Peanut Allergenicity and Cross-Reactivity with Pea Proteins in the In Vivo Model

Agata Szymkiewicz*, Justyna Chudzik-Kozłowska

Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, ul. Twarda 10, 10–747 Olsztyn, Poland

Key words: peanut hypersensitivity, immunotherapy, cross-reactivity, pea proteins, animal model

The aim of the study was to analyse the potential pea-peanut cross-reactivity using the mice BALB/c as a biological in vivo model in the research on immune response to peanut proteins (PnE). BALB/c mice were three-fold sensitised on days 1, 7, and 21 by oral or intraperitoneal (IP) administration of PnE in 0.5 mg or 1 mg dose, with or without adjuvant – aluminum hydroxide gel (Alum). Serum immunoglobulins (IgE, IgG, IgG1 and IgG2a) and level of cytokines (IL-4, IL-10, IFN-γ), secreted by the isolated lymphocytes were examined. The highest increase in total IgE and peanut-specific IgG1 was noted in the group sensitised by IP administration of PnE in the presence of Alum. Lymphocytes from peanut-sensitised (with and without Alum) mice showed a significantly high level of IL-4 and this cytokine was secreted to a much higher extent as compared to IFN-γ. Stimulation of a culture of lymphocytes with pea proteins resulted in high IFN-γ secretion. A weak reaction of peanut-specific IgG1 present in mice serum with pea globulins (vicilin – PV and legumain – PL) can suggest that the cross-reactivity between peanut and pea proteins results from the presence of proteins other than 7S and 11S globulins. Due to the demonstrated low cross-reactivity between peanut proteins and pea globulins, the possibility of applying pea proteins in peanut-allergy immunotherapy may be suggested.

INTRODUCTION

Improper immune system response to food occurs in almost 5% of small children and 3–4% of adults and has a growing tendency [Sicherer & Sampson, 2010]. Peanut allergy affects almost 1% of children and 0.6% of adults in the United States [Burks; 2008; Sicherer et al., 2003]. Thya-garajian et al. [2010] reported that the problem concerns over 1% of the population of the Western countries. Peanut causes the highest number of cases of severe anaphylaxis and deaths [Finkelman, 2010]. The mechanism of peanut allergy still remains unclear. A significant role in anaphylaxis evocation is assigned to the capability of peanut proteins to activate the complement system [Khodoun et al., 2009]. This probably differentiates such allergy from hypersensitivity to milk or eggs. The effect of the glycation process during roasting on the peanut allergenicity should also be considered [Kopper et al., 2005; Bielikowicz et al., 2010]. There is plenty of information about cross-reactivity between leguminous plants (including peanuts), but cases confirming their clinical reactivity are rare [Faeste & Namork, 2010]. Majority of studies in this area are based on the determination of the level of specific antibodies in blood serum using in vitro methods [de Leon et al., 2007; Maloney et al., 2008; Martinez San Ireno et al., 2008]. The possibility of cross reactivity can be assessed on the basis of the identity of local amino acid sequence in the examined protein with those in epitopes in known allergenic proteins [Minkiewicz et al., 2011]. Implementation of a biological model with the use of laboratory animals appears to be an another, maybe more proper solution. In vivo studies on the animal model are supported by FAO and WHO [FAO/WHO, 2001] and numerous national organizations engaged in studying food and health [Bowman & Selgrade, 2008]. Interest in the use of the model based mainly on rodents (mice) in food allergy research in humans has increased considerably during the last few years [Knippels et al., 2004; Lehrer & Mc-Clain, 2009; McClain & Bannon, 2006]. Food allergy usually proceeds according to IgE-mediated and non-IgE-mediated (cellular) mechanism [Sicherer & Sampson, 2010]. IgE occurs in trace amount under physiological conditions, and its synthesis is regulated by various factors. The most important role in the activation of these antibodies’ production is played by Th2, which produces interleukin 4 (IL-4) and signal B cells after an interaction between TCR/CD3 and class-II MHC. IgE synthesis can also be stimulated by other cytokines produced by Th2, like IL-13, IL-5, and IL-6. On the other hand, some cytokines, produced by Th1, especially gamma interferon (IFN-γ) and IL-12, inhibit IgE synthesis [Kaplan, 2001; Male et al., 2008].

