unitary energy of cutting the plant. The less fulfilled the plant’s stem is, the greater influence of moisture there is.

REFERENCES

Baran D., Kwaśniewski D., Mudryk K. 2007: Wybrane właściwości fizyczne trzyletniej wierzby energetycznej. Inżynieria Rolnicza, nr 8(96), s. 7-12.

Frączek J., Mudryk K. 2006: Metoda określenia oporów cięcia pędów wierzby energetycznej. Inżynieria Rolnicza, nr 8(83), s. 91-98.

Rode H., Szpetulski J. 2010: The study of the willow viminalis cutting process. Bioagrotechnikal Systems Engineering. vol.6(22), Płock, s. 63-75.
MOISTURE INFLUENCE ON THE UNITARY ENERGY

WPŁYW WILGOTNOŚCI NA ENERGIĘ JEDNOSTKOWĄ CIĘCIA WYBRANYCH ROŚLIN ENERGETYCZNYCH

Streszczenie. W pracy omówiono wyniki badań procesu cięcia wybranych roślin energetycznych. Omówiono wpływ wilgotności rośliny na energię jednostkową cięcia łodyg wierzby konopianej, ślazowca pensylwańskiego, miskantusa olbrzymiego, rdestu sachalinskiego oraz topinamburu o różnych średnicach.

Słowa kluczowe: proces cięcia, rośliny energetyczne, energia jednostkowa cięcia, wilgotność