The effects of prenatal exposure to methylxanthines

P. Skopiński¹,², M. Woronkowicz¹, E. Skopińska-Różewska³,⁴, A.K. Siwicki⁵

¹ Department of Ophthalmology, Second Faculty of Medicine, Warsaw Medical University, Sierakowskiego 13, 03-709 Warsaw, Poland
² Department of Histology and Embryology, Center for Biostructure Research, Warsaw Medical University, 02-004 Chalubińskiego 5, Warsaw, Poland
³ Pathology Department, Center for Biostructure Research, Warsaw Medical University, Chalubińskiego 5, 02-004 Warsaw, Poland
⁴ Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Szaserów 128, 04 349 Warsaw, Poland
⁵ Department of Microbiology and Clinical Immunology, University of Warmia and Mazury, Oczapowskiego 13, 10-957 Olsztyn, Poland

Abstract

This review discusses epidemiology and laboratory studies on the effects of prenatal methylxanthine administration on some systems developing organisms. They are mainly absorbed from coffee, tea and cocoa products such as cola beverages and chocolate bars.

Prenatal methylxanthine exposure can induce several unfavourable changes in the developing organism, which are persistent even in later phases of life. Based on results obtained from animal studies, the effect on embryogenesis is not only poorly understood but also controversial. It is therefore important to study interspecies differences as results may differ depending on animals used and administration methods.

Key words: Methylxanthines, coffee, tea, cola, prenatal exposure, interspecies studies

Introduction

The group of substances referred to as methylxanthines include caffeine, theophylline, theobromine and aminophylline, which is a compound of theophylline with ethylenediamine. They are mainly absorbed from coffee, tea and cocoa products such as cola beverages and chocolate bars, as well as some medications. Methylxanthines have been demonstrated to exhibit multifunctional physiological effects mediated through molecular processes such as inducing intracellular calcium release via ryanodine receptors, inhibiting phosphodiesterase activity and blocking GABA receptors (Wendler et al. 2009). However, at normal doses they are considered to mainly affect the adenylyl cyclase pathway mediated by adenosine. Of the four characterized adenosine receptors (A1R, A2AR, A2BR and A3R), only A1 – negatively coupled to adenylyl cyclase and A2 – coupled to adenylyl cyclase through Gs protein receptors, have been
proved to be the main target for methylxanthines (Iglesias et al. 2006).

Gil et al. (1993) reported an inhibitory effect of purinergic receptor antagonists suramin and theobromine on angiogenesis induced in mice by lung cancer cells.

Barcz et al. described an inhibitory influence of theobromine on angiogenic activity and proangiogenic cytokine production (vascular endothelial growth factor, VEGF) of human ovarian cancer cells, and established that the antiangiogenic properties of theobromine are dependent on its interaction with the A2 adenosine receptor (Barcz et al. 1998, Barcz et al. 2000). The inhibitory effect of theobromine on the induction of angiogenesis and VEGF mRNA expression was described by Skopińska-Różewska et al. on the model of v-raf transfectants of human urothelial cells HCV-29 (Skopińska-Różewska et al. 1998).

VEGF is one of the most important growth factors mediating both ontogenesis and embryonic angiogenesis. In experiments performed on pregnant mice, fed during pregnancy 2 or 6 mg per day of theobromine, Chorostowska-Wynimko et al. found a significant inhibitory effect of this drug on embryo growth and tissue proangiogenic activity. (Chorostowska-Wynimko et al. 2004). These authors also observed a postnatal theobromine effect. The 4-week old progeny of theobromine-fed mothers had significantly shorter limbs and higher spleen mass in comparison to the controls. Moreover, 6-week old progeny of theobromine-fed mothers presented lower a splenocyte response to mitogens (but higher splenocyte graft-versus-host activity) and a higher anti-SRBC antibody response than the progeny of control mice.

Similar results were obtained by Skopiński et al. (2003, 2004) in experiments with pregnant mice fed chocolate. Shortening of limbs was accompanied by lower VEGF content of bones than in control animals and bone mineralization disorder.

Caffeine (1,3,7-trimethylxanthine) is metabolized by demethylation in the liver to paraxanthine, theophylline and theobromine. These metabolites, especially theobromine (also found in cocoa and chocolate) have a high level of toxicity in dogs (Drolet 1984, Strachan 1994, Eteng 1997, Stidworthy 1997). The study of comparative theobromine metabolism in five mammalian species revealed that this compound was most extensively metabolized by rabbits and male mice. Rabbits and dogs metabolized theobromine primarily to 7-methylxantine and 3-methylxantine (Miller et al. 1984). Importantly, caffeine and its metabolites freely cross both the placental and blood-brain barriers due to its hydrophobic properties (Colomina et al. 2002). Additionally, a fetal lack of cytochrome P-450 activity results in a slowed metabolism and therefore accumulation of caffeine (Soellner et al. 2009).