The utility of the model based on mice depends on whether in a given species a genetic tendency to food allergy is connected with Th2-Th1 response change [Morafo et al., 2003]. It was clearly shown that C3H/HeJ mice can be used in studies on induced anaphylaxis (IgE-mediated) and that
its clinical course (T- and B-cells responses) was similar to that occurring in individuals with hypersensitivity to peanuts [Li et al., 2000]. Also other species of mice: BALB/c, DBA/2, A/J, BDF-1, C57Bl/6, are used in studying the mechanisms of food allergy [Ladics et al., 2010; Ganeshan et al., 2009; Liriani et al., 2005; Sumiyoshi et al., 2010; Yang & Mine, 2009]. The majority of investigations conducted with the use of the murine model determine the influence of isolated antigens on the immune system [Dearman & Kimber, 2007; Helm, 2002; Hilton et al., 1997]. However, this model has an error because purified proteins (allergens) stimulate murine immune system with less efficacy than crude extracts [Strid et al., 2004]. Moreover, the efficiency of stimulation depends not only on the purity of protein, but also on the presence of contamination, like lipopolysaccharides (LPS) [Eisenbarth et al., 2002], endotoxins [Delayre-Orthez et al., 2004], or lectins [Pramod et al., 2007; van Wijk et al. 2005]. In our studies, BALB/c mice were used to determine their utility in studies related to food reaction caused by peanut protein administration (crude extract).

The aim of this study was to analyse the potential pea-peanut cross-reactivity with using the BALB/c mice as a biological in vivo model in the research on immune response to peanut proteins.

MATERIALS AND METHODS

Mice and reagents

Five-week-old female BALB/c mice purchased from Medical Research Centre, PAS, Warsaw, Poland, were maintained on legume-free diet. Standard guidelines for care and use of animals were followed. Aluminum hydroxide gel (Alum) was used as an adjuvant (A8222, Sigma).

Preparation of peanut extract

Crude peanut extract (PnE) and pea extract (PE) was prepared from defatted raw flour. The flour (1:10 w/v) was extracted for 2 h with PBS (pH 7.4) at room temperature. After centrifugation at 20,000 × g for 60 min, the supernatant was filter-sterilized, frozen and stored at −20°C until further use. Protein concentrations were determined using the Bradford analysis with BSA as the standard. 2-D analysis from the extract showed spots between 6–100 kDa and pH 5–7 (not shown). The major peanut and pea globulins were extracted as described before [Freitas et al., 2000] and then fractioned by ammonium sulfate precipitation [Maleki et al., 2000]. Isolated 11S and 7S fractions were purified by ion exchange chromatography on a column with DEAE-Sepharose (DFF100, Sigma). Protein sample (250 mg) was applied to the column (HR 16 x 10) and eluted in the gradient of two buffers: A = 50 mmol/L phosphate buffer (pH 7.2) and B = 50 mmol/L phosphate buffer (pH 7.2), containing 0.5 mol/L NaCl. As a result of chromatographic separations, the pea and peanut legumin (PL and PnL) fractions were obtained, which on SDS-PAGE gel yielded bands corresponding to the molecular masses of 40 kD and 20 kD. Pea vicilin (PV) purified on DEAE-Sepharose column yielded bands corresponding to the molecular masses of 50 kD, 33 kD and three 19–16 kD bands, and peanut vicilin (PnV) – 63 kD (not shown).

Mouse treatment protocol

Peanut sensitization and challenge was adapted from the previously described protocol [Pons et al., 2004]. Sensitization was performed by intraperitoneal (IP) administration of 0.5 or 1.0 mg PnE in PBS only or together with Alum (0.3 mL injected/mouse) on days 1, 7 and 21. The control group received only PBS (0.3 mL). Two weeks after last sensitization, mice were challenged with PnE. Next day all mice were killed by CO₂ inhalation.

The Local Care Use of Animal Committee (authorization 11/2007) approved animal handling and experimental procedures.

Measurement of serum peanut-specific IgG1, IgG2a, IgE and total IgE levels

Tail vein blood was obtained during sensitization on days 14, 28 and after completion of the experiment (day 35). The blood was incubated for 1 h at room temperature, centrifuged at 14,000 × g for 10 min. Then, the sera were collected and stored at −20°C [Dearman & Kimber, 2007].

Levels of peanut-specific IgG1 and IgG2a were measured by ELISA as described previously [Lee et al., 2001] with minor modifications. Plates were coated with PnE, PE at 20 µg/mL and globulin fractions at 10 µg/mL, incubated overnight at 4°C and blocked with 3% BSA (A7906, Sigma) in PBS-T (PBS with 0.05% Tween 20). Sera were diluted at 1:50,000, 1:1,000 and 1:5 for detection of IgG1, IgG2a and IgE, respectively. After incubation for 2 h at 37°C, plates were washed (PBS–T) and biotynylated rat anti-mouse IgG1 (550331, Becton Dickinson), IgG2a (553388, Becton Dickinson) or IgE (553414, Becton Dickinson) antibodies were added. After washing, streptavidin peroxidase conjugate (E2886, Sigma) was added (30 min). The enzymatic reaction was developed with TMB (T5525, Sigma) for 15 min. Absorbance was measured at 450 nm using Sunrise-Tecan automatic reader.

