Plants and their chemical compounds affecting β-amyloid and secretase activity as potential sources of neuroprotective herbal medicinal products. Part 1.

MARCIN OŻAROWSKI1,2, PRZEMYSŁAW Ł. MIKOŁAJCZAK1,3, ANNA BOGACZ1,4, RADOSŁAW KUJAWSKI1, PRZEMYSŁAW M. MROZIKIEWICZ 1,4

1Department of Pharmacology and Experimental Biology
Institute of Natural Fibres and Medicinal Plants
Libelta 27
61-707 Poznań, Poland

2Department of Pharmaceutical Botany and Plant Biotechnology
University of Medical Sciences
Św. Marii Magdaleny 14
60-861 Poznań, Poland

3Department of Pharmacology
University of Medical Sciences
Rokitnicka 5a
60-806 Poznań, Poland

4Laboratory of Experimental Pharmacogenetics
Department of Clinical Pharmacy and Biopharmacy
University of Medical Sciences
Święcickiego 6
61-781 Poznań, Poland

*corresponding author: e-mail: mozarowski@poczta.onet.pl

Summary

Plant preparations, especially fractions of biologically active compounds may play an important role in improving the life quality of patients with diagnosed dementia as well as delaying the progress of neurodegenerative diseases through various mechanisms of pharmacological action. Recent years have brought a number of reports on the issue, nevertheless, it seems that there is still a lack of detailed, synthetical analysis.
So far, main biological markers of Alzheimer’s disease pathogenesis which is currently the most common form of dementia, are the β-amyloid plaques deposits, neurofibrillary degeneration processes and atrophy of cholinergic neurons in the brain regions crucial for memory processes maintenance. At present, acetylcholinesterase inhibitors are the main drugs for the treatment of Alzheimer’s disease. In our previous review article, we pointed out the interesting mechanisms of action such as inhibition of acetyl-, butyrylcholinesterases and the antioxidant activity of bio-compounds of selected medicinal plants from Lamiaceae family (including rosmarinic acid).

The aim of this paper is to systematize the knowledge about the influence of plant extracts and isolated natural compounds (e.g. cryptotanshinone, epigallocatechin gallate) on the pathway of β-amyloid formation and deposition in pharmacological models, especially by interacting with the brain enzyme, α- and β-, γ-secretase or on their genes expression. This is a long-established trend of research in search of new neuroprotective drugs from natural sources which raises new therapeutic hopes. Salvia miltiorrhiza and Camelia sinensis, medicinal plants from Asia, have interesting therapeutic potential in neurodegenerative disorders. In addition to them, there are known at least 10 Asian plants extensively researched in this area (e.g. Aralia cordata, Magnolia officinalis, Perilla frutescens, Polygala tenuifolia, Punica granatum, Sophora flavescens). However, due to the fact that many aspects of their phytochemical, neurochemical and pharmacological activities are not well known, further studies should be performed in this field.

Key words: Salvia miltiorrhiza, Camelia sinensis, β-amyloid, secretase, Alzheimer disease, neuro-protection

INTRODUCTION

In World Alzheimer Report published last year, Alzheimer’s Disease International estimated that there are 35.6 million people living with dementia worldwide in 2010, increasing to 65.7 million by 2030 and 115.4 million by 2050 [1]. According to this World Alzheimer Report, the disappointing results from preventive intervention trials to data indicate that, despite much research, we still understand far too little about the environmental and lifestyle factors linked to dementia and Alzheimer’s disease (AD). Numerous therapeutic strategies are currently being developed for AD [2]. It is necessary to stress that at the moment there are no treatments available that cure or even alter the progressive course of dementia, although, number of new therapies is being investigated in various stages of pharmacological and clinical trials using acetylcholinesterase inhibitors (see our previous review article [3]), β-, γ-secretase inhibitors, nicotine acetylcholine receptor agonists, NMDA-receptor antagonists, AMPA-receptor modulators, caspase inhibitors, antioxidants, and astrocyte-modulating, homocysteine-lowering and/or anti-inflammatory agents [4].

