Molecular evidence of *Anaplasma phagocytophilum* and *Babesia microti* co-infections in *Ixodes ricinus* ticks in central-eastern region of Poland

Hubert Szytkiewicz1, Grzegorz Karbowiak2, Joanna Hapunik2, Adam Szpechciński3, Marta Superagan-Marwicz4, Sylwia Golawska1, Iwona Sprawka1, Paweł Czerniewicz1

1 University of Natural Sciences and Humanities, Siedlce, Poland
2 W. Stefański Institute of Parasitology of the Polish Academy of Sciences, Warsaw, Poland
3 Institute of Tuberculosis and Lung Disease, Warsaw, Poland
4 Medical University, Warsaw, Poland

Abstract

The aim of the study was to elucidate the distribution of *Anaplasma phagocytophilum* and *Babesia microti* co-infection in *Ixodes ricinus* populations within the central-eastern region of Poland. The prevalence of analysed tick-borne human pathogens in single and polymicrobial infections in *I. ricinus* ticks were analysed using the conventional and nested PCR techniques. A total number of 1,123 questing tick individuals (291 females, 267 males and 565 nymphs) were collected at different ecosystems (municipal parks, suburban forests, and woodlands). In the presented study, 95 samples of ticks (8.5%) were infected with *A. phagocytophilum*, 3.1% (n=35) with *B. microti*, whereas the co-existence status of these human pathogens was detected in 1.8% (n=20) of all tested samples. It has been demonstrated that the prevalence of co-infection status was the highest among females of *I. ricinus* (11 samples, 3.8%), whereas the lowest within tested nymphs (5 samples, 0.9%). Ticks collected at city parks in Warsaw and suburban areas of this town characterized the highest prevalence of co-infections (3.3 and 4.8%, respectively). Furthermore, it was established that co-infection rates of ticks inhabiting woodlands within Kampinos National Park and Nadbużański Landscape Park were similar and reached the levels of 1.4% (n=5) and 1.1% (n=4), respectively.

Key words

Anaplasma phagocytophilum, *Babesia microti*, *Ixodes ricinus*, co-infection, molecular diagnostics

INTRODUCTION

Hard ticks represent a significant group of ectoparasites involved in transmitting many contagious and invasive agents (viruses, bacteria and protozoans) pathogenic for human and animals [1-6]. In Europe, the common tick (*Ixodes ricinus* L.) is considered as a clinically important vector of *Anaplasma phagocytophilum*, the etiological agent of granulocytic anaplasmosis [7, 8, 9], and some species of *Babesia* genus, known to be responsible for human babesiosis [10, 11, 12, 13]. The co-existence of several pathogens within individual ticks is perceived as an extremely important phenomenon associated with a broad spectrum of ecological variables [14]. It has been increasingly recognized that many factors affect the frequency and geographic distribution of *I. ricinus*-borne pathogens occurring in multiple infections, such as: global climate warming [15], rising density of *I. ricinus* populations, increased tick exposure to pathogens [1], vector competence [16], habitat quality [15, 17], differences in life cycles, reproduction levels and transmission efficiency [17, 18, 19, 20]. Furthermore, some researchers postulate that host co-infection status may determine the transmission of pathogens to vectors [21]. Tokarz et al. [6] claim that a single tick bite may lead to polymicrobial infections. Therefore, molecular investigations of specific patterns of mixed infections within individual ticks inhabiting different ecosystems may provide valuable epidemiological data during formulating and implementation of prevention strategies for human health.

The primary objective of the performed analyses was to assess the distribution of *A. phagocytophilum* and *Babesia microti* mixed infections in active developmental stages of *I. ricinus* ticks (nymphs, adult females and males) inhabiting different environments throughout the central-eastern region of Poland. The additional purpose was to evaluate the potential human exposure to these agents within tested ecosystems (municipal parks, suburban areas and woodlands). The distribution of these tick-borne human pathogens in mixed infections may be involved with habitat specificity. In this context, it is hypothesized that *I. ricinus* ticks occurring in the investigated habitats may possess different prevalence levels of *A. phagocytophilum* and *B. microti* co-infections. Verifying the hypothesis has been performed in 3 subsequent phases; 1) molecular detecting of genomic DNA (gDNA) of analysed pathogens within collected tick samples;
2) estimation of prevalence levels of tested human pathogens in ticks;
3) assessment of frequency of *A. phagocytophilum* and *B. microti* co-infections in *I. ricinus* populations living within various ecosystems in central and eastern Poland.

