Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 4 |
Tytuł artykułu

Oxygenic photosynthesis: translation to solar fuel technologies

Treść / Zawartość
Warianty tytułu
Języki publikacji
Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar energy conversion into fuel not only efficient but also cost effective, therefore attractive to the consumer, should be properly addressed.
Opis fizyczny
  • Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
  • 1. Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181–189.
  • 2. Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, et al. Future prospects of microalgal biofuel productionsystems. Trends Plant Sci. 2010;15(10):554–564.
  • 3. Industries [Internet]. Shell global. 2014 [cited 2014 Sep 9]; Available from:
  • 4. Barber J, Tran PD. From natural to artificial photosynthesis. Interface Focus. 2013;10(81):20120984.
  • 5. Kargul J, Barber J. Structure and function of photosynthetic reaction centres. In: Wydrzynski TJ, Hillier W, editors. Molecular solar fuels.Cambridge: Royal Society of Chemistry; 2011. p. 107–142.
  • 6. Larkum AWD. Evolution of the reaction centers and photosystems. In: Renger G, editor. Primary processes of photosynthesis: principles and apparatus. Cambridge: Royal Society of Chemistry; 2008. p. 489–521.
  • 7. Barber J. Engine of life and big bang of evolution: a personal perspective. Photosynth Res. 2004;80(1–3):137–155.
  • 8. Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu Rev Plant Biol. 2011;62(1):515–548.
  • 9. Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2004;2(7):e206.
  • 10. Pennisi E. Genome duplications: the stuff of evolution? Science. 2001;294(5551):2458–2460.
  • 11. Raymond J, Blankenship RE. Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci USA. 2003;100(13):7419–7420.
  • 12. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KV. Horizontal transfer of the photosynthesis gene cluster andoperon rearrangement in purple bacteria. J Mol Evol. 2001;52(4):333–341.
  • 13. Sadekar S. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core.Mol Biol Evol. 2006;23(11):2001–2007.
  • 14. Murray JW, Duncan J, Barber J. CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci. 2006;11(3):152–158.
  • 15. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, et al. Comparing photosynthetic and photovoltaic efficienciesand recognizing the potential for improvement. Science.2011;332(6031):805–809.
  • 16. Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, et al. Molecular artificial photosynthesis. Chem SocRev. 2014;43(22):7501–7519.
  • 17. Field CB. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281(5374):237–240.
  • 18. Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems.J Plant Physiol. 2012;169(16):1639–1653.
  • 19. Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature. 2004;429(6991):579–582. http://dx.doi. org/10.1038/nature02598
  • 20. Johnson GN. Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta. 2011;1807(3):384–389.
  • 21. Joliot P, Johnson GN. Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA. 2011;108(32):13317–13322.
  • 22. Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase inphotosynthetic cyclic electron flow. Mol Cell. 2013;49(3):511–523.
  • 23. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, et al. A complex containing PGRL1 and PGR5 is involved in theswitch between linear and cyclic electron flow in Arabidopsis. Cell.2008;132(2):273–285.
  • 24. Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell. 2009;21(11):3623–3640.
  • 25. Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiologicalrole during photosynthesis and plant growth at lowtemperature in rice. Plant J. 2011;68(6):966–976.
  • 26. Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, et al. Proton gradient regulation5-like1-mediated cyclicelectron flow is crucial for acclimation to anoxia and complementaryto nonphotochemical quenching in stress adaptation. Plant Physiol. 2014;165(4):1604–1617.
  • 27. Nelson N, Yocum CF. Structure and function of photosystems I and II. Annu Rev Plant Biol. 2006;57(1):521–565.
  • 28. Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in photosystem II: a comparative and evolutionary overview. BiochimBiophys Acta. 2012;1817(1):26–43.
  • 29. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60.
  • 30. Kanady JS, Tsui EY, Day MW, Agapie T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystemII. Science. 2011;333(6043):733–736.
  • 31. Ananyev G, Dismukes GC. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res.2005;84(1-3):355–365.
  • 32. Badura A, Kothe T, Schuhmann W, Rögner M. Wiring photosynthetic enzymes to electrodes. Energy Environ Sci. 2011;4(9):3263.
  • 33. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at2.5 A resolution. Nature. 2001;411(6840):909–917.
  • 34. Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426(6967):630–635. nature02200
  • 35. Amunts A, Drory O, Nelson N. The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature. 2007;447(7140):58–63.
  • 36. Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion.Biochim Biophys Acta. 2014;1837(9):1553–1566.
  • 37. Ocakoglu K, Krupnik T, van den Bosch B, Harputlu E, Gullo MP, Olmos JDJ, et al. Photosystem I-based biophotovoltaics on nanostructuredhematite. Adv Funct Mater. 2014 (in press).
  • 38. Pandey D, Agrawal M. Carbon footprint estimation in the agriculture sector. In: Muthu SS, editor. Assessment of carbon footprint in different industrial sectors. Singapore: Springer; 2014. p. 25–47. (vol 1). http://
  • 39. Jajesniak P, Ali H, Wong TS. Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J BioprocessBiotech. 2014;4(155).