Alzheimer’s disease or dementia of the Alzheimer type (DAT) is the most prevalent neurological disease worldwide, leading to nerve cell death and tissue loss throughout the brain. AD is characterized by progressive accumulation and aggregation of neurotoxic β-amyloid (amyloid-β peptides, Aβ) in the brain regions
Plants and their chemical compounds affecting β-amyloid and secretase activity

93

... crucial for memory and cognition processes maintenance [5-7]. Aβ is the major component of amyloid plaques and vascular deposits in Alzheimer’s disease brains and believed to initiate the deadly amyloid cascade [8] including induction of neuronal cell death. This neurodegenerative pathological mechanism became the basis for Aβ cascade hypothesis in the AD development. The death of the neurons caused by the Aβ deposition is produced via a number of possible mechanisms including oxidative stress, excitotoxicity, energy depletion, inflammation and apoptosis. Moreover some genetic aspects play a role in progression of the disease [9].

Another major pathological hallmark of AD is the presence of intracellular neurofibrillary tangles (NFT), which consist mainly of the hyperphosphorylated tau protein (MAP-tau) [10]. Aβ and MAP-tau are the most extensively evaluated biological markers of AD pathogenesis [11-15]. Up to date, it 27 proteins which can form amyloid deposits were discovered and well-known [16, 17]. Amyloid and amyloid-like deposits are present in several known diseases including: Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, senile systemic amyloidosis, familial amyloidotic polyneuropathy, also in the type 2 diabetes [18], and Down syndrome also [19].

In the Aβ formation an APP proteolysis process is fundamental. In recent years our understanding of the enzymes involved in APP proteolysis has increased dramatically but still remains not fully recognized. The APP metabolism consists mainly of two cleavage routes: the non-amyloidogenic and the amyloidogenic pathways in which a cleavage is processed by three types of proteases: α-, β- and γ-secretases. The APP proteolysis catalyzed by β- and γ-secretases yields in the production of Aβ1–40 and Aβ1–42 peptides and defines the amyloidogenic pathway, as opposed to the proteolytic cleavage of APP by α- and γ-secretase which produces noncytotoxic soluble fragments sAPPα [15; 20].

Recent studies allow to conclude that sAPPα shows various neuroprotective and neurotrophic activities [21] such as enhancing long-term potentiation (LTP) in hippocampal slices [22], enhancing memory in normal and amnesic mice [23], mediating synapse formation [24], and protecting hippocampal and cortical neurons against the toxic effects of glutamate and Aβ [25]. There is a belief that α-secretase upregulation may be a important target for prevention and more effective therapy of AD.

β-Secretase (transmembrane aspartic protease – β-site amyloid precursor protein cleaving enzyme 1; BACE1 or Asp2) has been identified as a rate limiting enzyme for Aβ production by cleaving the APP at the N terminus of Aβ (the β site) [26]. BACE1 is one of the only two known aspartyl proteases localized on the cell membrane due to the presence of a membrane anchoring domain. Although BACE1 and BACE2 share 59% homology and are of a similar structural organization, the second enzyme preferentially cleaves the APP within the Aβ region between F19 and F20 and between F20 and A21 [27]. Studies showed that BACE1 is the β-secretase while BACE2 cleaves at sites within the Aβ domain to limit Aβ secretion. Recent studies indicated that BACE1 might be a susceptibility factor to brain amyloidosis and an excellent therapeutic target in AD [28]. β-Secretase is ex-
pressed in all tissues but is higher in neurons of the brain. The evidence suggests that astrocytes may also express significant levels of BACE1 and contribute to Aβ production, at least under certain pro-inflammatory conditions [29].

Nowadays, newly discovered γ-secretase activating protein (GSAP) which drastically and selectively increases Aβ production is a therapeutic target for Alzheimer’s disease [30]. This enzyme comprises a complex of integral membrane proteins that are present in most cells, but may have different functions depending on cell type [31]. On the other hand, results of Chow et al. [32] allowed to state that the novel anti-amyloid combination therapy that modestly targets both BACE1 (β-secretase) and γ-secretase represents a more effective treatment strategy to diminish Aβ amyloidosis in AD (fig. 1).

Figure 1. Graphic presentation of the APP proteolysis through non-amyloidogenic and amyloidogenic pathways
According to Wiśniewski and Sadowski (New York University School of Medicine) opinions [33], it is likely that, in the future, multimodal individual to patients therapies will be tailored based on the genotype, immune status, and pathological stage of the disease, but nowadays β-sheet breakers and pathological chaperone inhibitors are assumed to be among the most effective and safest strategies.

