Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 2 |
Tytuł artykułu

Dietary fiber extraction from defatted corn hull by hot-compressed water

Treść / Zawartość
Warianty tytułu
Języki publikacji
Corn hulls were abundant and inexpensive byproducts of the corn dry or wet milling processes, but most of them were discarded as agro-wastes. The aim of this study was to extract the dietary fiber by hot-compressed water (HCW) from defatted corn hull and to determine the chemical properties. Results showed that temperature and time played critical roles in extraction effi ciency; the maximal yield of dietary fiber A (DFA) extracted by HCW reached 33.0% at 150°C for 60 min. The yield of dietary fiber B (DFB) increased from 2.0% to 56.9% as the temperature increased from 110 to 180°C, while the yield of solid residue (SR) decreased from 88.7% to 27.7%. Fourier transform infrared spectroscopy (FT-IR) results demonstrated that C-H, O-H, C=O, COO- occurred in the DFA, SR and DFB. The dietary fiber polysaccharides consisted of arabinose, galactose, glucose, xylose and uronic acid.
Opis fizyczny
  • College of Physics Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • Province Key Laboratory of Transformation and Utilization of Cereal Resource, Henan University of Technology, Zhengzhou, Henan 450001, China
  • College of Physics Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • Province Key Laboratory of Transformation and Utilization of Cereal Resource, Henan University of Technology, Zhengzhou, Henan 450001, China
  • Province Key Laboratory of Transformation and Utilization of Cereal Resource, Henan University of Technology, Zhengzhou, Henan 450001, China
  • College of Physics Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • 1. AOAC. Official Methods of Analysis of AOAC International. 18th Edition. Editor Horowitz. W. Latimer. G.W. AOAC International, 2005, Maryland. USA.
  • 2. Carr A.G., Branch A., Mammucari R., Foster N.R., The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J. Supercrit. Fluid., 2010, 55, 37–42.
  • 3. Cerrutti P., Resnik S., Seldes A., Fontan C.F., Kinetics of deteriorative reactions in model food systems of high water activity: glucose loss, 5-hydroxymethylfurfural accumulation and fluorescence. J. Food Sci., 1985, 50, 627–630.
  • 4. Chanliaud E., Saulnier L., Thibault J.F., Alkaline extraction and characterisation of heteroxylans from maize bran. J. Cereal Sci., 1995, 21, 195–203.
  • 5. Clarke M.B., Bezabeh D.Z., Howard C.T., Determination of carbohydrates in tobacco products by liquid chromatography-mass spectrometry/mass spectrometry: a comparison with ion chromatography. J. Agric. Food Chem., 2006, 54, 1975–1981.
  • 6. Dhingra D., Michael M., Rajput H., Patil R., Dietary fibre in foods: a review J. Food Sci. Tech., 2012, 49, 255–266.
  • 7. Foschia M., Peressini D., Sensidoni A., Brennan C.S., The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci., 2013, 58, 216–227.
  • 8. Gáspár M., Juhász T., Szengyel Z., Réczey K., Fractionation and utilisation of corn fibre carbohydrates. Process Biochem., 2005, 40, 1183–1188.
  • 9. Gáspár M., Kálmán G., Réczey K., Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem., 2007, 42, 1135–1139.
  • 10. Gnanasambandam R., Proctor A., Determination of pectin degree of esterifi cation by diffuse refl ectance Fourier transform infrared spectroscopy. Food Chem., 2000, 68, 327–332.
  • 11. Huang Y.L., Chow C.J., Tsai Y.H., Composition, characteristics, and in-vitro physiological effects of the water-soluble polysaccharides from Cassia seed. Food Chem., 2012, 134, 1967–1972.
  • 12. Jiang C., Wang M., Liu J., Gan D., Zeng X., Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohyd. Polym., 2011, 84, 851–857.
  • 13. Kálmán G., Recseg K., Gáspár M., Réczey K., Novel approach of corn fiber utilization. Appl. Biochem. Biotech., 2006, 131, 738–750.
  • 14. Kang S.M., Kim K.N., Lee S.H., Ahn G., Cha S.H., Kim A.D., Yang X.D., Kang M.C., Jeon Y.J., Anti-infl ammatory activity of polysaccharide purifi ed from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym., 2011, 85, 80–85.
  • 15. Kobayashi N., Okada N., Hirakawa A., Sato T., Kobayashi J., Hatano S., Itaya Y., Mori S., Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind. Eng. Chem. Res., 2009, 48, 373–379.
  • 16. Liu H.M., Xie X.A., LiM.F., Sun R.C., Hydrothermal liquefaction of cypress: effects of reaction conditions on 5-lump distribution and composition. J. Anal. Appl. Pyrol., 2012, 94, 177–183.
  • 17. Liu H.M., Liu Y., Effect of different solvents on cypress liquefaction to fuels and characterization of products. BioResources, 2013, 8, 6211–6219.
  • 18. Liu H.M., Wang F.Y., Liu Y.L., Hot-compressed water extraction of polysaccharides from soy hulls. Food Chem., 2016, 202, 1, 104–109.
  • 19. Łozak A., Sołtyk K., Kiljan M., Fijałek Z., Ostapczuk P., Determination of selected trace elements in dietary supplements containing plant materials. Pol. J. Food Nutr. Sci., 2012, 62, 97–102.