Moreover, the influence of methylxanthines on placental transports of nucleosides has been demonstrated. A study performed on the rat syncytiotrophoblast cell line TR-TBT 18d-1 has indicated the inhibitory effect of caffeine on the placental uptake of uridine and adenosine (Chishu et al. 2008). On the other hand, theophylline has had no effect on nucleoside transport, indicating to the role of the 7-methyl group of caffeine in this process. Tanuma et al. (2003) have indicated increased angiotensin II type (AT2) receptor gene expression in placentas derived from caffeine-administrated pregnant rats. Similarly, the expression of the anti-apoptosis regulator B-cell CLL/lymphoma 2 (Bel-2) gene has also been found to be down-regulated (Nomura et al. 2004). On the other hand, methylxanthine has been demonstrated to exhibit inhibitory effects on the pre-eclamptic-like symptoms in ewes, probably due to interference with the hem metabolism (Talosi et al. 2001).

Nervous system

Considering the fact that there is no blood-brain barrier to methylxanthines and that the adenosinergic system is represented in the brain, caffeine and its metabolites are expected to have an impact on neuronal functions (Black et al. 2008).

The effects of maternal intake of caffeine and theophylline on the adenosine receptors in fetal rat brains have been studied by Leon et al (Leon et al. 2002). In this study A1 receptor down-regulation associated with an increase in A1 mRNA level has been determined by the use of RT-PCR. It has been hypothesized that this antagonist-induced desensitization occurred due to enhanced endogenous adenosine release. In addition, no changes in the A2A receptor have been found. In a follow-up study analysis of the consequences of caffeine administration during gestation was extended to neonatal male and female brains (Lorenzo et al. 2010). More recently, the same group of authors has analyzed the effect of methylxanthine intake during pregnancy on the A1R transduction pathway in fetal rat brains (Leon et al. 2005a). They have detected a significant decrease in hG12 protein in membranes from fetus brains. In contrast (a study conducted by Aden et al. reported no alterations in the adenosinergic system in terms of A1 receptor numbers (Aden et al. 2000).

Also, the influence of in utero caffeine or theophylline exposure on metabotropic glutamate receptor (mGluRs) transduction pathway have been
The effects of prenatal exposure to methylxanthines

studied in fetal rat brains (Leon et al. 2005b). The results have indicated that the total number of mGluRs was decreased with no related changes in receptor affinity. Additionally, a down-regulation of other mGluR/PLC pathway components, i.e. mGluR1A, αGq/11 and PLCβ1 has been reported. According to the authors these outcomes can be possibly explained by A1R-mediated inhibition of glutamate release at the presynaptic level.

Moreover, telencephalic vesicle evagination in mouse embryos has been shown to be accelerated by perinatal caffeine exposure (Sahir et al. 2000, 2001). A subsequent study by Sahir et al. has reported that this phenomenon may correlate with an increase in gene expression of the regulatory subunit (RIα) of cAMP-dependent protein kinase (PKA) as well as a decrease in PKA activity (Sahir et al. 2001).

Acetylcholine is considered to be one of the crucial neurotransmitters involved in the neuronal morphogenesis; the release of acetylcholine in the hippocampus and prefrontal cortex is controlled by adenosine (Acquas et al. 2002, da Silva et al. 2008), da Silva et al. (2008) have demonstrated an increase in acetylcholinesterase (AchE) activity with no modifications on mRNA level in the hippocampus of 21-day-old neonate rats. This effect on AchE has been concluded to be caused by phosphorylation mediated by AMPc-dependant protein kinase (PKA).

In addition, laser Doppler flowmetry has indicated that theophylline blocks increases in cerebral blood flow during hypoxia in near-term fetal sheep (Blood et al. 2002). Interestingly, neither cerebral blood flow nor cerebral vascular resistance have been affected by infusion of theophylline in the fetus under normoxic conditions.

Cognitive and behavioral changes

Björklund et al. (2008) have studied mouse offspring born to dams consuming caffeine in drinking water in terms of behavioral changes. They found a positive correlation between perinatal exposure to caffeine and greater locomotor activity per se and in response to cocaine in adult mice. This effect was more notable when the pregnant mice lacked A1 receptors. Hence, the mother’s genotype in terms of the adenosine A1 receptor gene (AIR) has been proposed as a key element in determining such long-term alterations. It is also noteworthy that mice heterozygous for the adenosine A1 receptor gene had a motor activity profile paralleling that of caffeine-treated offspring. This effect can be explained by the fact that in both groups signaling via the adenosine A1 recep-
tor is reduced either by decreased gene expression or direct antagonistic influence of caffeine.

