PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 11 |
Tytuł artykułu

Allelopathic interactions of invasive black locust (Robinia pseudoacacia L.) with secondary aliens: the physiological background

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite of numerous benefits, black locust (Robinia pseudoacacia L.) is an invasive tree species in Slovakia and Hungary. Recently, secondary local invasions of black locust plantations by black cherry (Prunus serotina Ehrh.) and common hackberry (Celtis occidentalis L.) have been observed in these countries. In this study, we describe these unique tree-to-tree interactions directly in the field as well as simulated in the laboratory (1% water extracts from leaves and twigs applied on leaf and soil). In the field, we observed no effect on tree height and trunk diameter as well as leaf metabolic parameters caused by black cherry. However, the laboratory experiment showed a reduction in nodulation, and thus N fixation rate per plant, which did not mirror in the shoot and root dry matter (DM) production. On the other hand, common hackberry significantly affected tree height as well as leaf amino acid and total nitrogen concentration, but not the content of soluble sugars and hydrogen peroxide in the field. The laboratory experiment revealed significant reductions in nodulation, N fixation rate per plant, shoot and root DM and leaf hydrogen peroxide, nevertheless, a noticeable soluble protein accumulation. Thus, we can conclude that common hackberry, but not black cherry, can effectively suppress black locust N metabolism and growth.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
41
Numer
11
Opis fizyczny
Article 182 [10p.], fig.,ref.
Twórcy
autor
  • Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, Vieska nad Zitavou 178, SK‑95152 Slepcany, Slovakia
autor
  • Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, Vieska nad Zitavou 178, SK‑95152 Slepcany, Slovakia
  • Department of Botany and Genetics, Faculty of Natural Sciences, University of Constantine the Philosopher, Nabrezie mladeze 91, SK‑949 74 Nitra, Slovakia
autor
  • Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, Vieska nad Zitavou 178, SK‑95152 Slepcany, Slovakia
autor
  • Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, Vieska nad Zitavou 178, SK‑95152 Slepcany, Slovakia
autor
  • National Botanical Garden, Centre for Ecological Research, Institute of Ecology and Botany, Hungarian Academy of Sciences, Alkotmany 2, Vacratot HU‑2163, Hungary
autor
  • Department of Nitrogen Fixation, Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Vasylkivska 31/17, Kiev UA‑03022, Ukraine
autor
  • Department of Nitrogen Fixation, Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Vasylkivska 31/17, Kiev UA‑03022, Ukraine
Bibliografia
  • Al-Wakeel SAM, Gabr MA, Hamid AA, Abu-El-Soud WM (2007) Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath J 19(2):411–422
  • Annighöfer P, Mölder I, Zerbe S, Kawaletz H, Terwei A, Ammer C (2012) Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forest of Northern Italy. Eur J Forest Res 131:1619–1635
  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Env 32:666–681
  • Bao Z, Nilsen ET (2015) Interactions of seedlings of the invasive tree Ailanthus altissima and the native tree Robinia pseudoacacia under low nutrient conditions. J Plant Interact 10(1):173–184
  • Bartha D, Csiszár A, Vince Z (2008) Black locust (Robinia pseudoacacia L.). In: Botta-Dukát Z, Balogh L (eds) The most important invasive plants in Hungary. Institute of Botany and Ecology HAS, Hungary, pp 63–76
  • Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by Chenopodium murale affect growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Reg 51:119–128
  • Benčať F (1982) Atlas rozšírenia cudzokrajných drevín na Slovensku [Atlas of exotic tree species spreading in Slovakia]. Veda, Bratislava
  • Benčaťová B, Benčať T (2008) The black locust communities from Slovak Gate to Danube. Thaiszia 18(1):3–7
  • Blum U, Gerig TM (2006) Interrelationship between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32(8):1818–1834