Total IgE was determined by employing ELISA according to the manufacturer’s instructions (OptEIATM Mouse IgE Set – 555248, Becton Dickinson). Serum was diluted at 1:100. For each mouse, concentrations of immunoglobulins were the mean of triplicates.

Spleen lymphocyte isolation, cytokine analysis

Lymphocytes were isolated from pooled spleens removed from mice (n = 5) of each group according to a standard method [Maddaloni et al., 2006]. A total of 2×10⁶ cells per 1 mL were cultured in the complete medium at 37°C in the atmosphere of 5% CO₂. Complete cell culture medium containing RPMI 1640 medium (R8758, Sigma) was supplemented with 10% heat-inactivated newborn calf serum (N4762, Sigma), 1% non-essential amino acids (M7145, Sigma) and 1% penicillin-streptomycin solution (P4333, Sigma). Cells were cultured in the medium only (negative control) or stimulated with PnE (100 µg/mL), peanut globulin fractions (50 µg/mL) or ConA (5 µg/mL) (positive control).

Levels of IFN-γ, IL-4 and IL-10 in the supernatants of 48-h cultures were determined in triplicate runs using commercial enzyme-linked immunosorbent assay (ELISA) kit reagents according to the manufacturer’s instructions (BD Pharmin- gen, Mississauga, Canada: Mouse IFN-γ ELISA set – BD
Cross-Reactivity Between Peanut and Pea Proteins

B cell Ab ELISPOT

For antigen-formatting cells (AFC), IgG antigen specific ELISPOT was done according to a standard method [Maddaloni et al., 2006]. MultiScreen-IP plate (Millipore, MSIPS4510) were then coated with 20 μg/mL of antigen in sterile PBS overnight at 4°C. The plates were blocked with cRPMI at 37°C for 1 h, and then washed five times with PBS. A total of 100 μL of cells from spleen at 1×10^5 concentrations was added to the well. The plates were incubated overnight at 37°C in 5% CO\textsubscript{2} atmosphere. To detect AFC response, anti-mouse IgG-HRP conjugates (A4416, Sigma) were added, and the plates were incubated overnight at 4°C. After washing, the plates were developed with AEC substrate set (551951, Becton Dickinson) for 15 min at room temperature, and the reaction was stopped with water. Spot quantitation was performed by counting under stereo zoom microscope (OLYMPUS, SZX 9) the following day.

Statistical analysis

All values are expressed as means ± SEM for 5 animal/group. Data were analysed by one-way ANOVA, and then differences among means were analysed using Fisher-Protected Least Significant difference for multiple – comparison procedure. The level of significance was set at \(p<0.05 \).

RESULTS AND DISCUSSION

The BALB/c mice were tested for their use in studies on immunomodulation of food reaction induced by peanut proteins. To sensitize BALB/c mice, peanut proteins (PnE) were administered in 0.5 to 1 mg dose to mice 6–8 weeks of age on the 1st, 7th, and 21st day of the study. A dose higher than recommended induced weak production of IgE [Li et al., 2000] and could promote production of IgG2a [Arps et al., 1998]. The antigen was administered orally and intraperitoneally in a native form or in the presence of Alum. The concentration of antibodies in serum was monitored during immunization. The highest level of total IgE (Figure 1) and PnE-specific IgG (Figure 2) was observed in the sensitized group after intraperitoneal administration of antigen in the presence of adjuvant. However, it was observed that the administration of the third dose of adjuvant significantly increased the studied antibodies (day 28). The presence of adjuvant affected mainly the level of total IgE (Figure 1). The concentration of specific-IgG in groups vaccinated without adjuvant was lower as compared to groups administered with PnE with Alum; although, this difference was not so significant as in the case of IgE, which indicated huge immunogenicity of peanut proteins that were administered intraperitoneally (Figure 2). It is interesting to observe that the presence of Alum stimulated mainly the production of PnL-specific IgG (Figure 3). Oral administration of peanut proteins induced food tolerance in BALB/c mice (Figures 1, 2, 3).

