PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 69 | 4 |
Tytuł artykułu

Necromass as seed reservoir in macroforb meadows with varied moisture conditions

Treść / Zawartość
Warianty tytułu
PL
Nekromasa jako rezerwuar nasion w zbiorowiskach zmiennowilgotnych łąk ziołoroślowych
Języki publikacji
EN
Abstrakty
EN
Necromass, i.e., dead plant parts, has a great impact on the spatial patterns of populations and communities. Depending on its thickness and the degree of decomposition, it may constitute a space-blocking physical barrier and impede recruitment of individuals due to, e.g., autotoxication. The aim of the study was to determine the role of the necromass layer in formation of the soil seed bank of variously moist meadow communities and its influence on the efficiency of generative reproduction. The authors paid special attention to the possibility of capture and storage of seeds of species occurring in the vegetation cover by necromass. Additionally, selected features of seeds of species present on the necromass were analyzed in order to identify species that can potentially contribute to formation of the necromass seed bank. The plant cover comprised 52 species in total. Seedlings of 21 taxa appeared on the necromass and their number ranged from 10 to 13, depending on the patch. The density of the seedlings ranged from 339 to 4923 m−2. In all patches, Lythrum salicaria and Lysimachia vulgaris seedlings were most numerous. These two species were characterized by the highest frequency as well. The low values of Jaccard’s index (0.28–0.36) imply a low share of taxa that are common for the necromass and the vegetation cover. This result should be explained by the occurrence of large disproportions in the number of all species identified on the necromass and among the vegetation. The seeds are typically characterized by small sizes and usually have smooth or finely striated and/or ribbed surface texture. The presence of additional structures, e.g., pappus and hairs, in the largest and heaviest seeds (Crepis paludosa, Geum rivale, and Cirsium spp.) may help seeds capture in the necromass.
PL
Nekromasa, czyli obumarłe części roślin, wywiera duży wpływ na kształtowanie się wzorców przestrzennych populacji i zbiorowisk. W zależności od miąższości i stopnia dekompozycji może stanowić barierę fizyczną blokującą przestrzeń i utrudniającą rekrutację osobników, także na drodze autotoksykacji. Celem badań było określenie roli warstwy nekromasy w kształtowaniu się zasobów glebowego banku nasion zmiennowilgotnych łąk ziołoroślowych oraz jej wpływu na efektywność reprodukcji generatywnej. Autorki szczególną uwagę zwróciły na możliwość przechwytywania i zatrzymywania przez nekromasę nasion gatunków występujących w pokrywie roślinnej. W pokrywie roślinnej zidentyfikowano w sumie 52 gatunki roślin naczyniowych. Na nekromasie pojawiło się, w zależności od płatu, od 10 do 13 taksonów. Zagęszczenie siewek wahało się w granicach od 339 do 4923 m−2. Gatunkami, których siewki dominowały we wszystkich płatach były Lythrum salicaria i Lysimachia vulgaris. Te dwa gatunki charakteryzowały się także najwyższą frekwencją. Niskie wartości wskaźnika Jaccarda (0.28–0.36) wskazują na niewielki udział gatunków wspólnych dla nekromasy i pokrywy roślinnej. Taki wynik można tłumaczyć występowaniem dużych dysproporcji w liczbie wszystkich taksonów oznaczonych na nekromasie i w pokrywie roślinnej. Nasiona z reguły charakteryzują się niewielkimi rozmiarami i w większości posiadają gładką powierzchnię lub są delikatnie prążkowane i/lub żebrowane. U nasion największych i najcięższych taksonów (Crepis paludosa, Geum rivale i Cirsium spp.) obecność dodatkowych struktur, takich jak pappus i włoski, może sprzyjać zatrzymywaniu się ich na nekromasie.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
69
Numer
4
Opis fizyczny
Article 1693 [14p.], fig.,ref.
Twórcy
autor
  • Department of Ecology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
autor
  • Department of Ecology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
Bibliografia
  • 1. Fiala K. Life and dead underground plant biomass in a natural meadow hydrosere. Folia Geobot Phytotax. 1990;25:113–135. http://dx.doi.org/10.1007/BF02912735
  • 2. Falińska K. Alternative pathways of succession: species turnover patterns in meadows abandoned for 30 years. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego; 2003. (Phytocoenosis / Archivum Geobotanicum; vol 9).