In order to develop a potent anti-dementive BACE1 inhibitor from plants as a source of biologically active compounds, many medicinal plants were investigated. It seems that secondary metabolites of plants with relatively low molecular weight and high lipophilicity might be good candidates for BACE1 inhibitors as well [34].

THE MOST POPULAR MEDICINAL NEUROACTIVE PLANTS FROM ASIA

Salvia miltiorrhiza Bunge

Salvia miltiorrhiza Bunge (*Lamiaceae*) is a plant well-known in traditional Chinese medicine. The lipophylic extract from the root of this plant (Danshen) contains more than 30 diterpenoid tanshinones: tanshinone I, IIA, B, cryptotanshinone, dihydrotanshinone I, methylenetanshinone, and isotanshinone IIA [35; 36]. Danshen products are regarded as an effective traditional Chinese medicine for prevention and treatment of cardiovascular diseases [39]. Extracts of *Salvia miltiorrhiza* root have demonstrated various biological activities such as antibacterial, antitumor, and antimutagenic effects [36]. It is known that Danshen extract includes also the most abundant phenolic compounds such as rosmarinic and salvianolic acids which are the major contributors to antioxidant activities of this plant [37]. It seems that, according to results of Matkowski et al. [38], the high content of tanshinones in *Salvia miltiorrhiza* roots is unlikely to contribute to the antioxidant activity.

Cryptotanshinone as a neuropharmacological compound

Cryptotanshinone (CTS) (fig. 2), one of the most well-known active compounds of the medicinal root of *Salvia miltiorrhiza*, has been shown to improve learning and memory in several pharmacological models of AD [40]. This compound produces well-documented antioxidative, anti-inflammatory effects by reducing the prostaglandin E2 synthesis and reactive oxygen species generation via COX-2 enzyme [41]. Moreover, Kim et al. [44] showed in animal model that CTS can cross the blood–brain barrier. It is known that CTS is able to inhibit the acetylcholinesterase activity [42; 28]. CTS protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase [43]. In a recent study [44], not only CTS but also tanshinone I, tanshinone IIA, and 15, 16-dihydrotanshinone I were effective in reversing scopolamine-induced cognitive impairments using passive avoidance tasks.
Influence of cryptotanshinone on secretase activity

Results of recent pharmacological studies [45] have shown that CTS not only improve the cognitive ability in AD transgenic mice by improvement results in Morris water maze test but also promote APP metabolism in rat cortical neuronal cells toward the non-amyloidogenic products pathway. The effect of CTS on Aβ levels was confirmed by in vitro analysis (rat cortical neurons expressing APP cultured for 18 h). It was demonstrated that CTS treatment on a concentration-dependent manner (0–10 μM) caused a decrease the Aβ40 and Aβ42 fragments levels and increase the release of the N-terminal APP cleavage product (sAPP) [45]. During this experiment the 10 μM CTS concentration was the most effective one and Aβ42 levels were decreased by max 45%. In another in vitro assay it was shown that α-secretase activity was increased by CTS in a concentration dependent manner without changing the β-secretase or γ-secretase activity [45]. Mei et al. [45] has emphasized that CTS may serve as a neuroprotective agent and contribute to the treatment of AD patients through regulating α-secretase activity.

In another study performed by Mei et al. [46] it was shown that CTS dose dependently (0–10 μM) induced ADAM10 protein (disintegrin and metalloproteinase domain-containing protein 10) possessing an α-secretase – like activity and promoted non-amyloidogenic α-secretase processing of APP in cortical neurons. This α-secretase induced effect by CTS was partially dependent on phosphatidylinositol 3-kinase (PI3K). The abovementioned result seems to be interesting due to the fact that over-expression of ADAM10 in mice transgenic for human APP increased the release of the sAPPα, reduced the formation of Aβ40 and Aβ42 and prevented their deposition in plaques [46]. To summarize, CTS may be a promising compound in the new drug for AD therapy development.

Camelia sinensis (Green tea)

Camelia sinensis (L.) O. Kuntze (Theaceae) is an evergreen, heavily branched shrub, all varieties of tea are produced from this plant. Green tea has a longstanding worl-
wide reputation for its health-promoting properties, i.e. chemopreventive, hepatoprotective, anti-inflammatory activities and possesses a beneficial effects on cardiovascular disorders and cancer [47, 48].