  • 40. Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev.2014;31:121–132.
  • 41. Oliver JWK, Machado IMP, Yoneda H, Atsumi S. Combinatorial optimization of cyanobacterial 2,3-butanediol production. MetabEng. 2014;22:76–82.
  • 42. Machado IMP, Atsumi S. Cyanobacterial biofuel production. J Biotech. 2012;162(1):50–56.
  • 43. Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to producebiofuels. Chem Rev. 2013;113(7):4611–4632.
  • 44. Smith KS, Ferry JG. Prokaryotic carbonic anhydrases. FEMS Microbiol Rev. 2000;24(4):335–366. tb00546.x
  • 45. Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y. Bioengineering of carbon fixation, biofuels, and biochemicals incyanobacteria and plants. J Biotech. 2012;162(1):134–147.
  • 46. Quintana N, van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol.2011;91(3):471–490.
  • 47. Das D. Hydrogen production by biological processes: a survey of literature. Int J Hydrog. Energy. 2001;26(1):13–28.
  • 48. Abed RMM, Dobretsov S, Sudesh K. Applications of cyanobacteria in biotechnology. J Appl Microbiol. 2009;106(1):1–12.
  • 49. Dutta D, De D, Chaudhuri S, Bhattacharya SK. Hydrogen production by cyanobacteria. Microb Cell Fact. 2005;4(1):36.
  • 50. Melis A, Zhang L, Forestier M, Ghirardi M, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivationof oxygen evolution in the green alga Chlamydomonas reinhardtii. PlantPhysiol. 2000;122(1):127–136.
  • 51. Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, et al. Improved photobiological H2 production in engineered green algal cells. J Biol Chem. 2005;280(40):34170–34177. http://dx.doi. org/10.1074/jbc.M503840200
  • 52. Kargul J, Barber J. Photosynthetic acclimation: structural reorganisation of light harvesting antenna - role of redox-dependentphosphorylation of major and minor chlorophyll a/bbinding proteins. FEBS J. 2008;275(6):1056–1068.
  • 53. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2production efficiency of the green alga Chlamydomonas reinhardtii.PLoS ONE. 2013;8(4):e61375.
  • 54. Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ. Energy biotechnology with cyanobacteria. Curr Opin Biotechnol.2009;20(3):257–263.
  • 55. Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol. 2015;33:8–14.
  • 56. van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ. Carbon sink removal: increased photosynthetic productionof lactic acid by Synechocystis sp. PCC6803 in a glycogen storagemutant. J Biotech. 2014;184:100–102.
  • 57. Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013;24(3):405–413. copbio.2013.04.004
  • 58. Gao Z, Zhao H, Li Z, Tan X, Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria.Energy Environ Sci. 2012;5(12):9857.
  • 59. Qi F, Yao L, Tan X, Lu X. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Biotechnol Lett. 2013;35(10):1655–1661.
  • 60. Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A. Perspectives on engineering strategies for improving biofuel production from microalgae– a critical review. Biotechnol Adv. 2014;32(8):1448–1459.
  • 61. PC Lai E. Biodiesel: environmental friendly alternative to petrodiesel. J Pet Env. Biotechnol. 2014;5(1). http://dx.doi. org/10.4172/2157-7463.1000e122
  • 62. Ragauskas AME, Ragauskas AJ. Re-defining the future of FOG and biodiesel. J Pet Environ Biotechnol. 2013;4(1).
  • 63. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, et al. Fatty acids profiling: a selective criterion forscreening microalgae strains for biodiesel production. Algal Res.2013;2(3):258–267.
  • 64. Trudewind CA, Schreiber A, Haumann D. Photocatalytic methanol and methane production using captured CO2 from coal power plants. Part II – well-to-wheel analysis on fuels for passenger transportation services. J Clean Prod. 2014;70:38–49. jclepro.2014.02.024
  • 65. Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.Biotechnol Adv. 2009;27(4):409–416.
  • 66. Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100(2):203–212.
  • 67. Thapper A, Styring S, Saracco G, Rutherford AW, Robert B, Magnuson A, et al. Artificial photosynthesis for solar fuels – an evolving researchfield within AMPEA, a joint programme of the european energyresearch alliance. Green. 2013;3(1):43–57.
  • 68. Ocakoglu K, Joya KS, Harputlu E, Tarnowska A, Gryko DT. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates. Nanoscale. 2014;6(16):9625.
  • 69. Llansola-Portoles MJ, Bergkamp JJ, Tomlin J, Moore TA, Kodis G, Moore AL, et al. Photoinduced electron transfer in perylene-TiO2nanoassemblies. Photochem Photobiol. 2013;89(6):1375–1382.
  • 70. Ihssen J, Braun A, Faccio G, Gajda-Schrantz K, Thöny-Meyer L. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Curr Protein Pept Sci. 2014;15(4):374–384.