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Call LJ, Nilsen ET (2005) Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol 176:275–285
  • Cao B, Song L-H, Zhang T-T (2009) Allelopathic effects of solution extracted from soil around Ailanthus altissima root zone on germination of Robinia pseudoacacia seeds. J Nanjing For Univ 33(3):51–54
  • Chabrerie O, Loinard J, Perrin S, Saguez R, Decocq G (2010) Impact of Prunus serotina invasion on understory functional diversity in a European forest. Biol Invasions 12:1891–1907
  • Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303
  • Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora of the British isles: Robinia pseudoacacia. J Ecol 101:1323–1640
  • Cornelissen JHC, Sibma F, Van Logtestijn RSP, Broekman RA, Thompson K (2011) Leaf pH as a plant trait: species-driven rather than soil-driven variation. Funct Ecol 25:449–455
  • De Marco A, Arena C, Giordano M, Virzo De Santo A (2013) Impact of the invasive tree black locust on soil properties of Mediterranean stone pine-holm oak forests. Plant Soil 372:473–486
  • Einhellig EA (2004) Mode of allelochemical action of phenolic compounds. In: Macías FA et al (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Florida, pp 217–238
  • El-Alfy N, El-Gohary HMA, Sokkar NM, Hosny M, Al-Mahdy DA (2011) A new flavonoid C-glycoside from Celtis australis L. and Celtis occidentalis L. leaves and potential antioxidant and cytotoxic activities. Sci Pharm 79:963–975
  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol. 3:577–591
  • Fipps G (2003) Irrigation water quality standards and salinity management. Agri Life Extension, Texas A&M System, B-1667
  • Fournier E (2001) Colorimetric quantification of carbohydrates. Curr Prot Food Anal Chem E1.1.1–E1.1.8
  • Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediated sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol 26:517–525
  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology and phenotypic plasticity. Annu Rev Plant Biol 65:155–185
  • Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen signaling and communication in plants. Signalling and communication in plants 23. Springer, New York, pp 155–176
  • Godefroid S, Phartyal SS, Weyembergh G, Koedam N (2005) Ecological factors controlling the abundance of non-native invasive black cherry (Prunus serotina) in deciduous forest understory in Belgium. For Ecol Manag 210:91–105
  • Haig T (2008) Allelochemicals in plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104
  • Halarewicz A, Zolnierz L (2014) Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.). For Ecol Manag 313:91–97
  • Hammash D, Kitaz A, Sabbagh G (2016) Total phenolic content, flavonoid concentration and antioxidant activity of leaves and bark extracts of Celtis australis L. Int J Pharm Sci Nanotech 9:3188–3192
  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207
  • Jagodziński AM, Dyderski MK, Rawlik M, Banaszczak P (2015) Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. invasion–Evidence from a Rogów Arboretum case study. Forest Ecol Manag 357:84–94
  • Keresztesi B (1983) Breeding and cultivation of black locust, Robinia pseudoacacia. Hungary For Ecol Manag 6(3):217–244
  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. [New method for the determination of nitrogen in organic substances.]. Zeitschrift für analytische Chemie 22(1):366–383
  • Knipp M, Vašák M (2000) A colorimetric 96-well microtiter plate assay for determination of enzymatically formed citrulline. Anal Biochem 286:257–264
  • Krykunets VM (1993) Acetylene reduction method in researches on physiology of legume-Rhizobium symbiosis. Physiol Biochem Cult Plants 25:419–430
  • Li HH, Inove M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and ascorbic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787
  • Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952
  • Lodhi MAK (1975) Allelopathic efects of hackberry in bottomland forest community. J Chem Ecol 1(2):171–182
  • Lodhi MAK, Nickell GL (1973) Effects of leaf extracts of Celtis laevigata on growth, water content, and carbon dioxide exchange rates of three grass species. Bull Torrey Bot Club 100(3):159–165