MATERIALS AND METHODS

Collection of ticks. Individuals of *Ixodes ricinus* (Acari: Ixodidae) were assembled in 2007-2008. Sampling of host-seeking ticks was carried out by dragging a white woollen flag (1.0 m²) over the lower vegetation at different habitats (municipal parks, suburban forests and woodland locations) in central and eastern Poland. Collected ticks were immersed in 70% ethanol and stored at 4°C for further investigation. Tested specimens were taxonomically identified by their morphological characteristics.

DNA extraction. The collected ticks were rinsed with sterile de-ionized water. Genomic DNA was extracted from lysates of analysed ticks with the application of Genomic Mini kit (A&A Biotechnology, Gdynia, Poland), following the manufacturer’s protocol. Nymphs of *I. ricinus* were analysed in pools of 5 specimens, whereas adult ticks were processed individually.

Molecular detection of *A. phagocytophilum*. Detection of *A. phagocytophilum* DNA was performed using a conventional PCR technique, in accordance with the method described by Grzeszczuk et al. [22]. A set of primers was used: EHR521 (5’-TGTTAGCGGTTGTTAGTTAAG-3’) and EHR747 (5’-GCACCTATCGTTTACAGGCTG-3’), amplifying a fragment of the 16S rDNA (247 bp) of *A. phagocytophilum*.

Molecular detection of *B. microti*. Molecular screening of *B. microti* DNA was based on the application of a nested PCR assay according to Stańczak et al. [23]. Primary PCR reactions were performed using Bab1 (5’-CTTAGTAGGAGATTTATACACG-3’) and Bab4 (5’-ATAGTCGACAACTGTAATGATA-3’) primers. Nested amplifications were conducted with the use of Bab2 (5’-GTTATGTTAATTGTGGTGTT-3’) and Bab3 (5’-AAGCCATGGAGTGTGCTAAT-3’) primers [24]. Primers complementary to the fragment of a gene encoding the nuclear small subunit ribosomal RNA (185 rDNA) were used. The lengths of DNA amplicons were 238 and 154 bp, respectively. Negative and positive controls were included in each set of PCR reactions.

The products of PCR reactions were separated electrophoretically in 2.0% agarose gels under standard conditions. Visualisation of amplicons was carried out by ethidium bromide staining and UV transillumination. Evaluation of the molecular mass of obtained products was conducted by using DNA Molecular Weight Markers 100-1000 bp (DNA-Gdańsk II, Poland).

DNA sequencing of amplicons and species identification. The selected PCR products were purified with Montage™ PCR Centrifugal Filter Devices (Millipore). Sequencing reactions were performed using a BigDYE Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems). Nucleotide terminators of sequencing reactions were removed with the use of an EXTerminator kit (A&A Biotechnology, Gdynia, Poland). Direct cycle sequencing analysis of both strands of amplicons was performed using capillary electrophoresis on an automatic 3130xl Genetic Analyzer (Applied Biosystems). For species identification, DNA sequences were further analysed using a nucleotide database (BLAST), provided by the NCBI (National Center for Biotechnology Information, Bethesda, MD, USA).

Statistical analyses. The data were analysed by χ² test using Yates’ correction. All calculations were performed with the use of STATISTICA 9.0 software (StatSoft Poland).