  • 71. Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, et al. A molecular ruthenium catalyst with water-oxidation activitycomparable to that of photosystem II. Nat Chem. 2012;4(5):418–423.
  • 72. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+. Science. 2008;321(5892):1072–1075.
  • 73. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, et al. Wireless solar water splitting using silicon-based semiconductors andearth-abundant catalysts. Science. 2011;334(6056):645–648.
  • 74. Kanan MW, Yano J, Surendranath Y, Dincă M, Yachandra VK, Nocera DG. Structure and valency of a cobalt−phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc. 2010;132(39):13692–13701.
  • 75. Tran PD, Wong LH, Barber J, Loo JSC. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci. 2012;5(3):5902.
  • 76. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide.ChemSusChem. 2012;5(3):500–521.
  • 77. Kim JH, Nam DH, Park CB. Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol. 2014;28:1–9. http://dx.doi. org/10.1016/j.copbio.2013.10.008
  • 78. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89.
  • 79. Bora DK, Braun A, Constable EC. “In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis.Energy Environ Sci. 2013;6(2):407–425.
  • 80. Bora DK, Braun A, Erni R, Müller U, Döbeli M, Constable EC. Hematite–NiO/α-Ni(OH)2 heterostructure photoanodes with highelectrocatalytic current density and charge storage capacity. Phys ChemChem Phys. 2013;15(30):12648.
  • 81. Gajda-Schrantz K, Tymen S, Boudoire F, Toth R, Bora DK, Calvet W, et al. Formation of an electron hole doped film in the α-Fe2O3 photoanode upon electrochemical oxidation. Phys Chem Chem Phys. 2013;15(5):1443.
  • 82. Bora DK, Rozhkova EA, Schrantz K, Wyss PP, Braun A, Graule T, et al. Functionalization of nanostructured hematite thin-film electrodeswith the light-harvesting membrane protein C-phycocyanin yieldsan enhanced photocurrent. Adv Funct Mater. 2012;22(3):490–502.
  • 83. Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed Engl. 2013;52(52):14233–14236.
  • 84. Badura A, Guschin D, Esper B, Kothe T, Neugebauer S, Schuhmann W, et al. Photo-induced electron transfer between photosystem 2 viacross-linked redox hydrogels. Electroanalysis. 2008;20(10):1043–1047.
  • 85. Badura A, Guschin D, Kothe T, Kopczak MJ, Schuhmann W, Rögner M. Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy Environ Sci. 2011;4(7):2435. http://dx.doi. org/10.1039/c1ee01126j
  • 86. Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, et al. Self-assembled photosystem-I biophotovoltaics onnanostructured TiO2 and ZnO. Sci Rep. 2012;2:1–7.
  • 87. Wenk SO, Qian DJ, Wakayama T, Nakamura C, Zorin N, Rögner M, et al. Biomolecular device for photoinduced hydrogen production.Int J Hydrog. Energy. 2002;27(11–12):1489–1493.
  • 88. Yehezkeli O, Tel-Vered R, Michaeli D, Nechushtai R, Willner I. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small.2013;9(17):2970–2978.
  • 89. Wang W, Chen J, Li C, Tian W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificialphotocatalysts. Nat Commun. 2014;5:4647.
  • 90. Kato M, Cardona T, Rutherford AW, Reisner E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporousindium–tin oxide electrode. J Am Chem Soc. 2012;134(20):8332–8335.
  • 91. Kato M, Cardona T, Rutherford AW, Reisner E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc. 2013;135(29):10610–10613.
  • 92. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles.Nat Commun. 2012;3:1139.
  • 93. Engel GS, Calhoun TR, Read EL, Ahn TK, Mančal T, Cheng YC, et al. Evidence for wavelike energy transfer through quantum coherencein photosynthetic systems. Nature. 2007;446(7137):782–786.
  • 94. Zhou H, Guo J, Li P, Fan T, Zhang D, Ye J. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci Rep. 2013;3:1667.
  • 95. Larkum AWD. Harvesting solar energy through natural or artificial photosynthesis: scientific, social, political and economic implications.In: Wydrzynski TJ, Hillier W, editors. Molecular solar fuels.Cambridge: Royal Society of Chemistry; 2011. p. 1–19.
  • 96. Kato M, Zhang JZ, Paul N, Reisner E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev.2014;43(18):6485.
  • 97. Redinbo MR, Cascio D, Choukair MK, Rice D, Merchant S, Yeates TO. The 1.5-.ANG. crystal structure of plastocyanin from the green algaChlamydomonas reinhardtii. Biochemistry. 1993;32(40):10560–10567.
  • 98. Kameda H, Hirabayashi K, Wada K, Fukuyama K. Mapping of protein-protein interaction sites in the plant-type [2Fe-2S] ferredoxin. loS One. 2011;6(7):e21947. pone.0021947
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.