  • Lodhi MAK, Rice EL (1971) Allelopathic efects of Celtis laevigata. Bull Torrey Bot Club 98(2):83–89
  • Lotina-Hennsen B, King-Diaz B, Aguilar MI, Hernandez Terrones MG (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, Gonzáles L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 229–265
  • Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309
  • Mierziak J, Kosty K, Kulma A (2014) Flavonoids as important molecules of plant interactions with environment. Molecules 19:16240–16265
  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170
  • Nasir H, Iqbal Z, Hiradate S, Fujii Y (2005) Allelopathic potential of Robinia pseudoacacia L. J Chem Ecol 31(9):2179. https://doi.org/10.1007/s10886-005-6084-5
  • Olszewska M (2007) Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and inflorescence of Prunus serotina Ehrh. Acta Chrom 19:253–269
  • Oravec M (2008) Production capability of robinia stands from the viewpoint of production of fuel dendromass. Forestry J 54(2):155–165
  • Park YK, Koo MH, Ikegati M, Contado JL (1997) Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq Biol Tecnol 40:97–106
  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB PLANTS. https://doi.org/10.1093/aobpla/pls014
  • Procházková S, Vårum KM, Østgaard K (1999) Quantitative determination of chitosans by ninhydrin. Carbohyd Polym 38:115–122
  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lign Hungary 4:127–132
  • Robakowski P, Bielinis E, Stachowiak J, Mejza I, Bułaj B (2016) Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea. J Chem Ecol 42:202–214
  • Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11(5):316–321
  • Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvment of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296
  • Singh AK et al (2011) Characterization of Rhizobium isolated from root nodules of Trifolium alexandrinum. J Agric Tech 7(6):1705–1723
  • Šiška B, Špánik F, Repa Š, Gálik M (2005) Practical bio-meteorology. [Praktická biometeorológia]. Slovenská poľnohospodárska univerzita, Nitra
  • Sitzia T, Campagnaro T, Dainese M, Cierjacks A (2012) Plant species diversity in alien black locust stands: a paired comparison with native stands across a north-Mediterranean range expansion. For Ecol Manag 285:85–91
  • Slavík B (1965) Metody studia vodního provozu rostlin. [Methods in the Plant Relations Study.] Nakladatelství ČSAV, Praha
  • Sommavilla V, Haidacher-Gasser D, Sgarbossa M, Zodorn C (2012) Seasonal variation in phenolics in leaves of Celtis australis (Cannabaceae). Biochem Syst Ecol 41:110–114
  • Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crop Res 65(2–3):183–196
  • Surleva A, Drochioiu G (2013) A modified ninhydrin micro-assay for determination of total cyanogens in plants. Food Chem 141:2788–2794
  • Swain E, Poulton JE (1994) Utilization of amygdalin during seedling development of Prunus serotina. Plant Physiol 106:437–445
  • Tian C et al (2003) Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests 25(2):125–131
  • Török K, Botta-Dukát Z, Dancza I, Németh I, Kiss J, Mihály B, Magyar D (2003) Invasion gateways and corridors in the Carpathian Basin: biological invasions in Hungary. Biol Invasions 5:349–356
  • Ubalua AO (2010) Cyanogenic glycosides and the fate of cyanide in soil. AJCS 4:223–237
  • ÚKZÚZ (2013) Spectrophotometric determination of tannins in sorghum. [Stanovení obsahu taninů v čiroku spektrofotometricky]. ÚKZÚZ, Praha
  • Vanhellemont M, Wauters L, Baeten L, Bijlsma R-J, De Frenne P, Hermy M, Verheyen K (2009) Prunus serotina unleasehed: invader dominance after 70 years of forest development. Invasions, Biol. https://doi.org/10.1007/s10530-009-9529-x
  • Vetter J (2000) Plant cynogenic glycosides. Toxicon 38:11–36
  • Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017) Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For Ecol Manag 284:287–302
  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297
  • Zanardo DIL, Lima RB, Ferrarese ML, Burna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Env Exp Bot 66(1):25–30
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-82121401-9ac7-4d80-b554-28d1de2d0bff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.