Importantly, caffeine has been proved to reduce the motor activity changes in adult animals produced by methylmercury exposure between day 7 of gestation and postnatal day 7 (Björklund et al. 2007).

Moreover, maternal caffeine intake during gestation and lactation leads to reduced hyper-locomotor response to MK-801 in 21-day-old rats (da Silva et al. 2005). MK-801 is the NMDA (N-methyl-D-aspartate) receptor antagonist which is considered to promote hyper-locomotion in rodents. However, this effect may be blunted by chronic treatment with caffeine. In order to test the role of cross-tolerance a washout group subjected to caffeine withdrawal 7 days postnatally was also analyzed. The results showed similarities in motor behaviour between the caffeine-treated group and the washout group, suggesting the permanent character of changes during neurodevelopment.

Furthermore, in adult rats cognitive functions may be adversely affected by chronic prenatal exposure to caffeine (Soellner et al. 2009). Animals submitted to caffeine during gestation present long-term learning and memory deficits tested by novel object recognition and radial arm maze performance.

Respiratory system

The involvement of adenosine A1 receptors in the control of respiration is widely accepted (Herlenius et al. 1997, Herlenius et al. 2002, Gaytan et al. 2006,). They are distributed in many of the areas in the brain associated with the breathing process, such as the ventral respiratory group (VRG) and the pontine respiratory area (Gaytan et al. 2006).

Herlenius et al. have demonstrated that chronic administration of caffeine to pregnant rats during gestation leaded to the increased inhibition from the pontine structures to the neuronal networks in the medulla oblongata in caffeine-treated pups (Herlenius et al. 2002). This effect may be attributed to the methylxanthine-induced increase in activity of pontine noradrenergic neurons. Additionally, no changes in expression of either A1 receptor number or A1 receptor mRNA was detected. The adenosinergic A1 system involvement in respiratory perturbations in newborn rats exposed to caffeine via maternal intake has been investigated by Saadani-Mkki et al. (2004). Based on brainstem-spinal cord preparations, both an overcharge of the respiratory frequency (RF) increase in pontomedullary-spinal cord preparations and an exaggeration of the RF decrease in medullary-spinal cord preparations have been identified. Moreover, in this study the c-fos expression induced by the aden-
osinergic A1 systems activation was monitored. The Fos protein is a classical marker of central pathways involved in specific respiratory responses. Hence, this analysis has allowed a positive correlation between the alterations in RF and changed neuronal activity in both the medial parabrachial nucleus and the ventrolateral reticular neurons to be found. In addition, the analysis of consequences of in utero caffeine exposure on respiratory output based on C4 ventral root activity and its correlation with c-fos expression has also been extended to normoxic and hypoxic conditions (Bodineau et al. 2003). Interestingly, in rats ponto-medullary respiratory disturbances caused by in utero caffeine exposure can be prevented by the presence of caffeine in the milk (Bodineau et al. 2006). This seems likely to be possible due to the avoidance of the withdrawal situation in the newborn rats.

Investigations have also been conducted to assess the response to moderate alveolar hypoxia, and both adenosine and benzodiazepine receptors in intact newborn rats exposed to caffeine via the placenta (Picard et al. 2008). The study has found attenuation of both the immediate hyperventilation and the secondary repression during acute alveolar hypoxia in comparison to controls. Furthermore, analysis of Fos expression has suggested decreased efficacy of the O2-sensitive chemoreflex pathway. The use of real-time PCR confirmed that these functional changes were accompanied by increase in A2A receptor and α2 subunit of GABA A receptor on mRNA level in the medulla. The simultaneous alterations of both these receptors may be explained, at least partly, by the fact that A2A receptors are found to modulate breathing processes by the control of GABA release (Mayer et al. 2006, Picard et al. 2008).

Cardiovascular system

Adenosine is a nucleoside distributed in the heart and involved in cardiovascular response (Flood et al. 2002, Xu et al. 2005, Iglesias et al. 2006). Hence, caffeine as a nonselective adenosine antagonist is expected to influence cardiovascular system.