  • 20. Makowska A., Mildner-Szkudlarz S., Obuchowski W., Effect of brewer’s spent grain addition on properties of corn extrudates with an increased dietary fibre content. Pol. J. Food Nutr. Sci., 2013, 63, 19–24.
  • 21. Matsunaga M., Matsui H., Otsuka Y., Yamamoto S., Chemical conversion of wood by treatment in a semi-batch reactor with subcritical water. J. Supercrit. Fluid., 2008, 44, 364–369.
  • 22. Mathlouthi M., Koenig J.L., Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem., 1986, 44, 7–89.
  • 23. Merali Z., Collins S.R.A., Elliston A., Wilson D.R., Käsper A., Waldron K.W., Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofulls, 2015, 8, 23.
  • 24. Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31, 426–428.
  • 25. Nielsen S.S., Phenol-sulfuric acid method for total carbohydrates. Food Analysis Laboratory Manual, 2010, 2nd ed., Springer US, New York. 2
  • 26. Peng F., Peng P., Xu F., Sun R.C., Fractional purifi cation and bioconversion of hemicelluloses. Biotechnol. Adv., 2012, 30, 879–903.
  • 27. RenJie L., Orthogonal test design for optimization of the extraction of polysaccharides from Phascolosoma esulenta and evaluation of its immunity activity. Carbohydr. Polym., 2008, 73, 558–563.
  • 28. Rogalinski T., Liu K., Albrecht T., Brunner G., Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluid., 2008, 46, 335–341.
  • 29. Sasaki M., Kabymela B., Malaluan R., Hirose S., Takeda N., Adschiri T., Arai K., Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluid., 1998, 13, 261–268.
  • 30. Saulnier L., Vigouroux J., Thibault J.F., Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr. Res., 1995a, 272, 241–253.
  • 31. Saulnier L., Marot C., Chanliaud E., Thibault J.F., Cell wall polysaccharide interactions in maize bran. Carbohydr. Polym., 1995b, 26, 279–287.
  • 32. Sugawara M., Benno Y., Takeuchi M., Mitsuoka T., Effect of corn fiber on fecal flora, properties of feces, β-glucuronidase, and levels of serum lipid in healthy men. Agric. Biol. Chem., 1989, 53, 2625–2630.
  • 33. Sugawara M., Suzuki K., Endo K., Kumemura M., Takeuchi M., Mitsuoka T., Effect of the dietary supplementation of corn hemicellulose on fecal flora and bacterial enzyme activities in human adults. Agric. Biol. Chem., 1990, 54, 1683–1688.
  • 34. Sugawara M., Benno Y., Koyasu E., Takeuchi M., Mitsuoka T., Digestion and fermentation by human intestinal bacteria of corn fiber and its hemicellulose in vitro. Agric. Biol. Chem., 1991a, 55, 565–567.
  • 35. Sugawara M., Sato Y., Yokoyama S., Mitsuoka T., Effect of corn fiber residue supplementation on fecal properties, flora, ammonia, and bacterial enzyme activities in healthy humans. J. Nutr. Sci. Vitaminol., 1991b, 37, 109–116.
  • 36. Sun R.C., Tomkinson J., Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr. Polym., 2002, 50, 263–271.
  • 37. Teo C.C., Tan S.N., Yong J.W. H., Hew C.S., Ong E.S., Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217, 2484–2494.
  • 38. Tsai P., Delva L., Yu T., Huang Y., Dufosse L., Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Res. Int., 2005, 38, 1059–1065.
  • 39. Ueno H., Tanaka M., Hosino M., Sasaki M., Goto M., Extraction of valuable compounds from the fl avedo of Citrus junos using subcritical water. Sep. Purif. Technol., 2008, 62, 513–516.
  • 40. Wang X., Chen Q.R., Lü X., Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloid., 2014, 38, 129–137.
  • 41. Wei X., Chen M., Xiao J., Liu Y., Yu L., Zhang H., Wang Y., Composition and bioactivity of tea fl ower polysaccharides obtained by different methods. Carbohydr. Polym., 2010, 79, 418–422.
  • 42. Wiboonsirikul J., Hata S., Tsuno T., Kimura Y., Adachi S., Production of functional substances from black rice bran by its treatment in subcritical water. LWT – Food Sci. Technol., 2007a, 40, 1732–1740.
  • 43. Wiboonsirikul J., Kimura Y., Kadota M., Morita H., Tsuno T., Adachi S., Properties of extracts from defatted rice bran by its subcritical water treatment. J. Agric. Food Chem., 2007b, 55, 8759–8765.
  • 44. Yadav M.P., Hicks K.B., Johnston D.B., Hotchkiss Jr. A.T., Chau H.K., Hanah K., Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls. Food Hydrocoll., 2016, 53, 125–133.
  • 45. Yang L., Zhang L.M., Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym., 2009, 76, 349–361.
  • 46. Yuliansyah A.T., Hirajima T., Kumagai S., Sasaki K., Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste Biomass Valori., 2010, 1, 395–405.
  • 47. Zhang Y., Li H.F., Ma Y., Jin Y., Kong G., Lin J.M., Microwave assisted extraction-solid phase extraction for high-effi cient and rapid analysis of monosaccharides in plants. Talanta, 2014, 129, 404–410.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.