The identification of the phytochemical profile of green tea is complex due to the numerous compounds formed during the drying and another different ways of technological processing of the tea leaves, as well as climate changes and variations in the harvest season and horticultural practices [49, 50]. Nowadays, all tea phytochemicals are classified into two groups: volatile and non-volatile compounds [47]. The chemical composition of Theafolium contains many polyphenolic compounds (mainly six groups of compounds, up to 35%) with the predominance of catechins (10–20%) [47]. The main catechins present in green tea are: (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCG). Among them, EGCG (fig. 3) is the most active major polyphenol compound of green tea. In addition, EGCG has been demonstrated to display potent antioxidant properties [52]. Other chemicals were identified such as caffeine (2.5–4.5%), theophylline (0.02–0.05%), theobromine (0.05%) and flavonoid glycosides [51], and volatile oil [48].

![chemical structure of (-)-epigallocatechin gallate (EGCG)](image)

Figure 3.
Chemical structure of (-)-epigallocatechin gallate (EGCG)

In the study performed by Okello et al. [53] it was shown that infusions of both green and black tea exhibited concentration-dependent inhibition of acetylcholinesterase (AChE) activity in vitro (the colorimetric – Ellman’s method) with IC₅₀ of 0.03±0.004 mg/ml and 0.06±0.005 mg/ml, respectively. In the same conditions, two teas have inhibited the butyrylcholinesterase (BuChE) activity in vitro with IC₅₀ values of 0.05±0.005 mg/ml and 0.05±0.007 mg/ml, respectively. It was also reported that green tea infusion has anti-β-secretase activity [53]. These results indicate that active compounds of green and black tea may play important role in neurodegenerative disease treatment.
The another interesting compound affecting the central nervous system – a γ-aminobutyric acid (GABA, human brain neurotransmitter) is present in new type tea. According to the findings of Tsushida et al. [54], the anaerobic fermentation of fresh tea leaves is a key step of manufacturing GABA-containing tea. Recently many new techniques for enhancement of GABA content in GABA-containing tea have been developed [50].

(−)-Epigallocatechin gallate as a neuropharmacological compound

Health beneficial effects of green tea are attributed to its principal neurobiological active compound – EGCG [55, 56]. The neuroprotective effects of EGCG have been investigated in several studies [57, 43]. Zhang et al., [43] have showed that EGCG strongly inhibited the AChE activity and enhanced the inhibitory effect of a sesquiterpene alkaloid - huperzine A on AChE. In a few in vitro studies the EGCG protected neuronal cells against a wide spectrum of neuroactive/neurotoxic agents, such as alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), kainate, N-methyl-D-aspartate (NMDA), glutamate [58; 59], and lipopolysaccharide (LPS) [60]. He et al. [61] revealed the protective EGCG effects in aging mice induced by D-galactose. In another study EGCG was demonstrated to reduce Aβ levels both in vitro and in vivo by promoting APP non-amyloidogenic cleavage [62]. Lee et al. [63] demonstrated that the administration of EGCG attenuates the ischemia-induced increase of putrescine levels and has a neuroprotective effect against hippocampal neuronal damage in a gerbil model of global ischemia. Moreover, results of Reznichenko et al. [64] research suggested that EGCG may have a positive impact on aging and neurodegenerative diseases by retarding or perhaps even reversing the accelerated rate of neuronal degeneration, because EGCG showed the induction of neurite outgrowth in PC12 cells and abolished the induced cell damage. Other studies have established that green tea extract and EGCG, given earlier than the parkinsonism-inducing neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), prevent striatal dopamine depletion and substantia nigra dopaminergic neuron loss caused by MPTP in animal model [65]. Moreover, EGCG significantly inhibited microglial activation induced by MPTP [66] and also reduced the dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells [67]. Levites et al. [68] also demonstrated in neuronal cell culture that EGCG attenuated 6-hydroxydopamine (neurotoxin)-induced cell death. An increased phosphorylated protein kinase C (PKC) activity due to EGCG treatment allow the researchers to conclude that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-hydroxydopamine Levites et al. [68] as well as Jang et al. [69] demonstrated that EGCG showed neuroprotective effect against quinolinic acid-induced excitotoxicity via PI3K pathway and NO inhibition. A recent in vitro study showed a significant reduction in the striatal 3-O-methyltyrosine level in EGCG-treated rats through inhibition of the central COMT-mediated L-DOPA methylation [59]. According to the conclusions of Kang's
research team [59] EGCG may have significant beneficial effects in Parkinson’s patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration.