  • 3. Ballegaard TK, Warncke E. Observations on autotoxic effects on seed germination and seedling in Cirsium palustre from a spring area in Jutland, Denmark. Ecography. 1985;8(1):63–65. http://dx.doi.org/10.1111/j.1600-0587.1985.tb01154.x
  • 4. de Jong TJ, Klinkhamer PGL. The negative effects of litter of parent plants of Cirsium vulgare on their offspring: autotoxicity or immobilization? Oecologia. 1985;65(2):153–160. http://dx.doi.org/10.1007/BF00379212
  • 5. Miao SL, Bazzaz FA, Primack RB. Persistence of maternal nutrient effects in Plantago major: the third generation. Ecology. 1991;72:1634–1642. http://dx.doi.org/10.2307/1940963
  • 6. Loydi A, Donath TW, Eckstein RL, Otte A. Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions. 2015;17(2):581–595. http://dx.doi.org/10.1007/s10530-014-0750-x
  • 7. Sydes C, Grime JP. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. II. An experimental investigation. J Ecol. 1981;69:249–262. http://dx.doi.org/10.2307/2259829
  • 8. Gross KL. Effects of seed and growth form on seedling establishment on six monocarpic perennial plants. J Ecol. 1984;72(2):919–928. http://dx.doi.org/10.2307/2260053
  • 9. Facelli JM, Facelli E. Interactions after death: plant litter controls priority effect in a successional plant community. Oecologia. 1993;95(2):277–282. http://dx.doi.org/10.1007/BF00323500
  • 10. Facelli JM, Pickett STA. Plant litter: its dynamics and its role in plant community structure. Bot Rev. 1991;57:1–32. http://dx.doi.org/10.1007/BF02858763
  • 11. Facelli JM, Pickett STA. Plant litter: light interception and effects on an oldfield plant community. Ecology. 1991;72:1024–1031.
  • 12. Loydi A, Donath TW, Otte A, Eckstein RL. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species. Plant Biol. 2015;17:667–675. http://dx.doi.org/.10.1111/plb.12287
  • 13. Quested H, Eriksson O. Litter species composition influences the performance of seedlings of grassland herbs. Funct Ecol. 2006;20:522–532. http://dx.doi.org/.10.1111/j.1365-2435.2006.01131.x
  • 14. Donath TW, Eckstein RL. Grass and oak litter exert different effects on seedling emergence of herbaceous perennials from grasslands and woodlands. J Ecol. 2008;96:272–280. http://dx.doi.org/.10.1111/j.1365-2745.2007.01338.x
  • 15. Grime JP. Plant strategies and vegetation processes. New York, NY: Wiley & Sons; 1979.
  • 16. van Tooren BE. Effect of bryophyte layer on the emergence of seedlings of chalk grassland species. Acta Oecol (Montrouge). 1990;11:155–163.
  • 17. Špačková I, Kotorová I, Lepš J. Sensitivity of seedling recruitment to moss, litter and dominant removal in an oligotrophic wet meadow. Folia Geobot. 1998;33(1):17–30. http://dx.doi.org/10.1007/BF02914928
  • 18. Borkowska L. Patterns of seedlings recruitment in experimental gaps on mosaic vegetation of abandoned meadow. Acta Soc Bot Pol. 2004;73(4):343–350. http://dx.doi.org/10.5586/asbp.2004.045
  • 19. Borkowska L. Wzorce rekrutacji siewek gatunków klonalnych w zbiorowisku niekoszonej łąki “Cirsietum rivularis” Ralski 1931: wyniki badań eksperymentalnych. Warszawa: Białowieska Stacja Geobotaniczna, Wydawnictwa Uniwersytetu Warszawskiego; 2004. (Phytocoenosis / Archivum Geobotanicum; vol 10).
  • 20. Lewak S. Growth and development of plant. Seed germination. In: Kopcewicz J, Lewak S, editors. Plant physiology. Warsaw: Polish Scientific Publishers PWN; 2002. p. 485–497.
  • 21. Violle C, Richarte J, Navas ML. Effects of litter and standing biomass on growth and reproduction of two annual species in a Mediterranean old-field. J Ecol. 2006;94:196–205. http://dx.doi.org/10.1111/j.1365-2745.2005.01061.x
  • 22. Foster BL. Establishment, competition and the distribution of native grasses among Michigan oldfields. J Ecol. 1999;87:476–489. http://dx.doi.org/10.1046/j.1365-2745.1999.00366.x
  • 23. Schmiede R, Ruprecht E, Eckstein RL, Otte A, Donath TW. Establishment of rare flood meadow species by plant material transfer: experimental tests of threshold amounts and the effect of sowing position. Biol Conserv. 2013;159:222–229. http://dx.doi.org/10.1016/j.biocon.2012.11.017
  • 24. Fenner M, Thompson K. The ecology of seeds. Cambridge: Cambridge University Press; 2005. http://dx.doi.org/10.1017/CBO9780511614101
  • 25. Thompsom K, Band SR, Hodgson JG. Seed size and shape predict persistence in soil. Funct Ecol. 1993;7:236–241. http://dx.doi.org/10.2307/2389893
  • 26. Molofsky J, Augspurger CK. The effect of leaf litter on early seedling establishment in a tropical forest. Ecology. 1992;73(1):68–72. http://dx.doi.org/10.2307/1938721
  • 27. Czarnecka B, Janiec B. River breaks of Roztocze region as model objects in environmental education. Lublin: Maria Curie-Skłodowska University Press; 2002.