RESULTS

Density of *I. ricinus* populations in examined ecosystems. A total number of 1,123 questing tick individuals (291 females, 267 males and 565 nymphs) were collected at different ecosystems (municipal parks, suburban forests, and woodlands) in the central-eastern region of Poland (Tab. 1-2, Fig.1). It was observed that the highest density of *I. ricinus* populations occurred in woodlands within the Nadbużański Landscape Park (96-165 collected ticks, depending on locality) and Kampinos National Park (98-142 ticks). On the other hand, the lowest number of ticks was gathered within municipal parks in Warsaw (n=92), Biała Podlaska (n=30) and Siedlce (n=12) when compared to suburban areas of these cities (124, 87 and 46 collected ticks, respectively) (Tab. 1).

Molecular detecting of co-infection status in *I. ricinus* populations in the central-eastern region of Poland. The prevalence of tick-borne human pathogens *A. phagocytophilum* and *B. microti* in single and polymicrobial infections in *I. ricinus* ticks was analysed using conventional and nested PCR techniques. Overall, 1.8% of ticks (n=20) were found to be co-infected with analysed human pathogens (*A. phagocytophilum* and *B. microti*). Statistical analyses proved that adult females were significantly (χ² = 7.3, p=0.007, df=1) more likely to be co-infected than nymphs. On the other hand, no statistically significant difference was detected in co-infection rates between adult males and nymphs (χ² = 0.2, p=0.661, df=1). It has been demonstrated that the prevalence of co-infection status was the highest among females of *I. ricinus* (11 samples, 3.8%), whereas the lowest within tested nymphs (5 samples, 0.9%). A moderate level of mixed infections was detected in adult males (4 individuals, 1.5%). It should be underlined that there were no co-infected samples of analysed human pathogens in ticks that were gathered at 4 localities (woodlands in Roztoka Reserve and Sterdyń; municipal parks in Siedlce and Biała Podlaska). On the other hand, ticks collected in city parks in Warsaw and suburban areas of the city characterized the highest prevalence of co-infections (3.3 and 4.8%, respectively). Furthermore, it was established that co-infection rates of ticks inhabiting woodlands within Kampinos National Park and Nadbużański Landscape Park were similar and reached the levels of 1.37% (n=5) and 1.10% (n=4), respectively.

Molecular detection of *A. phagocytophilum* infection in *I. ricinus* ticks. The PCR results revealed that *A. phagocytophilum*-positive samples were obtained for 52
Table 1. Prevalence of analysed tick-borne pathogens in *I. ricinus* samples collected at different localities and habitats in central-eastern region of Poland (in the years 2007-2008).

<table>
<thead>
<tr>
<th>Collection area</th>
<th>Type of tick habitat</th>
<th>No. of ticks</th>
<th>No. (%) of infected ticks</th>
<th>No. (%) of co-infected ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A.ph.</td>
<td>B.m.</td>
</tr>
<tr>
<td>Granica Reserve*</td>
<td>w</td>
<td>123</td>
<td>1 (0.8)</td>
<td>5 (4.1)</td>
</tr>
<tr>
<td>Roztoka Reserve*</td>
<td>w</td>
<td>98</td>
<td>2 (2.1)</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Dziekanów Leśny*</td>
<td>w</td>
<td>142</td>
<td>2 (1.4)</td>
<td>12 (8.5)</td>
</tr>
<tr>
<td>Korczew-Mogielnica**</td>
<td>w</td>
<td>165</td>
<td>0 (0.0)</td>
<td>20 (12.1)</td>
</tr>
<tr>
<td>Sterdyń**</td>
<td>w</td>
<td>108</td>
<td>0 (0.0)</td>
<td>9 (8.3)</td>
</tr>
<tr>
<td>Ceranów**</td>
<td>w</td>
<td>96</td>
<td>11 (11.5)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Warsaw</td>
<td>mp</td>
<td>92</td>
<td>8 (8.7)</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td></td>
<td>sf</td>
<td>124</td>
<td>14 (11.3)</td>
<td>4 (3.2)</td>
</tr>
<tr>
<td>Siedlce</td>
<td>mp</td>
<td>12</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>sf</td>
<td>46</td>
<td>13 (30.4)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>Biała Podlaska</td>
<td>mp</td>
<td>30</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>sf</td>
<td>87</td>
<td>3 (3.4)</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,123</td>
<td>95 (8.5)</td>
<td>35 (31)</td>
</tr>
</tbody>
</table>

* Kampinos National Park, ** Nadbużański Landscape Park, A.ph. – *Anaplasma phagocytophilum*, B.m. – *Babesia microti*, mp – municipal parks, sf – suburban forests, w – woodlands.