The systematic review showed an increasing evidence that green tea polyphenols, especially EGCG, possessing an antioxidant activity may protect neurons from neurotoxic chemicals but the mechanisms underlying the neuroprotective effect of EGCG in neurodegenerative diseases models are not fully explained.

The influence of (-)-epigallocatechin gallate and other tea compounds on secretase activity

The systematic review of pharmacological studies allow to underline the beneficial role of EGCG in the prevention and attenuation of different pathways in neurodegenerative diseases. This effects were shown not only in the mice model of Parkinson’s disease but also in the transgenic model of Alzheimer’s disease in vivo and other dementias. Most investigations have focused on the therapeutic potential of compounds that may promote the non-amyloidogenic pathway of APP [68], due to the fact that EGCG is known to enhance the processing of APP to sAPP-α in vitro [62].

Before the study on the neuronal activity of EGCG, the researchers founded that green tea infusion at a concentration of 0.03 mg/ml inhibited BACE1 activity by 27% after 5 min incubation, whereas after 60 min the inhibition reached 38% [53]. These results indicated a new scientific way in order to demonstrate the activity of chemical compounds of green tea extract on the Aβ and enzymes regulating its deposition in the brain.

In detail, an immunoenzymatic assay showed that EGCG could reduce intracellular Aβ generation (both Aβ1–40 and Aβ1–42 peptides) in a dose-dependent manner. MC65 cells treated with EGCG reduced Aβ generation by 20–30% at a concentration of 20 μM compared with untreated cells. EGCG showed also a dose-dependent effect on soluble APP (sAPP) release in culture medium. Also in transgenic mice model it was shown the reduced hippocampal level of Aβ after EGCG treatment was shown [55].

In another studies it was attempted to clarify the enzymatic mechanism of the action of EGCG. Results of neurochemical study with use of ELISA and Western blot methods allowed to state that that synthetic EGCG significantly elevated N-terminal APP cleavage producing soluble APP-α through α-secretase activity in murine neuron-like cells transfected with Swedish mutant form of APP (SweAPP N2a cells) as well as transgenic mice carrying Swedish mutant APP (Tg APPsw line 2576) [70]. It was shown that EGCG (20 μM) diminished Aβ deposition in SweAPP N2a cells and Tg APPsw line by 61% and 38% compared with untreated cells, respectively. Moreover, epicatechin (80 μM) inhibited Aβ generation by nearly 20–30% in both cell types, but other green tea compounds as (-)-gallocatechin and (-)-catechin (C)
showed the opposite effect as compared to the effects of EGCG. The results allowed to state that purified EGCG was more capable of reducing Aβ generation in cell cultures than when it was present in a mixture in whole green tea extract [70]. Besides, in transgenic mouse model of AD, it was shown that intraperitoneally (20 mg/kg daily for 60 days) and intracerebroventricularly (5 µl (10 µg)/mouse) administered EGCG to mice significantly elevated non-amyloidogenic level of APP fragment (sAPP-α) as well as reduced Aβ\textsubscript{1-40} and Aβ\textsubscript{1-42} fragments levels by 38–44%. It was found that 32–40% increase in α-secretase cleavage activity which was associated with reduction of total Aβ levels in the brain homogenate [70].

Other findings focused on the influence of EGCG on β-, and γ-secretase activity. Lee et al. [60] demonstrated that EGCG dose-dependently inhibited lipopolysaccharide (LPS)-induced elevation of Aβ level through attenuation of β- and γ-secretase activities. EGCG at doses of 1.5 and 3mg/kg was orally administered to mice in drinking water for 3 weeks. LPS was intracerebroventricularly injected at dose of 1 µg/mouse on day 22 from the start of the EGCG treatment. It was shown that treatment of EGCG dose-dependently lowered LPS-induced β- and γ-secretase activities both in the cortex and hippocampus [60]

In another model research using commercial BACE1 assay kit it has been shown that not only EGCG inhibited BACE1 activity in vitro (IC\textsubscript{50}=1.6 µM), but also other compounds of ethyl acetate extract of green tea [71]. Jeon et al. [71] proved that (-)-gallocatechin gallate showed inhibition of BACE1 activity with IC\textsubscript{50} value of 1.8 µM and (-)-epicatechin (IC\textsubscript{50}=2.3 µM), (-)-epigallocatechin (IC\textsubscript{50}=2.4 µM), (-)-gallocatechin (IC\textsubscript{50}=2.5 µM), (±)-epicatechin (IC\textsubscript{50}=2.8 µM), (-)-catechin (IC\textsubscript{50}=3.0 µM), (±)-catechin (IC\textsubscript{50}=3.5 µM), (-)-epicatechin gallate (IC\textsubscript{50}=4.5 µM), (-)-catechin gallate (IC\textsubscript{50}=6.0 µM). It follows that the pyrogallol moiety in the catechin skeleton appeared to be essential for the stronger inhibitory activity [71].