  • 28. Czarnecka B. Plant cover of the Szum River valley (Roztocze, south-east Poland). Acta Soc Bot Pol. 2005;74(1):43–51. http://dx.doi.org/10.5586/asbp.2005.008
  • 29. Czarnecka B, Franczak M. Temporal changes of meadow and peatbog vegetation in the landscape of a small-scale river valley in Central Roztocze. Acta Agrobot. 2015;68(2):135–142. http://dx.doi.org/10.5586/aa.2015.014
  • 30. Csapodỳ V. Keimlingsbestimmungsbuch der Dikotyledonen. Budapesti: Akademiai Kiado; 1968.
  • 31. Muller FM. Seedlings of the North-Western European lowland. A flora of seedlings. The Hague: Dr W. Junk B. V. Publishers; 1978. http://dx.doi.org/10.1007/978-94-009-9981-7
  • 32. Piernik A. Metody numeryczne w ekologii na przykładzie zastosowań pakietu MVSP do analiz roślinności. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika; 2006.
  • 33. Stanisz A. Approachable course of statistics using STATISTICA PL examples from medicine. Vol. 1. Basic statistics. Kraków: StatSoft Press; 2006.
  • 34. Grime JP, Mason G, Curtis AV, Rodman J, Band SR, Mowforth MAG, et al. A comparative study of germination characteristics in a local flora. J Ecol. 1981;69(2):1017–1059. http://dx.doi.org/10.2307/2259651
  • 35. Kleyer M, Bekker RM, Knevel I, Bakker JP, Thompson K, Sonnenschein M, et al. The LEDA Traitbase: a database of life-history traits of Northwest European flora. J Ecol. 2008;96:1266–1274. http://dx.doi.org/10.1111/j.1365-2745.2008.01430.x
  • 36. Bojňanskỳ V, Fargašová A. Atlas of seeds and fruits of Central and East-European flora. The Carpathian Mountains region. Dordrecht: Springer; 2007.
  • 37. Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol. 1998;12(5):834–842. http://dx.doi.org/10.1046/j.1365-2435.1998.00252.x
  • 38. Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M, editors. Flowering plants and pteridophytes of Poland – a checklist. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002. (Biodiversity of Poland; vol 1).
  • 39. Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wydawnictwo Naukowe PWN; 2008.
  • 40. Harper JL. Population biology of plants. London: Academic Press; 1977.
  • 41. Brzosko E. Changes in population structure of Carex cespitosa during 10 years secondary succession an abandoned meadow in the Białowieża. Ann Bot Fenn. 2001;38:249–258.
  • 42. Brzosko E. Zasiedlanie kęp Carex cespitosa L. przez inne gatunki w toku sukcesji wtórnej. Phytocoenosis. Seminarium Geobotanicum. 1991;1:141–150.
  • 43. Kostrakiewicz-Gierałt K. Are Deschampsia caespitosa (L.) Beauv. tussocks safe sites for seedling recruitment in the succession of wet meadows? Pol J Ecol. 2014;62(4):707–721. http://dx.doi.org/10.3161/104.062.0414
  • 44. Franczak M, Czarnecka B. Changes in vegetation and soil seed bank of meadow after waterlogging caused by Castor fiber. Acta Soc Bot Pol. 2015;84(2):189–196. http://dx.doi.org/10.5586/asbp.2015.018
  • 45. Diemont WH. Effects of removal of organic matter on the productivity of heathlands. J Veg Sci. 1994;5(3):409–414. http://dx.doi.org/10.2307/3235864
  • 46. Diemont WH. Seedling emergence after sod cutting in grass heath. J Veg Sci. 1990;1(1):129–132. http://dx.doi.org/10.2307/3236063
  • 47. Allen RB, Wilson JB, Mason CR. Vegetation change following exclusion of grazing animals in depleted grassland, Central Otago, New Zealand. J Veg Sci. 1995;6(5):615–626. http://dx.doi.org/10.2307/3236432
  • 48. Bober J. The reproduction of the forest geophytes in natural and laboratory conditions. Wiad Bot. 2003;47:15–24.