Table 2. Prevalence of analysed tick-borne pathogens in developmental stages of *I. ricinus* (central-eastern region of Poland, in the years 2007-2008).

<table>
<thead>
<tr>
<th>Tick stage</th>
<th>No. of collected ticks</th>
<th>No. (%) of infected ticks</th>
<th>No. (%) of co-infected ticks /A.ph.+B.m./ ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult females</td>
<td>291</td>
<td>52 (17.9)</td>
<td>23 (7.9)</td>
</tr>
<tr>
<td>Adult males</td>
<td>267</td>
<td>28 (10.5)</td>
<td>7 (2.6)</td>
</tr>
<tr>
<td>Nymphs</td>
<td>565</td>
<td>15 (2.7)</td>
<td>5 (0.9)</td>
</tr>
<tr>
<td>Total</td>
<td>1,123</td>
<td>95 (8.5)</td>
<td>35 (31.3)</td>
</tr>
</tbody>
</table>

A.ph. – *Anaplasma phagocytophilum*, B.m. – *Babesia microti*.

Warsaw and Siedlce characterized the highest prevalence of *A. phagocytophilum* (14.5 and 13%, respectively), whereas there were no positive isolates of this pathogen in municipal parks in Biała Podlaska and Siedlce (Tab. 1-2).

Molecular detection of *B. microti* infection in *I. ricinus* ticks. Visualization of amplified PCR products specific for *B. microti* confirmed that 23 (7.9%) females, 7 (2.6%) males and 5 (0.9%) nymphs were parasited with this pathogen. The significance of differences in infection rates between females and nymphs ($\chi^2 = 27.7, p<0.001, df=1$), and between females and males ($\chi^2 = 6.63, p=0.01, df=1$) has been statistically proved. Conversely, there were no significant differences in the prevalence of *B. microti* between males and nymphs ($\chi^2 = 2.7, p>0.099, df=1$). It should be emphasized that the highest infection rate of *B. microti* within the collected tick individuals was noted in municipal parks in Warsaw (n=6, 6.5%), whereas a slightly lower infection rate was ascertained in Dziekanów Leśny (n=8, 5.6%) and Roztoka Reserve (n=5, 5.1%). The lowest prevalence of this parasite among the gathered ticks was noted in the case of Granica Reserve (n=2, 1.6%) and suburban areas of Biała Podlaska (n=1, 1.6%). Among 12 localities, only within municipal parks in Siedlce and Biała Podlaska were there no positive isolates of *B. microti* in tested samples (Tab. 1-2).

DNA sequencing and species identification of tick-borne pathogens. Pathogen species confirmation was performed using cycle sequencing of specific amplified genes of analysed human pathogens. Seven PCR-positive isolates of *A. phagocytophilum* and 5 samples of *B. microti* were sequenced. Comparative analyses of obtained nucleotide sequences confirmed their 100% similarity with *B. microti* and 99-100% homology with *A. phagocytophilum* sequences deposited in the GenBank.

DISCUSSION

To date, a limited number of molecular surveys have been published referring to the phenomenon of the co-existence of several tick-borne pathogens in *I. ricinus* inhabiting different habitats [17, 23, 25, 26]. Therefore, it is extremely important to characterize the variables concerning the geographic distribution and identify the specific patterns of co-infection in *I. ricinus* ticks. The present work adds another piece of evidence, based on molecular detection techniques, that questing common tick individuals participate in the co-circulation of *A. phagocytophilum* and *B. microti* in different environments.