Recently, Giunta et al. [72] showed in AD mouse model that enrich food with EGCG and fish oil (at a dose of 0.25 mg of fish oil plus 1.875 mg of EGCG or 0.25 mg of fish oil plus 0.375 mg of EGCG/mouse/day for 6 months) enhanced the production of sAPP-α, indicating the increased non-amyloidogenic processing. Moreover, it was shown that co-treatment of mice with EGCG and fish oil synergistically inhibited Aβ deposition in examined brain regions such as cingulate cortex, hippocampus, and entorhinal cortex. This has been observed that the low dose EGCG supplemented with fish oil was more effective in diminish of soluble and insoluble forms of Aβ\textsubscript{1-40, 42}. Of course there is a need to perform clinical trials on the effectiveness of this complex natural product.

The study on molecular mechanisms of the action of EGCG on the level of neuronal cells were made by Obregon et al. [73]. The investigation demonstrated that EGCG in a dose-dependent manner increased mRNA expression of ADAM10 protein (disintegrin and metalloproteinase domain-containing protein 10) in both cultured neuronal and microglial cells. Protein ADAM10 was a key effector in EGCG promotion of non-amyloidogenic APP proteolysis. Moreover, it was observed that EGCG dose-dependently reduced of Aβ\textsubscript{1-40} and Aβ\textsubscript{1-42} concentrations and non-am-
Plants and their chemical compounds affecting β-amyloid and secretase activity

ConclusIon

In conclusion, it can be stated that discovery and development of new drugs for neurodegenerative diseases (anti-dementia drugs) is one of the most intensively developed scientific areas due to the fact that a major risk factor for central neurodegeneration is brain aging [74-76]. Currently, four approaches for the prevention and modification of AD progress are applied, mainly: anti-amyloid deposition strategy (up-regulation of α-secretase and down-regulation of β- and γ-secretase), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity inhibition, neuroprotective treatment and neurorestorative/neuroregenerative therapies [4]. Recent studies are directed to the discovery of the new plant substances increasing the concentration and activity of α-secretase in brain and, therefore, lead to the cleavage of APP (amyloid precursor protein) within the Aβ sequence and releasing soluble N-terminal nonaggregating fragments (sAPP). Numerous studies have shown that stimulation of sAPP release is associated with diminished formation of amyloidogenic peptides [75]. There is a strong belief that α-secretase upregulation may be an important target for the prevention and more effective therapy of Alzheimer’s disease, however, there are strong evidences pointing the role of β- and γ-secretases as a susceptibility factor of brain amyloidosis and as an excellent therapeutic target in AD [28]. Results of Chow et al. [77] allowed to state that the novel anti-amyloid combination therapy that modestly targets both β-secretase (BACE1) and γ-secretase represents a more effective treatment strategy diminishing Aβ and amyloidosis in AD. In this paper the authors, taking into account the abovementioned facts, the prevalence of plant materials and multidirectional nature of the pharmacological effects of plant origin preparations, made a literature study in order to point the new plant biologically active compounds influencing on the brain Aβ pathway induced in Alzheimer’s disease via modulation of secretases concentration and activity in different laboratory research models. Our work demonstrates the worldwide growing investigations of action of plant substances in this field with the predominance of Asian plants. The analysis of scientific data allowed us to conclude that plant biologically active compounds such as (−)-epigallocatechin gallate from the leaf of Camellia sinensis and cryptotanshinone from root of Salvia miltiorrhiza may open a new promising therapeutic window for the prevention and treatment of degenerative diseases such as AD. However, there is a need to perform further studies and clinical trials in this area.
ACKNOWLEDGEMENT

The research project financed by the Ministry of Science and Higher Education No. N-405417836.