It is commonly considered that the level of specific IgE in serum determines protein allergenicity [Fæste & Namork, 2010]. In our studies, peanut-specific IgE was assayed
The results obtained indicated an increase in the secretion of specific IgE in mouse serum after intra-peritoneal administration with and without Alum; however, the determined concentration of given antibodies was quite low (Figure 4). We assume that this could result from the method which was used to determine specific IgE. It is possible that antigen-specific IgG, which occurs at a very high concentration, will inhibit the detection of binding of antigen-specific IgE in ELISA tests. Goodman et al. [2008] demonstrated that in vitro serum IgE measurements did not always correlate with biological reactivity, as measured by PCA (passive cutaneous anaphylaxis assay), ACA (active cutaneous anaphylaxis assay) or ASA (active systemic anaphylaxis assay). Additionally, it was considered that the development of peanut allergy was accompanied not only by the increase in specific IgE but also through the elevated level of other biomarkers, such as specific IgG1 or cytokines profile, which play a significant role in this process [Baeza & Zubeldia, 2007; Miyajima et al., 1997; Van Wijk & Knippels, 2007].

In our study, 3-fold administration of PnE resulted in a significant increase in the level of peanut-specific IgG1 as compared to PBS-immunised group (Figure 5). The presence of adjuvant induced significantly a higher level of these antibodies. The concentration of specific IgG2a was also higher than in the control group (Figure 6). It is interesting that Alum stimulated much better the production of specific IgG2a than IgG1. Similar results were cited by Ladics et al. [2010] based on unpublished TNO data. However, a high ratio of IgG1/IgG2a indicated the immunological response according to Th2 type, a characteristic trait of food allergy [Aldemir et al., 2009; Blumchen et al., 2010; Jones et al., 2009]. Gizzarelli et al. [2006] reported that a high level of both IgE and IgG1 as well as a lower level of IgG2a, together with the production of IL-4 and IL-5, were observed in the case of Th2 type responses to soybean proteins. A relatively high concentration of PnL-specific IgG1 in BALB/c mouse serum indicated a stronger allergenicity to peanut arachin (Ara h 3) than to conarachin (Aha h 1). Van Wijk et al. [2005] demonstrated that oral exposure of C3H/HeJ mice to peanut proteins resulted in the production of specific IgE antibodies against the peanut allergens Ara h 3 and Ara h 6, and to a lesser degree against Ara h 1 and Ara h 2. However, it is known that Ara h 1 and Ara h 2, being allergens of vicilin (7S type) and albumin (2S), respectively, are the most potent peanut allergens [Burks et al., 1998]. Similar studies, which were performed on animal models, demonstrated that oral exposure [Van Wijk et al., 2005] and IP vaccination (our results) did not clearly confirm this finding.

High homology of amino acid sequences was observed among globulin proteins of leguminous plants [Barre et al., 2005a,b; 2007; 2008; Shutov et al., 1995], which could result in cross-reactivity [Beardslee et al., 2000; Fæste & Namork, 2010; Ibáñez et al., 2003]. Mice presented a peanut-specific IgG1 response that cross-reacted with pea proteins (Figure 7). The strongest reactions were observed in relation to the extract from pea proteins (PE). Weak reaction with PV and PL may prove that cross-reactivity between peanut and pea proteins results from the presence of proteins other than globulin proteins of 11S and 7S type (Figure 7).
The administered amount of peanut protein (0.5 or 1 mg) had no significant effect on the level of the studied peanut- and pea-specific antibodies. The results obtained by ELISA on the cellular level were confirmed by ELISPOT test. A statistically significant 2-fold increase in AFC was observed in groups vaccinated with adjuvant addition as compared to the control groups; however, no effect of the amount of the administered peanut protein on the lymphocyte reaction was observed (Table 1).

Not only change in the level of specific antibodies, but also cytokine profile, which promotes Th2 response, determines the development of food allergy. It is known that development of helper lymphocytes of Th2 type is related to initiation and maintenance of IgE-mediated immunological response. Interleukin-4 (IL-4), which is produced by Th2 cells, is essential for the production of IgE. Cytokine (IFN-γ) secreted by Th1 type cells represents the antagonist of IgE response [Male et al., 2008; Akdis & Akdis, 2009].