Cardiovascular embryonic function has been assessed by the use of noninvasive high-resolution echocardiography in embryonic mice exposed to caffeine via subcutaneous maternal intake (Momoi et al. 2008). The results have shown transient reduced flows in embryonic carotid artery, dorsal aorta and umbilical artery during the highest caffeine concentration in maternal serum. Both short-term and long-term changes in cardiac development following in utero exposure to caffeine have been tested by Wendler et al. (2009). The study was been performed on 8-10-day embryos and 8-10-week mouse offspring whose dams were intraperitoneally administrated a single dose of 20 mg/kg caffeine under normoxic or hypoxic conditions. In embryos outcome of pregnancy in terms of cardiovascular development has indicated a 53% decrease in cardiac ventricular development in hypoxia and 37% in normoxia. Moreover, hypoxia-induced H1F1α protein expression which is regulated by A1R was reduced by 40% upon treatment with caffeine. In offspring a 38% reduction in cardiac function has been confirmed by echocardiography.

Metabotropic glutamate receptors have been proved to be present in the heart and play a role in its physiology (Us et al. 2001, Iglesias et al. 2006). Recently, (Iglesias et al. 2006) have demonstrated down-regulation of mGluRs and a decrease in Gq/11 and PLCβ proteins in fetal rat hearts exposed to caffeine via maternal intake. No changes in mRNA level have been identified, hence these results suggest the involvement of post-transcriptional mechanisms.

Visual system

So far there are only a few reports in the literature on the influence of maternal caffeine intake during pregnancy on the developing visual system. Evereklioglu et al. (2004) conducted a histopathologic investigation on lenses isolated from newborn rats whose dam was given caffeine during pregnancy. They found cataractogenic changes pronounced in a dose-dependent manner. No cataract formation was observed in rats whose dams were treated with caffeine at the lowest doses of 25 mg/kg/day. It has been speculated that caffeine-induced caractogenesis was related to the increase in cAMP and its hypoxic-ischaemic necrosis effect on developing crystalline lenses. A negative influence of caffeine on the corneal development has also been noted (Evereklioglu et al. 2003). Moreover, the eye opening process may be delayed in rats exposed to caffeine during pregnancy (West et al. 1996).

Combined exposure

Prenatal methylxanthine administration, especially at low and moderate doses, may have little effect when tested as an individual agent. Therefore, the analysis of combined exposure with other components can provide a more realistic view of potential consequences in offspring.

The influence of concurrent exposure to caffeine and restraint stress has been studied in 18-day-old mouse fetuses (Albina et al. 2002). All dams subjected
to caffeine at dose of 120 mg/kg/day and restraint stress died during the study. A significant additive effect has been found in pregnant mice exposed to stress and 60 mg/kg/day of caffeine. This group was characterized by a higher number of late resorptions, postimplantation loss and lower body weight in comparison to the caffeine only treated group. More reduced fetal body weight as well as more frequent cleft palate occurred in the groups concurrently exposed to caffeine and restraint. Interestingly, concurrent exposure had no influence on the number of total implantations, dead fetuses and early resorptions.

In contrast, mouse fetuses exposed to 30, 60 or 120 mg/kg of caffeine and maternal restraint stress on gestational day 9 underwent no developmental toxicity (Colomina et al. 1999).

The effect of co-administration of a single oral dose of 30 mg/kg caffeine, aspirin and a 14-h restraint as a maternal stressor has also been tested (Colomina et al. 2001). Results have shown reduced ossification of ribs and posterior phalanges in 9-day-old mouse fetuses. Reduced ossification of parietal was less frequent in this group in comparison to the controls.

On the other hand, no congenital malformations were noticed in 21-day-old rat fetuses exposed to paracetamol and caffeine during the second week of gestation (Burdan 2003). The paracetamol-caffeine mixture were prepared with a 5:1 proportion and administered at different doses. In this study mean fetal body and placental weight were found to be reduced in a dose-dependent manner.

Black tea brew, which naturally contains caffeine, has been demonstrated to produce no risk in terms of pregnancy outcome in rats (Ratnasooriya et al. 2009). No adverse effects have been noted even upon treatment with high doses corresponding to the consumption of 24 cups/day in humans. This result has been explained by the potential protective influence of other tea components, such as catechins, flavonols, theanine, theaflavins and thearubigins.

Conclusion

In summary, prenatal methylxanthine exposure can induce changes in the developing organism which are persistent even in later phases of life. However, based on results obtained from animal studies, the effect on embryogenesis is not only poorly understood but also controversial. It is therefore important to study interspecies differences as results may differ depending on animals used and administration methods. Future research is needed to fully determine underlying mechanisms and allow extrapolation of the results to humans.

References

Skopiński P, Skopińska-Różewska E, Kamiński A, Dziedzic-Goławska A, Sommer E, Chorostowska-Wynimko J,