The authors thank to Jacek Kujawski Ph. D., Department of Organic Chemistry, The University of Medical Sciences (Poznań, Poland) for the development of the graphical structure of chemical compounds.

REFERENCES

ROŚLINY I ICH ZWIĄZKI CHEMICZNE WПŁYWĄCE NA β-AMYLOID I AKTYWNOŚĆ SEKRETAZ JAKO POTENCJALNE ŹRÓDŁA NEUROPROTEKCYJNYCH PRODUKTÓW ZIOŁOWYCH. CZĘŚĆ 1.

MARCIN OŻAROWSKI1,2*, PRZEMYSŁAW Ł. MIKOŁAJCZAK1,3, ANNA BOGACZ1,4, RADOSŁAW KUJAWSKI1, PRZEMYSŁAW M. MROZIKIEWICZ1,4

1Zakład Farmakologii i Biologii Doświadczalnej
Instytut Włókien Naturalnych i Roślin Zielarskich
ul. Libelta 27
61-707 Poznań

2Katedra i Zakład Botaniki Farmaceutycznej i Biotechnologii Roślin
Uniwersytet Medyczny im. Karola Marcinkowskiego
Św. Marii Magdaleny 14
60-861 Poznań

3Katedra i Zakład Farmakologii
Uniwersytet Medyczny im. Karola Marcinkowskiego
ul. Rokietnicka 5a
60-806 Poznań

4Pracownia Farmakogenetyki Doświadczalnej
Katedra i Zakład Farmacji Klinicznej i Biofarmacji
Uniwersytet Medyczny im. Karola Marcinkowskiego
ul. Święcickiego 6
61-781 Poznań

*autor, do którego należy kierować korespondencję: mozarowski@poczta.onet.pl

Streszczenie

Przetwory roślinne, a szczególnie frakcje związków biologicznie czynnych mogą odgrywać doniosłą rolę w poprawianiu jakości życia pacjentów z otepieniem, a także opóźniać postępy chorób neurodegeneracyjnych na drodze różnych mechanizmów ich farmakologicznego działania. Ostatnie lata przyniosły szereg opracowań i naukowych badań, jednak wydaje się, że w dalszym ciągu brakuje szczegółowej, syntetycznej analizy na ten temat. Głównymi markerami biologicznymi procesu patogenetycznego choroby Alzheimera, będącej najczęstszą postacią otepienia są, jak dotąd, odkładające się płytki β-amyloidu, zwyrodnienie neurofibrylarne oraz zaniki neuronów cholinergicznych w kluczowych dla pamięci regionach mózgu. Obecnie w leczeniu choroby Alzheimera stosuje się głównie leki z grupy inhibitorów acetylocholinoesterazy. W naszym poprzednim artykule przeglądowym zwróciliśmy uwagę na interesujące mechanizmy działania biozwiązków wybranych roślin z rodziny Lamiaceae, np. hamowanie acetylo-, i butyrylocholinoesterazy czy ich działanie...
antyoksydacyjne. Celem niniejszego artykułu przeglądowego jest analiza wyników dotyczących oddziaływania roślinnych ekstraktów oraz wyizolowanych roślinnych związków chemicznych (m.in. kryptotanszinonów, galusanu epigalokatechiny EGCG) na szlak powstawania i odkładania β-amyloidu w modelach farmakologicznych, między innymi poprzez interakcję z α-, β-, γ- sekretazą (zarówno na poziomie genomowym jak i białkowym). Jest to jeden z głównych nurtów poszukiwania nowych leków ze źródeł naturalnych o działaniu neuroprotekcjnym. Wydaje się, że Salvia miltiorrhiza oraz Camelia sinensis są roślinami leczniczymi pochodzącymi z Azji posiadającymi odpowiedni potencjał terapeutyczny w tym względzie. Oprócz nich znanych jest co najmniej 10 azjatyckich roślin intensywnie badanych pod kątem prewencji chorób neurodegeneracyjnych (m.in. Aralia cordata, Magnolia officinalis, Perilla frutescens, Polygala tenuifolia, Punica granatum, Sophora flavescens). Jednak wiele aspektów ich działania jest niezbyt dobrze poznanych, dlatego istnieje potrzeba przeprowadzenia dalszych badań zarówno fitochemicznych, jak i farmakologicznych.

Słowa kluczowe: Salvia miltiorrhiza, Camelia sinensis, β-amyloid, choroba Alzheimera, neuroprotekcja