In this study, 95 samples of ticks (8.5%) were infected with *A. phagocytophilum*, 31% (n=35) with *B. microti*, whereas the co-infection status of these human pathogens was detected in 1.8% (n=20) of all tested samples. Furthermore, it was demonstrated, that adult females were significantly more likely to be co-infected than nymphs or males. Comprehensive analysis of co-infection prevalence of the analysed pathogens proved that *I. ricinus* ticks inhabiting city parks in Warsaw and suburban forests of this town possessed the highest levels of co-infection rates when compared to other examined habitats. This may be affected by a broad array of factors, such as the larger areas of municipal parks and suburban forests, higher density of tick population, and more dynamic habitats. (17.9%) adult females, 28 (10.5%) males and 5 (2.7%) individuals of nymphs. Statistical analyses proved the significance of differences in the prevalence of *A. phagocytophilum* between all tested stages of the common tick. Moreover, it was been revealed that ticks collected in the suburban areas of Granica Reserve have been deposited in the GenBank.
circulation of the targeted pathogens. Conversely, there were no co-infected tick individuals among samples collected within the city parks in Siedlce and Biaża Podlaska, though co-infected samples were detected in suburban areas of these towns. Interestingly, it was revealed that co-infection rates of ticks inhabiting woodlands within Kampinos National Park and Nadbużański Landscape Park reached similar levels (1.37% and 1.10%, respectively). It is noteworthy that the presented study confirmed significant differences in co-infection rates in I. ricinus ticks living within examined habitats.

It has been reported recently that the co-existence of different tick-borne pathogens is not a rare event in questing and engorged common tick individuals in Europe [18, 21, 25, 27-34]. According to Wójcik-Fatla et al. [26], comparing the levels of co-infection rates in ticks inhabiting different countries, or parts of the same country, is quite difficult. It is involved with biotope specificity, number of collected ticks and differences in methodology. In Poland, the co-infection prevalence of A. phagocytophilum and B. microti in I. ricinus vary from 1.1% in the Lublin macroregion to 2.0% in the Tri-City agglomeration of Gdańsk-Gdynia-Sopot [23, 26]. The results obtained there are in accordance with those presented by cited authors. Furthermore, it should be underlined that Zygner et al. [35] proved the occurrence of B. microti DNA in lyses of I. ricinus females (11/193, 5.7%) removed from dogs in the Warsaw area (central Poland). Additionally, these authors revealed that DNA sequences of targeted pathogen showed 100% similarity with the Gray strain of B. microti isolated from human. Our results strengthen the concept that I. ricinus may play an important role in the circulation of B. microti in the Warsaw agglomeration. Hildebrandt et al. [36] in 2007 provided the evidence that confirmed the first autochthonous case of human B. microti infection in Europe. However, it still remains a matter of debate whether strains of B. microti occurring in Europe possess a sufficient level of pathogenic potential to cause human babesiosis. The other possibility involves an underestimation of the prevalence of this disease in European populations exposed to B. microti infections. On one hand, it may be due to subclinically expressed babesiosis, and on the other, to the lack of sensitive and reliable diagnostic tools, [4, 37, 38, 39, 40, 41].

In conclusion, the concurrent presence of various tick-borne pathogens in I. ricinus individuals, especially when they reach high levels of co-infection rates, may increase the likelihood of the acquisition of multiple infections by humans. Considering the rising abundance of I. ricinus populations in Poland, and increasing number of reports emphasizing the co-infection status of this ectoparasite, more detailed studies should be undertaken to evaluate the risk of acquisition of human pathogens transmitted by questing ticks within different geographical regions of Poland. The application of more advanced molecular and epidemiological surveys of polymicrobial infections in I. ricinus may be useful for constructing detailed maps showing endemic areas with specific co-infection patterns of tick-borne pathogens. Furthermore, it is of great medical importance to implement new molecular methods for rapid and reliable identification of human cases of tick-borne diseases (TBDs), as well as the co-infection status in I. ricinus ticks.