In PnE-sensitised groups without Alum, a high level of IL-4 (Figure 8) and this cytokine was secreted to a much higher extent as compared to IFN-γ (Figure 9). In addition, the isolated peanut fractions (PnL and PnV) activated lymphocytes towards Th2 response. A slight increase in the PnL-specific IFN-γ was detected during stimulation of lymphocyte culture derived from mice vaccinated with PnE in the presence of Alum. This peanut fraction also induced a significant increase in the secretion of IL-10 (Figure 10). Contrary to the role of IL-4, it is difficult to explain the function of the elevated level of IL-10. IL-10 is described as a cytokine of Th2 profile [Fiorentino et al., 1989], which induces inflammatory responses in autoimmune diseases [Strobel, 2002]. However, it may also be related to induction of oral tolerance [Strobel, 2002] as well as suppression of allergenic inflammatory responses induced by an increased activity of Th2 lymphocytes [Barnes et al., 2001; Romagnani, 2000]. Based on our studies, it may be suggested that the IL-10 level is related to the development of oral tol-

TABLE 1. The B-cells ELISPOT for PnE-specific IgG; PBS – control group; 0.5 mg PnE and 1 mg PnE – IP sensitised groups without Alum; 0.5 mg PnE + Alum and 1 mg PnE + Alum – IP sensitised groups with Alum; PnE/oral – orally-sensitised group.

<table>
<thead>
<tr>
<th>Groups</th>
<th>PnE-specific AFC/4x10⁵ lymphocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (PBS)</td>
<td>31±1.69</td>
</tr>
<tr>
<td>0.5 mg PnE</td>
<td>38±1.63</td>
</tr>
<tr>
<td>1 mg PnE</td>
<td>56±2.35</td>
</tr>
<tr>
<td>0.5 mg PnE + Alum</td>
<td>87±9.97</td>
</tr>
<tr>
<td>1 mg PnE + Alum</td>
<td>81±3.29</td>
</tr>
<tr>
<td>PnE – orally-immunised</td>
<td>23±1.63</td>
</tr>
</tbody>
</table>

![Figure 7](image7.png)

FIGURE 7. Pea specific IgG1 levels in the serum of mice after sensitisation with peanut proteins (PnE); serum dilution 1:1,000; PBS – control group, 0.5 mg PnE and 1 mg PnE – IP sensitised groups without Alum; 0.5 mg PnE + Alum and 1 mg PnE + Alum – IP sensitised groups with Alum; PnE/oral – orally-sensitised group; a-PV – pea vicilin – specific IgG1; a-PL – pea legumin – specific IgG1; a-PE – pea protein extract – specific IgG1.

![Figure 8](image8.png)

FIGURE 8. IL-4 levels in lymphocytes culture supernatants. Cells cultured in medium with presence of peanut vicilin (a-PnV), peanut legumin (a-PnL) or peanut proteins extract (a-PnE). Medium was the negative control and medium containing ConA the positive control (data not shown). PBS – control group; 0.5 mg PnE and 1 mg PnE – IP sensitised groups without Alum; 0.5 mg PnE+Alum and 1 mg PnE+Alum – IP sensitised groups with Alum; PnE/oral – orally-sensitised group.

![Figure 9](image9.png)

FIGURE 9. IFN-γ levels in lymphocytes culture supernatants. Cells cultured in medium with presence of peanut vicilin (a-PnV), peanut legumin (a-PnL), peanut proteins extract (a-PnE) or pea protein extract (a-PE). Medium was the negative control and medium containing ConA the positive control (data not shown). PBS – control group; 0.5 mg PnE and 1 mg PnE – IP sensitised groups without Alum; 0.5 mg PnE + Alum and 1 mg PnE + Alum – IP sensitised groups with Alum; PnE/oral – orally-sensitised group.
sensitised groups with Alum; PnE/oral – orally-sensitised group. Groups without Alum; 0.5 mg PnE + Alum and 1 mg PnE + Alum – IP sensitised control and medium containing ConA the positive control (data not shown). PBS – control group; 0.5 mg PnE and 1 mg PnE – IP sensitised mice lymphocytes cultured in the presence of pea proteins (Figure 9), thus it may be concluded that pea proteins can activate Th1 cells.

Summary

The low cross-reactivity between peanut proteins and pea globulins was found with using the mice BALB/c as a biological in vivo model in the research. Based on results achieved, it may be concluded that the pea globulins can be applied in immunotherapy of peanut allergy with a potential success.

Acknowledgements

The work was financed by the Ministry of Science and Higher Education from the research funds in the years 2008–2011 as Research Project No: N N312 250734.

References

13. Bowman Ch.C., Selgrade M.K., Differences in allergenic potential of food extracts following oral exposure in mice reflect differ-

![Figure 10. IL-10 levels in lymphocytes culture supernatants. Cells cultured in medium with presence of peanut vicilin (a-PnV), peanut legumin (a-PnL) or peanut proteins extract (a-PnE). Medium was the negative control and medium containing ConA the positive control (data not shown). PBS – control group; 0.5 mg PnE and 1 mg PnE – IP sensitised groups without Alum; 0.5 mg PnE + Alum and 1 mg PnE + Alum – IP sensitised groups with Alum; PnE/oral – orally-sensitised group.](image-url)