  • 49. Grubb PJ. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev. 1977;52(1):107–145. http://dx.doi.org/10.1111/j.1469-185X.1977.tb01347.x
  • 50. Borkowska L, Dzido-Kryńska A, Kasprzykowski Z. The regressive Cirsium rivulare population in an unmown meadow in Białowieża National Park: influenced by other clonal plants and necromass. Flora. 2014;209:209–214. http://dx.doi.org/10.1016/j.flora.2014.02.007
  • 51. Czarnecka B. Biology and ecology of the isolated populations of Senecio rivularis (Waldst. et Kit.) DC. and Senecio umbrosus Waldst. et Kit. Lublin: Maria Curie-Skłodowska University Press; 1995.
  • 52. Czarnecka B. Gaps and neighbours versus individual recruitment in population. In: Falińska K, editor. Plant population biology and vegetation processes. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 1998. p. 289–301.
  • 53. Falińska K. Sukcesja jako efekt procesów demograficznych roślin. Phytocoenosis Seminarium Geobotanicum. 1991;1:43–67.
  • 54. Falińska K. Colonisation success of clonal plants in an abandoned meadow. In: Falińska K, editor. Plant population biology and vegetation processes. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 1998. p. 195–203.
  • 55. Falińska K. Life history variation in Cirsium palustre and its consequences for the population demography in vegetation succession. Acta Soc Bot Pol. 1997;66:207–220. http://dx.doi.org/10.5586/asbp.1997.027
  • 56. Wilkoń-Michalska J. Structure and dynamics of Salicornia patula Duval–Jouve populations. Toruń: UMK Press; 1978.
  • 57. Kostrakiewicz K. The effect of dominant species on numbers and age structure of Iris sibirica L. population on blue moor-grass meadow in southern Poland. Acta Soc Bot Pol. 2007;76:165–173. http://dx.doi.org/10.5586/asbp.2007.020
  • 58. Kostrakiewicz-Gierałt K. The impact of neighborhood and gap character of seedling recruitment of Trollius europaeus L. and Iris sibirica L. in Molinietum caeruleae meadows. Biodivers Res Conserv. 2012;12:27–44. http://dx.doi.org/10.2478/v10119-012-0026-1
  • 59. Kostrakiewicz-Gierałt K. Recolonisation process in abandoned Molinietum caeruleae meadows – the influence of position within gaps on microsite conditions and seedling recruitment. Acta Scientiarum Polonorum. Agricultura. 2015;14:33–45.
  • 60. Pirożnikow E. The influence of natural and experimental disturbances on emergence and survival of seedlings in an oak-linden-hornbeam forest (Tilio-Carpinetum). Pol J Ecol. 1998;46:137–156.
  • 61. Bueno A, Baruch Z. Soil seed bank and the effect of needle litter layer on seedling emergence in a tropical pine plantation. Rev Biol Trop. 2011;59(3):1071–1079.
  • 62. Dzwonko Z, Gawroński S. Influence of litter and weather on seedling recruitment in a mixed oak-pine woodland. Ann Bot. 2002;90:245–251. http://dx.doi.org/10.1093/aob/mcf178
  • 63. Xiong S, Nilsson C. The effects of plant litter on vegetation: a meta-analysis. J Ecol. 1999;87:984–994. http://dx.doi.org/10.1046/j.1365-2745.1999.00414.x
  • 64. Kostel-Hughes F, Young TP, Wehr JD. Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. J Torrey Bot Soc. 2005;132(1):50–61. http://dx.doi.org/10.3159/1095-5674(2005)132[50:EOLLDO]2.0.CO;2
  • 65. Bosy JL, Reader RJ. Mechanisms underlying the suppression of forb seedling emergence by grass (Poa pratensis) litter. Funct Ecol. 1995;9:635–639. http://dx.doi.org/10.2307/2390155
  • 66. Salisbury EJ. Seed output on the efficacy of dispersal by wind. Proc R Soc Lond B Biol Sci. 1976;192:323–329. http://dx.doi.org/10.1098/rspb.1976.0016
  • 67. Ervin GN, Wetzel RG. Seed fall and field germination of needlerush, Juncus effusus L. Aquat Bot. 2001;71:233–237. http://dx.doi.org/10.1016/S0304-3770(01)00190-5
  • 68. Lindgren CJ, Walker D. Growth rate, seed production, and assessing the spatial risk of Lythrum salicaria using growing degree-days. Wetlands. 2012;32:885–893. http://dx.doi.org/10.1007/s13157-012-0319-3
  • 69. Mal TK, Lovett-Doust J, Lovett-Doust L, Mulligan GA. The biology of Canadian weeds. 100. Lythrum salicaria. Can J Plant Sci. 1992;72:1305–1330. http://dx.doi.org/10.4141/cjps92-164
  • 70. Welling CH, Becker RL. Seed bank dynamics of Lythrum salicaria L. − implications for control of this species in North America. Aquat Bot. 1990;38(2–3):303–309. http://dx.doi.org/10.1016/0304-3770(90)90014-C
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-977a9f65-12de-4f5a-90f9-feb8f8f01e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.