CONCLUSIONS

The performed molecular studies proved that I. ricinus can play an important role in the co-circulation of A. phagocytophilum and B. microti in different habitats (municipal parks, suburban forests and woodlands). Obtained results support the hypothesis that the distribution of these tick-borne human pathogens in mixed infections in ticks may be involved with habitat specificity.

REFERENCES

4. Lempereur L, De Cat A, Caron Y, Madder M, Claerebout E, Saegerman et al. DNA sequences of targeted pathogen showed 100% similarity with the Gray strain of B. microti isolated from human. Our results strengthen the concept that I. ricinus may play an important role in the circulation of B. microti in the Warsaw agglomeration. Hildebrandt et al. [36] in 2007 provided the evidence that confirmed the first autochthonous case of human B. microti infection in Europe. However, it still remains a matter of debate whether strains of B. microti occurring in Europe possess a sufficient level of pathogenic potential to cause human babesiosis. The other possibility involves an underestimation of the prevalence of this disease in European populations exposed to B. microti infections. On one hand, it may be due to subclinically expressed babesiosis, and on the other, to the lack of sensitive and reliable diagnostic tools, [4, 37, 38, 39, 40, 41].

In conclusion, the concurrent presence of various tick-borne pathogens in I. ricinus individuals, especially when they reach high levels of co-infection rates, may increase the likelihood of the acquisition of multiple infections by humans. Considering the rising abundance of I. ricinus populations in Poland, and increasing number of reports emphasizing the co-infection status of this ectoparasite, more detailed studies should be undertaken to evaluate the risk of acquisition of human pathogens transmitted by questing ticks within different geographical regions of Poland. The application of more advanced molecular and epidemiological surveys of polymicrobial infections in I. ricinus may be useful for constructing detailed maps showing endemic areas with specific co-infection patterns of tick-borne pathogens. Furthermore, it is of great medical importance to implement new molecular methods for rapid and reliable identification of human cases of tick-borne diseases (TBDs), as well as the co-infection status in I. ricinus ticks.

CONCLUSIONS

The performed molecular studies proved that I. ricinus can play an important role in the co-circulation of A. phagocytophilum and B. microti in different habitats (municipal parks, suburban forests and woodlands). Obtained results support the hypothesis that the distribution of these tick-borne human pathogens in mixed infections in ticks may be involved with habitat specificity.

REFERENCES

4. Lempereur L, De Cat A, Caron Y, Madder M, Claerebout E, Saegerman et al. DNA sequences of targeted pathogen showed 100% similarity with the Gray strain of B. microti isolated from human. Our results strengthen the concept that I. ricinus may play an important role in the circulation of B. microti in the Warsaw agglomeration. Hildebrandt et al. [36] in 2007 provided the evidence that confirmed the first autochthonous case of human B. microti infection in Europe. However, it still remains a matter of debate whether strains of B. microti occurring in Europe possess a sufficient level of pathogenic potential to cause human babesiosis. The other possibility involves an underestimation of the prevalence of this disease in European populations exposed to B. microti infections. On one hand, it may be due to subclinically expressed babesiosis, and on the other, to the lack of sensitive and reliable diagnostic tools, [4, 37, 38, 39, 40, 41].

In conclusion, the concurrent presence of various tick-borne pathogens in I. ricinus individuals, especially when they reach high levels of co-infection rates, may increase the likelihood of the acquisition of multiple infections by humans. Considering the rising abundance of I. ricinus populations in Poland, and increasing number of reports emphasizing the co-infection status of this ectoparasite, more detailed studies should be undertaken to evaluate the risk of acquisition of human pathogens transmitted by questing ticks within different geographical regions of Poland. The application of more advanced molecular and epidemiological surveys of polymicrobial infections in I. ricinus may be useful for constructing detailed maps showing endemic areas with specific co-infection patterns of tick-borne pathogens. Furthermore, it is of great medical importance to implement new molecular methods for rapid and reliable identification of human cases of tick-borne diseases (TBDs), as well as the co-infection status in I. ricinus ticks.

